

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

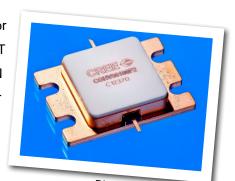
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



CGHV96100F2

100 W, 7.9 - 9.6 GHz, 50-ohm, Input/Output Matched GaN HEMT

Cree's CGHV96100F2 is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) on Silicon Carbide (SiC) substrates. This GaN Internally Matched (IM) FET offers excellent power added efficiency in comparison to other technologies. GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to GaAs transistors. This IM FET is available in a metal/ceramic flanged package for optimal electrical and thermal performance.

PN: CGHV96100F2 Package Type: 440217

Typical Performance Over 8.4-9.6 GHz (T_c = 25°C)

Parameter	8.4 GHz	8.8 GHz	9.0 GHz	9.2 GHz	9.4 GHz	9.6 GHz	Units
Linear Gain	12.7	12.4	12.7	13.1	13.1	12.4	dB
Output Power	151	147	150	152	140	131	W
Power Gain	10.8	10.6	10.7	10.7	10.5	10.2	dB
Power Added Efficiency	44	42	44	43	45	45	%

Note: Measured in CGHV96100F2-AMP (838179) under 100 μ S pulse width, 10% duty, Pin 41.0 dBm (12.6 W)

Features

- 8.4 9.6 GHz Operation
- 145 W P_{OUT} typical
- 10 dB Power Gain
- 45 % Typical PAE
- 50 Ohm Internally Matched
- <0.3 dB Power Droop

Applications

- · Marine Radar
- · Weather Monitoring
- Air Traffic Control
- Maritime Vessel Traffic Control
- Port Security

Large Signal Models Available for ADS and MWO

Absolute Maximum Ratings (not simultaneous)

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DSS}	100	Volts	25°C
Gate-source Voltage	V _{GS}	-10, +2	Volts	25°C
Power Dissipation	P _{DISS}	115.2 / 222.0	Watts	(CW / Pulse)
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	T _J	225	°C	
Maximum Drain Current ¹	I _{DMAX}	12	Amps	
Maximum Forward Gate Current	I _{GMAX}	28.8	mA	25°C
Soldering Temperature ²	T _s	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case	$R_{\scriptscriptstyle{\thetaJC}}$	0.73	°C/W	Pulse Width = 100 μ s, Duty Cycle = 10%, 85°C, P_{DISS} = 173 W
Thermal Resistance, Junction to Case	R _{eJC}	1.07	°C/W	CW, 85°C, P _{DISS} = 115.2 W
Case Operating Temperature ³	T _c	-40, +125	°C	

Note:

Electrical Characteristics (Frequency = 9.6 GHz unless otherwise stated; T_c = 25°C)

	i	•	i			
Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	$V_{\rm GS(TH)}$	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V, } I_{D} = 28.8 \text{ mA}$
Gate Quiscent Voltage	$V_{\rm GS(Q)}$	-	-2.7	-	٧	V _{DS} = 40 V, I _D = 1000 mA
Saturated Drain Current ²	I _{DS}	21.0	26.0	-	А	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	$V_{\scriptscriptstyle BD}$	100	-	-	V	$V_{GS} = -8 \text{ V, } I_D = 28.8 \text{ mA}$
RF Characteristics ³						
Small Signal Gain	S21	10.5	12.4	-	dB	V_{DD} = 40 V, I_{DQ} = 1000 mA, P_{IN} = -20 dBm
Input Return Loss 1	S11	-	-5.2	-2.8	dB	V_{DD} = 40 V, I_{DQ} = 1000 mA, P_{IN} = -20 dBm, 8.4 - 9.4 GHz
Input Return Loss 2	S11	-	-	-3.3	dB	V_{DD} = 40 V, I_{DQ} = 1000 mA, P_{IN} = -20 dBm, 9.4 - 9.6 GHz
Output Return Loss	S22	-	-12.3	-6.0	dB	V_{DD} = 40 V, I_{DQ} = 1000 mA, P_{IN} = -20 dBm
Power Output ^{3,4}	P _{out}	100	131.0	-	W	$V_{DD} = 40 \text{ V, } I_{DQ} = 1000 \text{ mA, } P_{IN} = 41 \text{ dBm}$
Power Added Efficiency ^{3,4}	PAE	30	45	-	%	V _{DD} = 40 V, I _{DQ} = 1000 mA, P _{IN} = 41 dBm
Power Gain ^{3,4}	P_{G}	-	10.2	-	dB	$V_{DD} = 40 \text{ V, } I_{DQ} = 1000 \text{ mA, } P_{IN} = 41 \text{ dBm}$
Output Mismatch Stress	VSWR	-	-	5:1	Ψ	No damage at all phase angles, $V_{\rm DD}$ = 40 V, $I_{\rm DQ}$ = 1000 mA,

Notes:

 $^{^{\}mbox{\tiny 1}}$ Current limit for long term reliable operation.

² Refer to the Application Note on soldering at http://www.cree.com/rf/document-library

³ See also, the Power Dissipation De-rating Curve on Page 9.

¹ Measured on-wafer prior to packaging.

² Scaled from PCM data.

 $^{^3}$ Measured in CGHV96100F2-AMP (838179) under 100 μS pulse width, 10% duty

 $^{^4}$ Fixture loss de-embedded using the following offsets: Frequency = 9.6 GHz. Input = 0.5 dB and Output = 0.5 dB.

Figure 1. - Small Signal Gain and Return Loss vs Frequency of CGHV96100F2 measured in CGHV96100F2-AMP $V_{\rm DS} = 40~V,~I_{\rm DO} = 1000 mA$

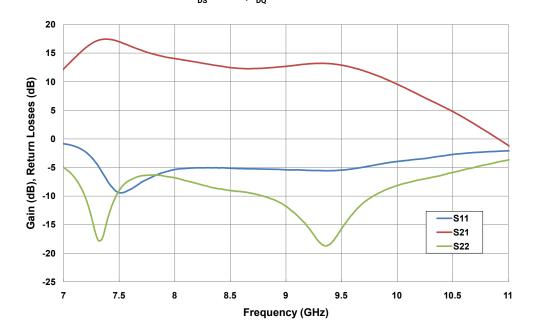


Figure 2. - Power Gain vs. Frequency and Input Power $V_{DD} = 40 \text{ V}$, Pulse Width = 100 μ sec, Duty Cycle = 10%

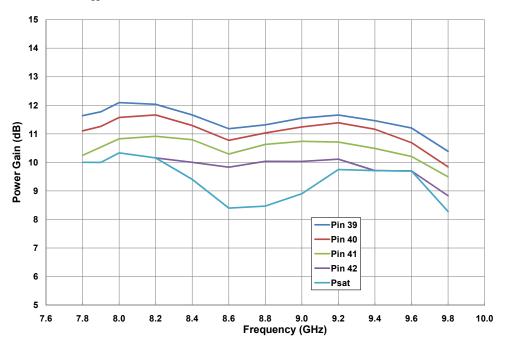


Figure 3. - Output Power vs. Input Power V_{DD} = 40 V, Pulse Width = 100 µsec, Duty Cycle = 10%

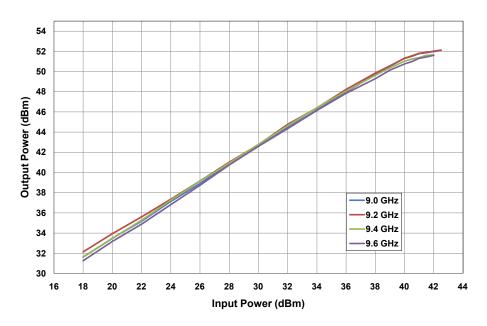


Figure 4. - Power Gain vs. Frequency and Input Power $V_{DD} = 40 \text{ V}$, Pulse Width = 100 μ sec, Duty Cycle = 10%

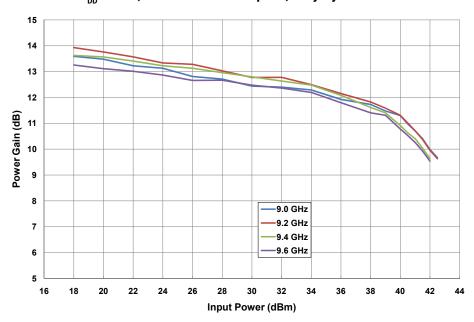


Figure 5. - Power Added Efficiency vs. Input Power V_{DD} = 40 V, Pulse Width = 100 μ sec, Duty Cycle = 10%

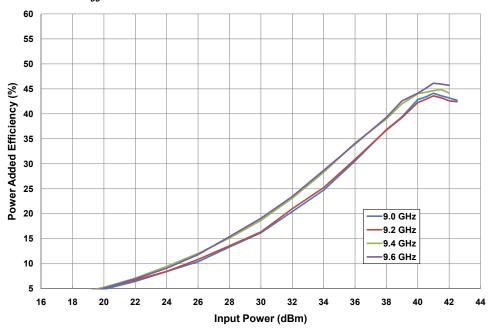


Figure 6. - Output Power vs. Time V_{DD} = 40 V, P_{IN} = 41 dBm, Duty Cycle = 10%

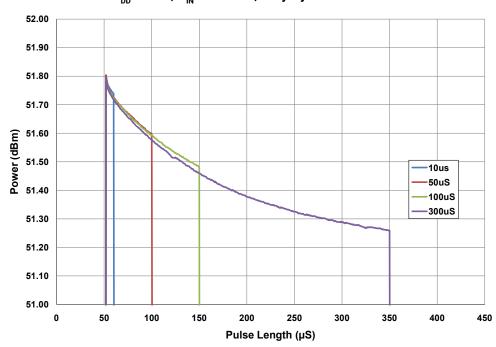


Figure 7. - Output Power vs. Input Power & Frequency V_{DD} = 40 V, Pulse Width = 100 µsec, Duty Cycle = 10%

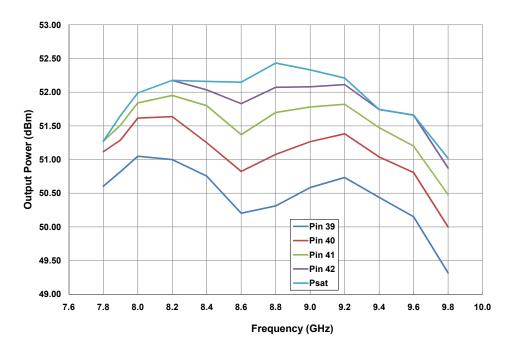
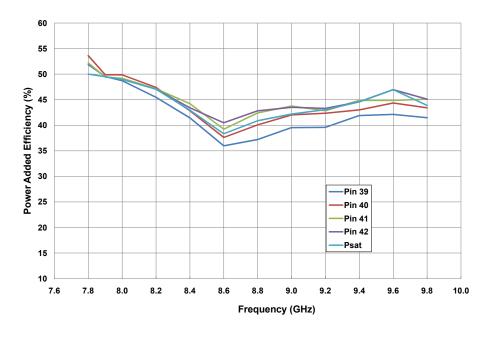
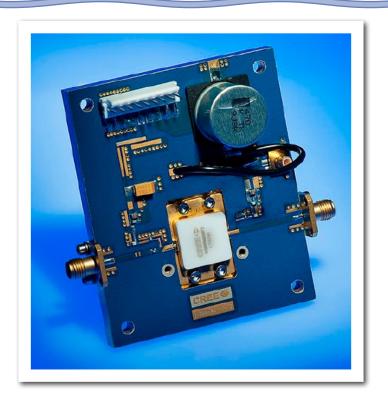
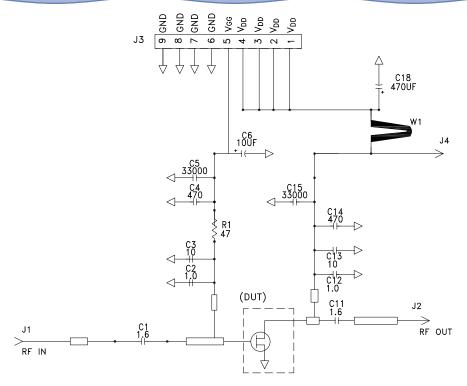



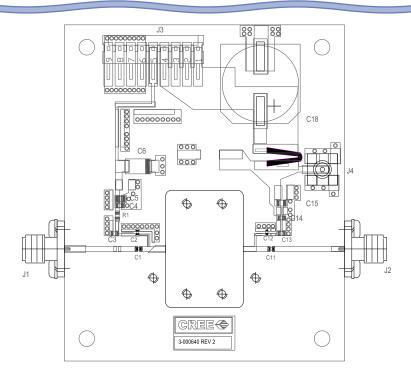
Figure 8. - Power Added Efficiency vs. Input Power & Frequency V_{DD} = 40 V, Pulse Width = 100 µsec, Duty Cycle = 10%



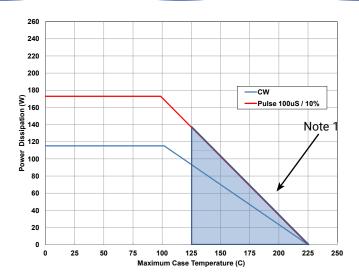
CGHV96100F2-AMP Demonstration Amplifier Circuit Bill of Materials


Designator	Description	Qty
R1	RES, 47 OHM +/-1%, 1/16 W, 0603, SMD	1
C1, C11	CAP, 1.6pF, +/- 0.1 pF, 200V, 0402, ATC 600L	2
C2, C12	CAP, 1.0pF, +/- 0.1 pF, 200V, 0402 ATC 600L	2
C3, C13	CAP, 10 pF +/-5%, 0603, ATC	2
C4, C14	CAP, 470 pF +/-5%, 100 V, 0603	2
C5, C15	CAP, 33,000 pF, 0805, 100 V, X7R	2
C6	CAP, 10 uF, 16 V, TANTALUM	1
C18	CAP, 470 uF +/-20%, ELECTROLYTIC	1
J1,J2	CONNECTOR, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J3	CONNECTOR, HEADER, RT>PLZ .1CEN LK 9POS	1
J4	CONNECTOR, SMB, STRAIGHT JACK	1
-	PCB, TEST FIXTURE, TACONICS RF35P, 20 MIL THK, 440210 PKG	1
-	2-56 SOC HD SCREW 1/4 SS	4
-	#2 SPLIT LOCKWASHER SS	4
Q1	CGHV96100F2	1

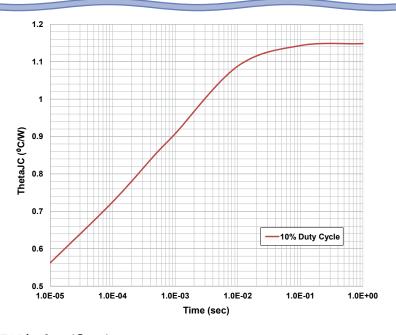
CGHV96100F2-AMP Demonstration Amplifier Circuit



CGHV96100F2-AMP Demonstration Amplifier Circuit Schematic



CGHV96100F2-AMP Demonstration Amplifier Circuit Outline

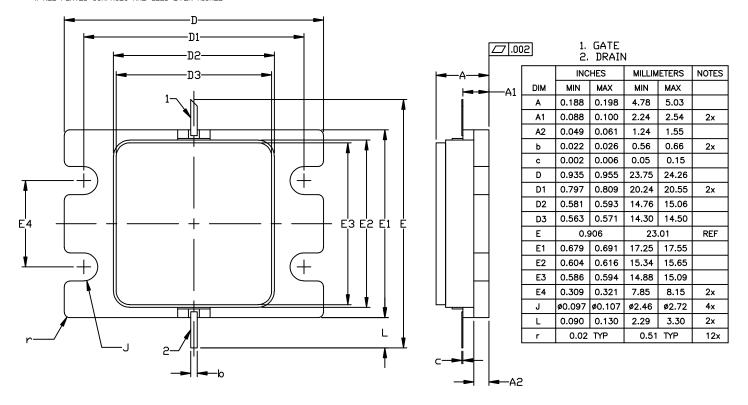


CGHV96100F2 Power Dissipation De-rating Curve

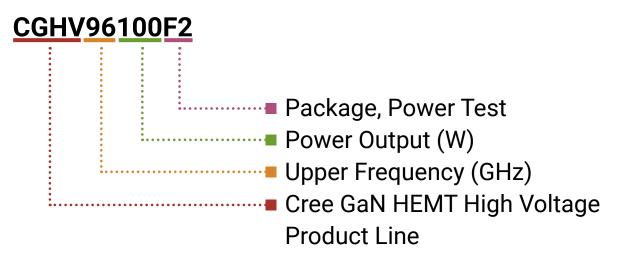
Note 1 : Shaded area exceeds Maximum Case Operating Temperature (See Page 2)

CGHV96100F2 Transient Curve

Electrostatic Discharge (ESD) Classifications


Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1A (> 250 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (200 < 500 V)	JEDEC JESD22 C101-C

Product Dimensions CGHV96100F2 (Package Type - 440217)


NOTES: (UNLESS OTHERWISE SPECIFIED)

- 1. INTERPRET DRAWING IN ACCURDANCE WITH ANSI Y14.5M-2009
- 2. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF .020 BEYOND EDGE OF LID
- 3, LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF .008 IN ANY DIRECTION
- 4. ALL PLATED SURFACES ARE GOLD OVER NICKEL

Part Number System

Parameter	Value	Units	
Upper Frequency ¹	9.6	GHz	
Power Output	100	W	
Package	Flange	-	

Table 1.

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Character Code	Code Value
А	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
K	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Table 2.

Product Ordering Information

Order Number	Description	Unit of Measure	lmage
CGHV96100F2	GaN HEMT	Each	
CGHV96100F2-TB	GaN HEMT	Each	
CGHV96100F2-AMP	Test board without GaN HEMT	Each	
CGHV96100F2-JMT	CGHV96100F2 Delivered in a JEDEC Matrix tray	50 parts / tray. Order multiple = 50pcs	

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for its use or for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications, and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended, or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death, or in applications for the planning, construction, maintenance or direct operation of a nuclear facility. CREE and the CREE logo are registered trademarks of Cree, Inc.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/rf

Sarah Miller Marketing Cree, RF Components 1.919.407.5302

Ryan Baker Marketing & Sales Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639