imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AC-DC Power Supplies

XP Power

250 Watts

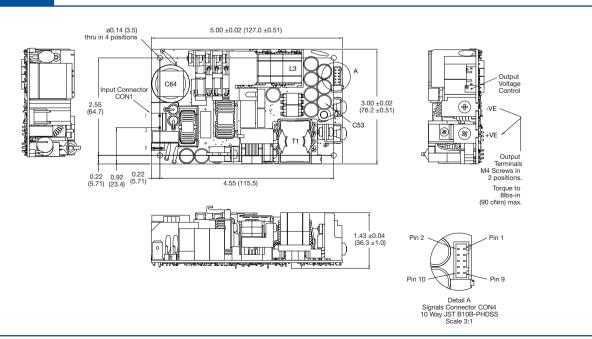
- 250 W Convection-cooled
- Industry Standard 3"x 5" Package
- 80 VAC to 300 VAC Input
- 5V Standby (optional)
- <0.5W Standby Power
- IT & Medical (BF) Safety Approvals
- Power Fail & Inhibit Signals
- 3 Year Warranty

The universal AC input CHD250 provides 250W of convection cooled output power in a 3" x 5" industry standard package, over the temperature range -20°C to +50°C with derating to +70°C. Approved for IT and Medical and with a feature set including a 5V standby output, <0.5W input power when in standby mode, power fail and inhibit signals the CHD250 is ideal for a wide range of applications where fan cooling is not desirable.

Dimensions:

CHD250: 5.00 x 3.00 x 1.43" (115 x 76 x 36 mm) **CHD250-C:** 5.50 x 3.48 x 1.75" (139.7 x 88.5 x 44.4 mm)

Models & Ratings

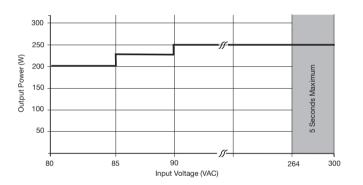

Output Voltage 1	Output Current V1	Standby Supply V2 (optional)	Output Power	Model Number (1,2)
12 V	20.8 A	5.0 V / 0.5 A	250 W	CHD250PS12
15 V	16.7 A	5.0 V / 0.5 A	250 W	CHD250PS15
24 V	10.4 A	5.0 V / 0.5 A	250 W	CHD250PS24
28 V	8.9 A	5.0 V / 0.5 A	250 W	CHD250PS28
48 V	5.2 A	5.0 V / 0.5 A	250 W	CHD250PS48

Notes

1. Add suffix '-C' for cover version e.g. CHD250PS24-C (derating will be applicable, see derating curve fig. 8).

2. Add suffix -A for 5 V standby option or -AC for standby and cover options combined, (derating will be applicable, see derating curve fig. 8).

Mechanical Details



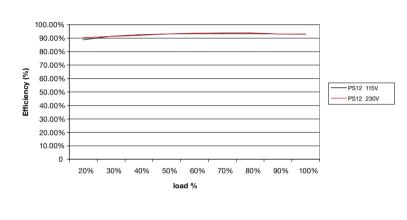
Input

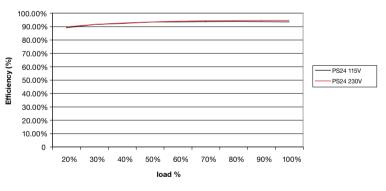
Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Input Voltage - Operating	80	115/230	264	VAC	Derate output power < 90 VAC. See fig. 1
Input Voltage - Fault Condition			300	VAC	5 seconds max
Input Frequency	47	50/60	63	Hz	Agency approval, 47-63 Hz
Power Factor		>0.93			EN61000-3-2 class A compliant
Input Current - Full Load		2.4/1.3		A	115/230 VAC
			0.5	W	All models, when inhibit activated
		3.2		W	CHD250PS12 - 115V AC
		3.1		W	CHD250PS12 - 230V AC
No Load Input Power		3.8		W	CHD250PS24 - 115V AC
		3.1		W	CHD250PS24 - 230V AC
		3.5		W	CHD250PS48 - 115V AC
		2.8		W	CHD250PS48 - 230V AC
Inrush Current		20	40	A	264 VAC cold start
Earth Leakage Current		85/170	250	μA	Typ. 115/230 VAC 50 Hz, Max 264 VAC 60 Hz
Input Protection	5 A/250 V internal fuse in both AC lines				

Input Voltage Derating

Figure 1

Output					
Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Output Voltage	12		48	VDC	See Models and Ratings table
Initial Set Accuracy			±1	%	50% load, 115/230 VAC
Output Voltage Adjustment			+5/-4	%	
Minimum Load	0			A	
Start Up Delay		1.3	2.0	s	115/230 VAC full load from input AC turn on
Hold Up Time		15		ms	90 VAC, full load
Drift			±0.2	%	After 20 min warm up
Line Regulation			±0.5	%	90-264 VAC at 50% load
Load Regulation			±0.5	%	On V1, from 0-100% load
Transient Response			<4	%	Recovery within 1% in less than 500 µs for a 50-75%-50% load change
Ripple & Noise			1	% pk-pk	20 MHz bandwidth
Overvoltage Protection	115		140	%	Vnom DC. Output 1, recycle input to reset
Overload Protection	110		150	%	Trip & Restart characteristic V1
Short Circuit Protection					Shutdown and auto recovery
Temperature Coefficient			0.05	%/°C	
Overtemperature Protection					Not fitted
Patient Leakage Current		83	100	μA	264 VAC/60 Hz


General


Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Efficiency		93-94		%	230 VAC full load
Isolation: Input to Output	4000			VAC	2 x MOPP
Input to Ground	1500			VAC	1 X MOPP
Output to Ground	1500			VAC	1 X MOPP
		45-280		kHz	PFC
Switching Frequency		31		kHz	Boost
Switching Frequency		63		kHz	Main converter
		56-91		kHz	Standby (optional)
Power Density			11.7	W/in ³	
Mean Time Between Failure		213		kHrs	MIL-HDBK-217F, Notice 2 +25 °C GB
		0.94 (425)			CHD250PSxx
Weight		0.97 (441)			CHD250PSxx-A
weight		1.36 (619)		lb (g)	CHD250PSxx-C
		1.40 (636)		1	CHD250PSxx-AC

Efficiency Vs Load

Figure 3 24 V Models

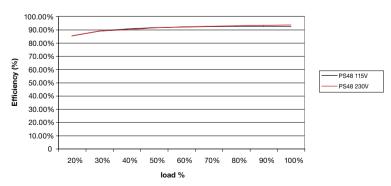


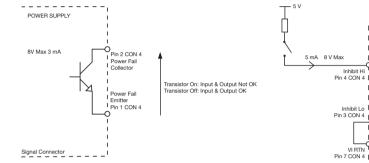
Figure 4

48 V Models

www.xppower.com

AC-DC Power Supplies

Signals & Controls


Characteristic	Notes & Conditions
Power Fail (AC-OK)	Uncommitted isolated optocoupler transistor, normally off when AC is good (see fig.5) Provides 5 ms warning of loss of output from AC failure off when AC is healthy.
Inhibit	Uncommitted isolated optocoupler diode, powered diode inhibits the supply (see fig.6 & 7)
Standby Supply (optional)	5V/0.5A Isolated supply present when AC applied.
Remote Sense	Compensates for 0.25V per lead, 0.5V total drop.

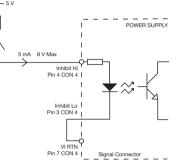
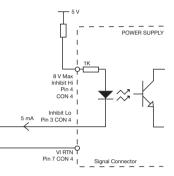

Inhibit (High)

Figure 6

Power Fail


Figure 5

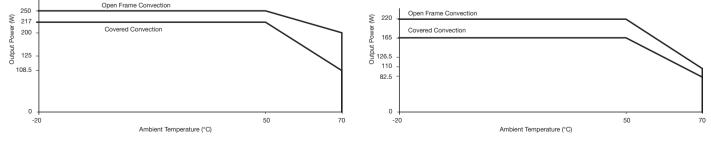
Inhibit (Low)

Figure 7



Environmental Characteristic Minimum Typical Maximum Units Notes & Conditions See derating curve, fig.8. and Thermal Operating Temperature -20 +70 °C Considerations on page 8. -40 +85 °C Storage Temperature Cooling Convection cooled Non-condensing Humidity 95 %RH Information Technology 5000 Operating Altitude m 4000 Medical ±3 x 30g shocks in each plane, total 18 shocks. 30g = 11ms (±0.5msec), half sine. Conforms to EN60068-2-27 & EN60068-2-47 Shock Single axis 10 - 500 Hz at 2g sweep and endurance at resonance in all 3 planes. Conforms to EN60068-2-6 Vibration

Temperature Derating Curve


Figure 8

300

5 V Standby (-A & -AC) versions

AC-DC Power Supplies

EMC: Emissions

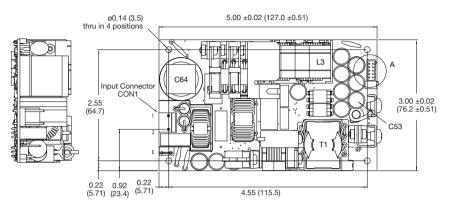
Phenomenon	Standard	Test Level	Notes & Conditions
Conducted	EN55022/11	Class B	
		Class A	
Radiated	EN55022/11	Class B	With 2 turn Wurth 742-700-56 core or similar on AC cable
Harmonic Current	EN61000-3-2	Class A	All models

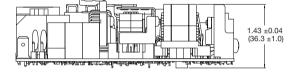
EMC: Immunity

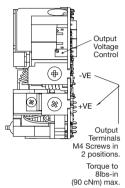
Phenomenon	Standard	Test Level	Criteria	Notes & Conditions
Low Voltage PSU EMC	EN61204-3	High severity level	as below	
Radiated	EN61000-4-3	3	A	
EFT	EN61000-4-4	3	A	
Surges	EN61000-4-5	Installation class 3	А	
Conducted	EN61000-4-6	3	А	
		Int >95% (0 VAC), 8.3ms	А	
	EN55024 (100 VAC)	Dip 30% (70 VAC), 416ms	В	
		Int >95% (0 VAC), 4160ms	В	
	EN55024 (240 VAC)	Int >95% (0 VAC), 10.0ms	А	
		Dip 30% (168 VAC), 500ms	В	
		Int >95% (0 VAC), 5000ms	В	
Disa and laterations	EN60601-1-2 (100 VAC)	Int >95% (0 VAC), 10.0ms	А	
Dips and Interruptions		Dip 60% (40 VAC), 100ms	А	Derate output power to 120 W
		Dip 30% (70 VAC), 500ms	А	
		Int >95% (0 VAC), 5000ms	В	
		Int >95% (0 VAC), 10.0ms	А	
	EN60601-1-2 (240 VAC)	Dip 60% (96 VAC), 100ms	А	
	EN00001-1-2 (240 VAC)	Dip 30% (168 VAC), 500ms	А	
		Int >95% (0 VAC), 5000ms	В	

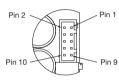
Safety Approvals

Safety Agency	Safety Standard	Notes & Conditions
CB Report	IEC60950-1 Ed 2	Information Technology
	IEC60601-1 Ed 3 Including Risk Management	Medical
UL	UL60950-1 (2007), CSA 22.2 No.60950-1-1:08	Information Technology
	ANSI/AAMI ES60601-1:2005 & CSA C22.2, No.60601-1:08	Medical
TUV	EN60950-1	Information Technology
	EN60601-1	Medical
CE	LVD & RoHS	
Equipment Protection Class	Class I & BF	See safety agency conditions of acceptibility for details

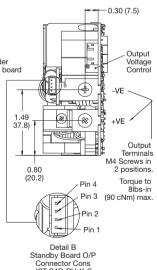

	Means of Protection	Category
Primary to Secondary 2 x MOPP (Means of Patient Protection)		
Primary to Earth	1 x MOPP (Means of Patient Protection)	IEC60601-1 Ed 3
Secondary to Earth	1 x MOPP (Means of Patient Protection)	


AC-DC Power Supplies


XP Power


Mechanical Details

CHD250

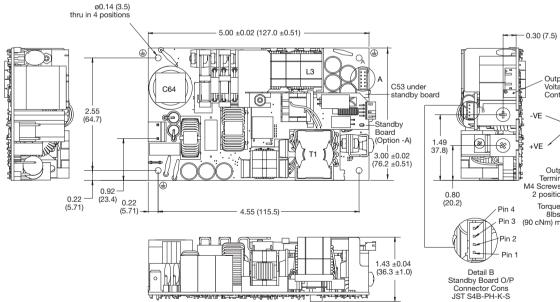


Detail A Signals Connector CON4 10 Way JST B10B-PHDSS Scale 3:1

Input Connector CON 1			
1	Line		
2	Neutral		

Mates with Molex housing 09-50-1031 and Molex series 5194 crimp terminals.

C	Output Connector CON 3		
F	1	+VE	
1	2	-VE	

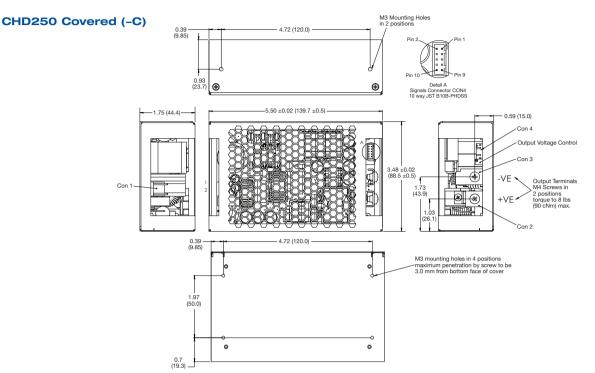

Sig	Signals Connector CON 4			
1	Power Fail (Emitter)			
2	Power Fail (Collector)			
3	Inhibit (Cathode)			
4	Inhibit (Anode)			
5	N/C			
6	N/C			
7	- VE Sense			
8	- VE Sense			
9	+VE Sense			
10	+VE Sense			

Mates with JST PHDR-10VS housing and JST SPHD-001T-P0.5 crimp terminals

Standby Output (Option -A)			
1	+5 V		
2	+5 V		
3	0 V		
4	0 V		

Mates with JST PHR-4 housing and JST SPH-002T-P0.5L crimp terminals

CHD250 Standby Option (-A)


Notes

1. Dimensions shown in inches (mm).

AC-DC Power Supplies

XP Power

Mechanical Details

CHD250 Covered Standby Option (-AC)

Input Connector CON 1 1 Line 2 Neutral

Mates with Molex housing 09-50-1031 and Molex series 5194 crimp terminals.

0	Output Connector CON 3		
1		+VE	
2	2	-VE	

Signals Connector CON 4			
1	Power Fail (Emitter)		
2	Power Fail (Collector)		
3	Inhibit (Cathode)		
4	Inhibit (Anode)		
5	N/C		
6	N/C		
7	- VE Sense		
8	- VE Sense		
9	+VE Sense		
10	+VE Sense		

Mates with JST PHDR-10VS housing and JST SPHD-001T-P0.5 crimp terminals

Standby Output (Option -A)			
1	+5 V		
2	+5 V		
3	0 V		
4	0 V		

Mates with JST PHR-4 housing and JST SPH-002T-P0.5L crimp terminals

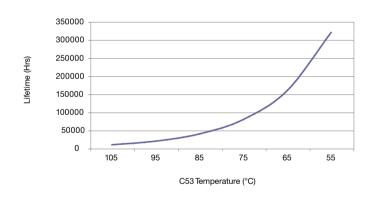
Notes

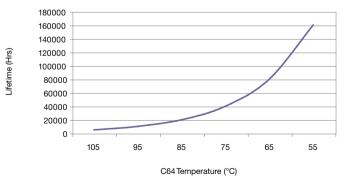
1. Dimensions shown in inches (mm).

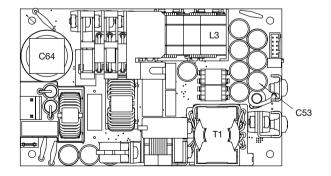
AC-DC Power Supplies

Thermal Considerations

In order to ensure safe operation of the PSU in the end-use equipment, the temperature of the components listed in the table below must not be exceeded. Temperature should be monitored using thermocouples placed on the hottest part of the component (out of direct air flow). See below for component locations.


Temperature Measurements (At Ambient 50 °C)				
Component	Max Temperature °C			
T1 Coil	120 ° C			
L3 Coil	120 ° C			
C64	105 ° C			
C53	105 ° C			


Service Life


The estimated service life of the CHD250 Series is determined by the cooling arrangements and load conditions experienced in the end application. Due to the uncertain nature of the end application this estimated service life is based on the actual measured temperature of a key capacitors with in the product when installed by the end application. The worst case of the two figures should be taken as the indicative service life in 24/7 operation.

The graph below expresses the estimated lifetime of a given component temperature and assumes continuous operation at this temperature.

Estimated Service Life vs Component Temperature

XP Power