

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Multilayer Ceramic Capacitors

MLCC is an electronic part that temporarily stores an electrical charge and the most prevalent type of capacitor today. New technologies have enabled the MLCC manufacturers to follow the trend dictated by smaller and smaller electronic devices such as Cellular telephones, Computers, DSC, DVC

General Features

- Miniature Size
- Wide Capacitance and Voltage Range
- Tape & Reel for Surface Mount Assembly
- Low ESR

Applications

- General Electronic Circuit

Part Numbering

CL	<u>10</u>	<u>B</u>	104	K	<u>B</u>	<u>8</u>	N	N	N	<u>C</u>
Ú	2	6	4	6	6	Ø	8	9	U	Ū

- Samsung Multilayer Ceramic Capacitor
- 2 Size(mm)
- 3 Capacitance Temperature Characteristic
- 4 Nominal Capacitance
- **6** Capacitance Tolerance
- 6 Rated Voltage

- Thickness Option
- Product & Plating Method
- Samsung Control Code
- Reserved For Future Use
- Packaging Type

Samsung Multilayer Ceramic Capacitor

2 SIZE(mm)

Code	EIA CODE	Size(mm)
03	0201	0.6 × 0.3
05	0402	1.0 × 0.5
10	0603	1.6 × 0.8
21	0805	2.0 × 1.25
31	1206	3.2 × 1.6
32	1210	3.2 × 2.5
43	1812	4.5 × 3.2
55	2220	5.7 × 5.0

3 CAPACITANCE TEMPERATURE CHARACTERISTIC

Code		Temperature Range			
С		COG	C△	0 ± 30 (ppm/ °C)	
Р		P2H	P△	-150 ± 60	
R		R2H	R△	-220 ± 60	
S	Class	S2H	S△	-330 ± 60	-55 ~ +125℃
Т		T2H	T△	-470 ± 60	
U		U2J	U△	-750 ± 60	
L		S2L	S△	+350 ~ -1000	
Α		X5R	X5R	±15%	-55 ~ +85℃
В	Class II	X7R	X7R	±15%	-55 ~ +125℃
X	UIASS II	X6S	X6S	±22%	-55 ~ +105℃
F		Y5V	Y5V	+22 ~ -82%	-30 ~ +85℃

*** Temperature Characteristic**

Temperature Characteristics	Below 2.0pF	2.2 ~ 3.9pF	Above 4.0pF	Above 10pF
C∆	COG	C0G	C0G	C0G
РΔ	-	P2J	P2H	P2H
R∆	-	R2J	R2H	R2H
SΔ	-	S2J	S2H	S2H
TΔ	-	T2J	T2H	T2H
UΔ	-	U2J	U2J	U2J

 $J:\pm 120 PPM/{^{\circ}\!\!\!\!C}\,,\, H:\pm 60 PPM/{^{\circ}\!\!\!\!C}\,,\, G:\pm 30 PPM/{^{\circ}\!\!\!\!C}$

4 NOMINAL CAPACITANCE

Nominal capacitance is identified by 3 digits.

The first and second digits identify the first and second significant figures of the capacitance.

The third digit identifies the multiplier. 'R' identifies a decimal point.

Example

Code	Nominal Capacitance
1R5	1.5pF
103	10,000pF, 10nF, 0.01 μF
104	100,000pF, 100nF, 0.1 μ F

CAPACITANCE TOLERANCE

Code	Tolerance	Nominal Capacitance
Α	±0.05pF	
В	±0.1pF	
С	±0.25pF	Less than 10pF (Including 10pF)
D	± 0.5pF	(morading Topi)
F	±1pF	
F	±1%	
G	±2%	
J	±5%	More then 10pF
K	±10%	More than 10pF
М	±20%	
Z	+80, -20%	

RATED VOLTAGE

Code	Rated Voltage	Code	Rated Voltage
R	4.0 V	D	200 V
Q	6.3V	E	250 V
P	10V	G	500 V
O	16V	Н	630 V
Α	25V	I	1,000V
L	35V	J	2,000V
В	50V	К	3,000V
С	100V		

THICKNESS OPTION

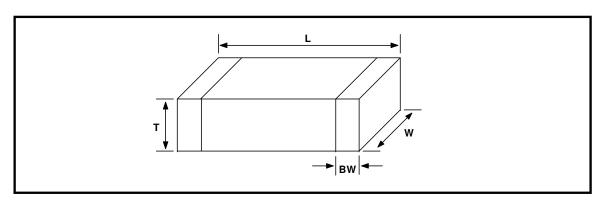
Size	Code	Thickness(T)	Size	Code	Thickness(T)
0201(0603)	3	0.30±0.03		F	1.25±0.20
0402(1005)	5	0.50±0.05		н	1.6±0.20
0603(1608)	8	0.80±0.10	1812(4532)	I	2.0±0.20
	Α	0.65±0.10		J	2.5±0.20
	С	0.85±0.10		L	3.2±0.30
0805(2012)	F	1.25±0.10		F	1.25±0.20
	Q	1.25±0.15		н	1.6±0.20
	Υ	1.25±0.20	2220(5750)	I	2.0±0.20
	С	0.85±0.15		J	2.5±0.20
1206(3216)	F	1.25±0.15		L	3.2±0.30
	Н	1.6±0.20			
	F	1.25±0.20			
1210(3225)	н	1.6±0.20			
	I	2.0±0.20			
	J	2.5±0.20			
	V	2.5±0.30			

PRODUCT & PLATING METHOD

Code	Electrode	Termination	Plating Type
Α	Pd	Ag	Sn_100%
N	Ni	Cu	Sn_100%
G	Cu	Cu	Sn_100%

SAMSUNG CONTROL CODE

Code	Description of the code	Code	Description of the code
Α	Array (2-element)	N	Normal
В	Array (4-element)	Р	Automotive
С	High - Q	L	LICC


TRESERVED FOR FUTURE USE

Code	Description of the code
N	Reserved for future use

1 PACKAGING TYPE

Code	Packaging Type	Code	Packaging Type
В	Bulk	F	Embossing 13" (10,000EA)
Р	Bulk Case	L	Paper 13" (15,000EA)
С	Paper 7"	0	Paper 10"
D	Paper 13" (10,000EA)	S	Embossing 10"
Е	Embossing 7"		

APPEARANCE AND DIMENSION

CODE	EIA CODE		DIMENSIC	ON (mm)	
CODE	LIA GODE	L	w	T (MAX)	BW
03	0201	0.6 ± 0.03	0.3 ± 0.03	0.33	0.15 ± 0.05
05	0402	1.0 ± 0.05	0.5 ± 0.05	0.55	0.2 +0.15/-0.1
10	0603	0603 1.6 ± 0.1 0.8 ± 0.1		0.9	0.3 ± 0.2
21	0805	2.0 ± 0.1	1.25 ± 0.1	1.35	0.5 +0.2/-0.3
04	1206	3.2 ± 0.15	1.6 ± 0.15	1.40	0.5 +0.2/-0.3
31		3.2 ± 0.2	1.6 ± 0.2	1.8	0.5 +0.3/-0.3
20	1010	3.2 ± 0.3	2.5 ± 0.2	2.7	0.6 + 0.2
32	1210	3.2 ± 0.4	2.5 ± 0.3	2.8	0.6 ± 0.3
43	1812 4.5 ± 0.4		3.2 ± 0.3	3.5	0.8 ± 0.3
55	2220	5.7 ± 0.4	5.0 ± 0.4	3.5	1.0 ± 0.3

NO	ITE	М	PER	FORMANCE	TEST	CONDITION			
1	Appea	rance	No Abnormal Exterior	Appearance	Through Microscope(×10)			
2	Insula Resist		10,000MΩ or 500MΩ·μF Rated Voltage is below 10,000MΩ or 100MΩ·μF	w 16V ;	Apply the Rated Voltage For 60 ~ 120 Sec.				
3	Withsta	•	No Dielectric Breakdov Mechanical Breakdowr		Class II :250% of the Rated	Class I : 300% of the Rated Voltage for 1~5 sec. Class II :250% of the Rated Voltage for 1~5 sec. is applied with less than $50\text{m}\text{A}$ current			
					Capacitance	Frequency	Voltage		
		Class	Within the specifie	ed tolerance	≤ 1,000 pF	1Mb ±1 0%			
	Capacita	I			>1,000 pF	1 kHz ±1 0%	0.5 ~ 5 Vrms		
4	nce				Capacitance	Frequency	Voltage		
		Class	Within the specif	ied tolerance	≤ 10 µF	1 kHz ±1 0%	1.0±0.2Vrms		
		П			>10 µF	120 Hz ±20%	0.5±0.1 Vrms		
			Capacitance ≥ 30pF :	: Q ≥ 1,000	Capacitance	Frequency	Voltage		
5	5 Q Class			: Q ≥ 400 +20C	≤ 1,000 pF	1Mb ±1 0%			
		I	(C	C : Capacitance)	>1,000 pF	1 kHz ±1 0%	0.5 ~ 5 Vrms		
			1. Characteristic : A(X5R), B(X7R), X(X6S)	Capacitance	Frequency	Voltage		
			Rated Voltage	Spec	≤ 10 μF	1 kHz ±1 0%	1.0±0.2Vrms		
			≥ 25V	0.025 max	>1 0 µF	120 Hz ±20%	0.5±0.1 Vrms		
			16V	0.035 max	-				
			10V	0.05 max	-				
			6.3V	0.05 max/ 0.10max*1	*1. 0201 C≥0.022uF, 0				
			2. Characteristic : F(Y5V)		0805 C≥4.7uF, 1206 C≥10uF, 1210 C≥22uF, 1812 C≥47uF, 2220 C≥100uF, All Low Profile Capacitors (P.16).				
6	Tan δ	Class	Rated Voltage	Spec	*2 0603 C≥0.47uF, 08 *3. 0402 C≥0.033uF, 06				
		П	50V	0.05 max, 0.07max*2	All 0805, 1206 size		F		
			35V	0.07 max	*4 1210 C>6.8uF	,			
			25V	0.05 max/ 0.07 max* ³ / 0.09max* ⁴	*5 0402 C≥0.22uF *6 All 1812 size				
			16V	0.09 max/ 0.125max*5	0 7 10.12 0.20				
			10V	0.125 max/ 0.16max*6					
			6.3V	0.16max]				

NO	ITEM PERFORMANCE						TEST CONDITION		
NO	IIE	VI 		PERFOR	MANCE		TEST CONDITION		
							shall be measured by the steps		
			Characte	rictice	Temp. Coefficient	shown in the	following table.		
			Characte	HISTICS	(PPM/℃)	Step	Temp.(℃)		
			COC	a l	0 ± 30	1	25 ± 2		
		Class	PH		-150 ± 60	2	Min. operating temp. \pm 2		
		I	RH		-220 ± 60	3	25 ± 2		
			1	-	SH		-330 ± 60	4	Max. operating temp ± 2
			ТН		-470 ± 60	5	25 ± 2		
			UL		-750 ± 120	(1) Class I	20 – 2		
			SL		+350 ~ -1000	` '	Coefficient shall be calculated from		
	Temperature					the formula a			
7	Characteristics of Capacitance						$nt = \frac{C2 - C1}{C1 \times \triangle T} \times 10^6 \; [ppm/C]$		
						C1; Capacita	ance at step 3		
			Characte	eristics	Capacitance Change	C2: Capacita			
			- Gridiani	-	with No Bias	△T: 60°C(=8	35 C-25 C)		
		Class	A(X5 B(X7	R)/ 'R)	± 15%	(2) CLASS II Capacitance Change shall be calculated from the capacitance of the calculated from the capacitance of the capacit			
			X(X6	SS)	± 22%				
			F(Y5	iV)	+22% ~ -82%	formula as be			
						$\triangle C = \frac{C2 - C1}{C1}$	C1 × 100(%)		
						C1; Capacita	ance at step 3		
						C2: Capacita	ance at step 2 or 4		
						Apply 500g.f	* Pressure for 10 \pm 1 sec.		
						* 200g.f for 0	201 case size.		
	Adhesive	Stronath	No Indicati	on Of Paal	ing Shall Occur On The				
8	of Termi	•	Terminal E		ing Shail Occur On The	500g.f			
						Description Parts	4		
		Apperance	No mecha	nical dam	nage shall occur.	Bending limit Test speed;			
							board at the limit point in 5 sec.,		
			Charact	teristics	Capacitance Change	Then measure	·		
					Within \pm 5% or \pm 0.		o capacitation		
			Clas	ss I	5 pF whichever is		20		
	Ponding				larger		R=230		
9	9 Bending Strength			A(X5R)/		50			
	Olichigui	gth Capacitance		B(X7R)/	Within ± 12.5%		<u> </u>		
				X(X6S)	12.070				
				7.(7.00)		│ 	Bending limit		
			Class II			45±1	45±1		
				F(Y5V)	Within ± 30%				

NO	IT.	ЕМ		PERFORMANCE TEST				T CONDITION			
			More Than	n 75% of th	ne terminal surface is to	Solder	Sn-3Ag-0.5	Cu 63Sn-37Pb			
				•	metal part does not	Solder					
40			come out	or dissolve		Temp.	245±5℃	235±5 ℃			
10	Solde	erability					Flux RMA Type				
			│─► ∠				3±0.3 sec	. 5±0.5 sec.			
						Pre-heatin	g at 80~120	°C for 10~30 sec.			
		Apperance	No mech	anical dam	age shall occur.	Solder Ter	nperature: 270	±5℃			
			Charac	teristics	Capacitance Change		10±1 sec.	fully inserted and			
					Within ±2.5% or			fully immersed and			
			Clas	ss I	±0.25 pF whichever is	preheated as below :					
		Capacitance		A(X5R)/	larger	STEP	TEMP.(℃)	TIME(SEC.)			
				B(X7R)	Within ±7.5%	1	80~100	60			
			Class II	X(X6S)	Within ±15%	2	150~180	60			
4.	Resistance to			F	Within ±20%	Leave the	Leave the capacitor in ambient condition for				
11	Soldering heat	0	Capacitar	nce ≥30pF	: Q≥ 1000	specified time* before measurement					
		Q (Class I)		<30 pF	: Q≥ 400+20×C		ours (Class I)				
		(0.000 -)			(C: Capacitance)	24 ± 2 h	nours (Class II)			
		Tan δ	Within the	e specified	initial value						
		(Class II)									
		Insulation Resistance	Within the	e specified	initial value						
		Withstanding									
		Voltage	Within the	e specified	initial value						
		Appearance	No mecha	anical dam	age shall occur.						
		-			- I						
			Charact	teristics	Capacitance Change	The capacitor shall be subjected to a					
			Clas	e I	Within ±2.5% or ±0.25 pF whichever is			total amplitude of			
			June	.0 1	larger			y from 10Hz to 55Hz			
		Capacitance		A(X5R)/	NAME OF THE PROPERTY OF THE PR	and back t	o 10Hz In 1 m	in.			
	Vibration		Class	B(X7R)	Within ±5%	Reneat this	e for 2houre ea	ch in 3 mutually			
12	Test		П	X(X6S)	Within ±10%		lar directions	on in 5 matually			
				F(Y5V)	Within ±20%						
		Q (Class I)	Within the	Within the specified initial value							
		Tan δ									
		(Class II)	Within the	e specified	initial value						
		Insulation	VACCE CO. C.		in tale 1 and 1 an						
		Resistance	vvitnin the	e specified	initial value						

NO	ITEM			PERFO	RMANCE	TEST CONDITION			
		Appearance	No mechanic	al damage sha	Il occur.	Temperature : 40±2 ℃			
			Charac	cteristics	Capacitance Change	Relative humidity: 90~95 %RH			
			Cla	ss I	Within ±5.0% or ±0.5pF whichever is larger	Duration time : 500 +12/-0 hr.			
		Capacitance	Class	A(X5R)/ B(X7R)/ X(X6S)	Within ±12.5%	Leave the capacitor in ambient condition for specified time* before measurement. CLASS I : 24±2 Hr.			
				F(Y5V)	Within ±30%	CLASSI : 24±2 Hr.			
13	Humidity 13 (Steady State)	Q CLASS I	10≤ Capacit	< 10pF : Q≥ 2	350 Q≥ 275 + 2.5×C 200 + 10×C (C: Capacitance)	OLNOGII : 2422 TIII.			
			1. Characterii 0.05max (16) 0.075max (10)	•	2. Characteristic : F(Y5V) 0.075max (25V and over) 0.1max (16V, C<1.0 \$\mu^{\mathcal{E}}\$)				
		Tan δ CLASS II	0.075max (6.3V excep 0.125max* (refer to Table	t Table 1)	0.125max(16V, C≥ 1.0μ ²) 0.15max (10V) 0.195max (6.3V)				
		Insulation Resistance	1,000 MΩ or	50MΩ·μF whiche	ver is smaller.	-			
		Appearance	No mechanic	al damage sha	Il occur.	Applied Voltage : rated voltage			
			Chara	cteristics	Capacitance Change	Temperature : 40±2 ℃			
		Capacitance	Class I		Within ±5.0% or ±0.5pF whichever is larger	Humidity : :90~95%RH Duration Time : 500 +12/-0 Hr. Charge/Discharge Current : 50mA max.			
			A(X5R)/ B(X7R)/ X(X6S)		Within ±12.5% Within ±12.5% Within ±30%	Perform the initial measurement according to Note1.			
			Class II		Within ±30%				
					F(Y5V)	Within ±30%	Perform the final measurement according to Note2.		
14	Moisture Resistance	Q (Class I)		$\geq 30 \mathrm{pF} \ : \ Q \geq 2$ < 30 \text{pF} \ : \ Q \ge \ 10	200 00 + 10/3×C (C: Capacitance)				
				stic : A(X5R), B(X7R)	2. Characteristic : F(Y5V)				
		Tan δ (Class ${ m II}$)	0.05max (16V and over) 0.075max (10V) 0.075max (6.3V except Table 1) 0.125max*		0.075max (25V and over) 0.1max (16V, C<1.0 0.125max(16V, C≥ 1.0 0.15max (10V) 0.195max (6.3V)				
			(refer to Tall X(X6S) 0.11n	nax (6.3V and I	below)				
		Insulation Resistance	500 MΩ or 25	5MΩ·μF whicheve	r is smaller.				

NO	ITE	М		PER	FORMANCE		TEST CONDIT	ION		
		Appearance	No mechanio	cal damage	shall occur.	1	oltage: 200%* of the	•		
			Charact	eristics	Capacitance Change		re : max. operating t ime : 1000 +48/-0 Hi	•		
					Within ±3% or ±0.3pF,	Charge/Dis	Charge/Discharge Current : 50m/ max.			
			Class	s I	Whichever is larger	* *-	t-l-l-(0) - 1 F00/ /100/	o/ -f +l+l		
		Capacitance		A(X5R)/ B(X7R)	Within ±12.5%	voltage	* refer to table(3): 150%/100% of the rated voltage			
			Class II	X(X6S)	Within ±25%	Perform th	e initial measurement	t according to		
					Within ±30%	Note1 for	Class II			
				F(Y5V)	Within ±30%					
		_	Capacitance	≥30pF : C	Q ≥ 350	Porform th	e final measurement	according to		
		(Class I)	10≤ Capaci	tance <30 p	$F : Q \ge 275 + 2.5 \times C$	Note2.	e iinai measuremeni	according to		
			Capacitance	< 10pF :Q	≥ 200 +10×C (C: Capacitance)	1				
	High		Characteristic : A(X5R), 2. Characteristic : F(Y5V)			7				
15	Temperature		B(X7R)		1					
	Resistance		0.05max		0.075max					
		(16V and o	ver)	(25V and over)						
			0.075max (10	0V)	0.1max(16V, C<1.0μF)					
		Tan δ	0.075max		0.125max(16V, C≥ 1.0 μ F)					
		(Class II)	(6.3V excep	ot Table 1)	0.15max (10V)					
			0.125max*		0.195max (6.3V)					
			(refer to Tal	ble 1)						
			X(X6S) 0.11i	max (6.3V a	nd below)					
		Insulation Resistance	1,000 MΩ or	50MΩ·μF whic	chever is smaller.					
		Appearance	No mechanio	cal damage	shall occur.		shall be subjected	d to 5 cycles.		
			Charact	eristics	Capacitance Change	Condition	for 1 cycle :			
			Class	. T	Within ±2.5% or ±0.25 pF	Step	Temp.(℃)	Time(min.)		
			Olass	, 1	Whichever is larger	_ 1	Min. operating	30		
		Capacitance		A(X5R)/	Mithin ±7.59/		temp.+0/-3			
			Class	B(X7R)/	Within ±7.5%	2	25	2~3		
16	Temperature		П	X(X6S)	Within ±15%	3	Max. operating	30		
	Cycle			F(Y5V)	Within ±20%		temp.+3/-0			
		Q	VAPIL			4	25	2~3		
		(Class I)	Within the sp	pecitied initia	al value	Leave th	e capacitor in amb	ient condition		
		Tan δ				_	ied time* before m			
		(Class II)	Within the sp	pecified initia	al value	* 24 ± 2	hours (Class I)			
		Insulation				_	hours (Class II)			
		Resistance	Within the sp	pecified initia	al value					

		Reco	ommended Sold	ering Method		
		Size	Temperature		Conc	lition
		inch (mm)	Characteristic	Capacitance	Flow	Reflow
		0201 (0603)	-	-	-	0
		0402 (1005)				
			Class I	=	0	0
		0603 (1608)	Class II	C < 1μF	0	0
			Glass II	$C \geq 1\mu F$	-	0
	Recommended		Class I	=	0	0
18	Soldering Method	0805 (2012)	Class II	$C < 4.7 \mu F$	0	0
	By Size & Capacitance		01033 11	$C \geq 4.7 \mu F$	-	0
	2, 0.20 a capacitaco		Array	-	-	0
			Class I	=	0	0
		1206 (3216)	Class II	C < 10μF	0	0
		1200 (3210)	Class II	C ≥ 10 <i>μ</i> F	-	0
			Array	-	-	0
		1210 (3225)				0
		1808 (4520)				0
		1812 (4532)	-	-	-	0
		2220 (5750)				0

Note1. Initial Measurement For Class $\ensuremath{\mathbb{I}}$

Perform the heat treatment at 150%+0/-10% for 1 hour. Then Leave the capacitor in ambient condition for 48 ± 4 hours before measurement. Then perform the measurement.

Note2. Latter Measurement

1. CLASS I

Leave the capacitor in ambient condition for 24±2 hours before measurement

Then perform the measurement.

2. Class ${\mathbb I}$

Perform the heat treatment at $150\,^{\circ}\text{C} + 0/-10\,^{\circ}\text{C}$ for 1 hour. Then Leave the capacitor in ambient condition for 48 ± 4 hours before measurement. Then perform the measurement.

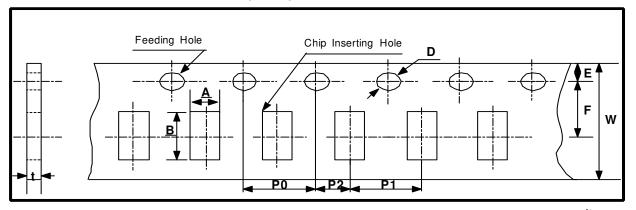
*Table1.

Tan δ	0.125max*
Class Ⅱ A(X5R), B(X7R)	0201 C \geq 0.022 μ F 0402 C \geq 0.22 μ F 0603 C \geq 2.2 μ F 0805 C \geq 4.7 μ F 1206 C \geq 10.0 μ F 1210 C \geq 22.0 μ F 1812 C \geq 47.0 μ F 2220 C \geq 100.0 μ F All Low Profile Capacitors (P.16).

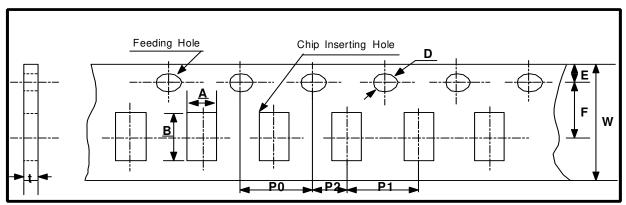
*Table2.

L	High Tem	perature Resistance test
	⊿C (Y5V)	± 30%
		0402 C ≥ 0.47μF
		0603 C ≥ 2.2μF
	Class ∏	0805 C ≥ 4.7μ F
	F(Y5V)	1206 C ≥ 10.0 μ F
	1(130)	1210 C ≥ 22.0 μ F
		1812 C \geq 47.0 μ F
		2220 C $\geq 100.0 \mu F$

*Table3.


	High Temperature Resistance test								
Applied Voltage	100% of the rated voltage	150% of the rated voltage							
Class II A(X5R), B(X7R), X(X6S), F(Y5V)	0201 C $\geq 0.1 \mu F$ 0402 C $\geq 1.0 \mu F$ 0603 C $\geq 4.7 \mu F$ 0805 C $\geq 22.0 \mu F$ 1206 C $\geq 47.0 \mu F$ 1210 C $\geq 100.0 \mu F$ All Low Profile Capacitors (P.16).	0201 C $\geq 0.022 \mu F$ 0402 C $\geq 0.47 \mu F$ 0603 C $\geq 2.2 \mu F$ 0805 C $\geq 4.7 \mu F$ 1206 C $\geq 10.0 \mu F$ 1210 C $\geq 22.0 \mu F$ 1812 C $\geq 47.0 \mu F$ 2220 C $\geq 100.0 \mu F$							

PACKAGING

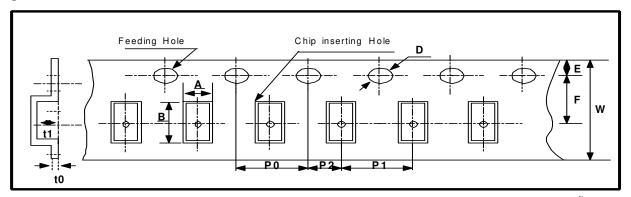

● CARDBOARD PAPER TAPE (4mm)

unit : mm

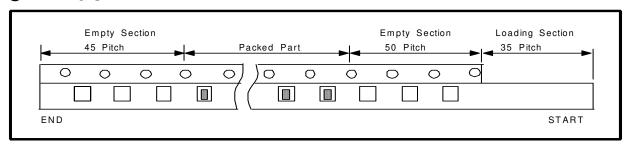
	mbol ype	Α	В	w	F	E	P1	P2	P0	D	t
D i m	0603 (1608)	1.1 ±0.2	1.9 ±0.2								
e n s	0805 (2012)	1.6 ±0.2	2.4 ±0.2	8.0 ±0.3	3.5 ±0.05	1.75 ±0.1	4.0 ±0.1	2.0 ±0.05	4.0 ±0.1	Ф1.5 +0.1/-0	1.1 Below
i o n	1206 (3216)	2.0 ±0.2	3.6 ±0.2								

● CARDBOARD PAPER TAPE (2mm)

unit: mm


	Symbol Type	Α	В	w	F	E	P1	P2	P0	D	t
D i m e	0201 (0603)	0.38 ±0.03	0.68 ±0.03	8.0	3.5	1.75	2.0	2.0	4.0	Ф1.5	0.37 ±0.03
n s i o n	0402 (1005)	0.62 ±0.04	1.12 ±0.04	±0.3	±0.05	±0.1	±0.05	±0.05	±0.1	+0.1/-0.03	0.6 ±0.05

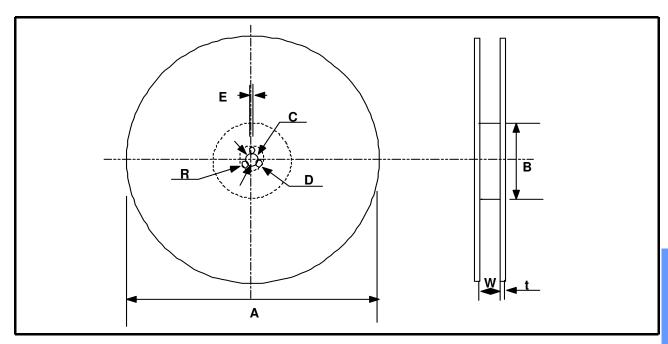
PACKAGING


● EMBOSSED PLASTIC TAPE

unit: mm

	m bol	Α	В	w	F	Е	P1	P2	P0	D	t1	t0
Т	уре	,,		••		_		· -	. •		٠.	
	0805 (2012)	1.45 ±0.2	2.3 ±0.2									
D	1206 (3216)	1.9 ±0.2	3.5 ±0.2	8.0 ±0.3	3.5 ±0.05		4.0 ±0.1				2.5 max	
m e	1210 (3225)	2.9 ±0.2	3.7 ±0.2			1.75		2.0	4.0	Ф1.5 +0.1/-0		0.6
n s i	1808 (4520)	2.3 ±0.2	4.9 ±0.2			±0.1		±0.05	±0.1	+0.1/-0		Below
o n	1812 (4532)	3.6 ±0.2	4.9 ±0.2	12.0 ±0.3	5.60 ±0.05		8.0 ±0.1				3.8 max	
	2220 (5750)	5.5 ±0.2	6.2 ±0.2									

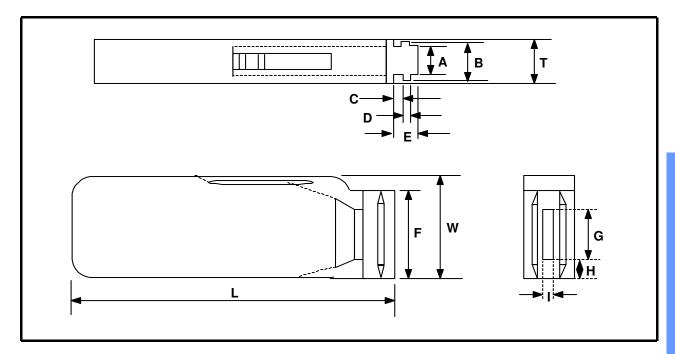
TAPING SIZE


Type	Symbol	Size	Cardboard Paper Tape	Symbol	Size	Embossed Plastic Tape
		0201(0603)	10,000		All Size ≤3216 1210(3225),1808(4520) (t≤1.6mm)	2,000
7" Reel	С	0402(1005)	10,000	E	1210(3225)(t≥2.0 m m)	1,000
		OTHERS	4,000		1808(4520)(t≥2.0 m m)	1,000
10" Reel	0	-	10,000	-	-	-
	D	0402(1005)	50,000		All Size ≤3216 1210(3225),1808(4520) (t<1.6mm)	10,000
		OTHERS	10,000		$1210(3225)(1.6 \le t < 2.0 \text{ m m}) \\ 1206(3216)(1.6 \le t)$	8,000
13" Reel		0603(1608)	10,000 or 15,000	F	1210(3225),1808(4520) (t≥2.0mm)	4,000
	. , ,	15,000 or 10,000(Option)		1812(4532)(t≤2.0 m m)	4,000	
		1206(3216) (t≤0.85mm)	10,000		1812(4532)(t>2.0mm) 5750(2220)	2,000

PACKAGING

• REEL DIMENSION

unit: mm


Symbol	Α	В	С	D	E	W	t	R
7" Reel	ф180+0/ -3	φ60+1/ -3		05 0.5	00105	0.14.5	1.2±0.2	1.0
13" Reel	ф330±2.0	φ80+1/ -3	φ13±0.3	25±0.5	2.0±0.5	9±1.5	2.2±0.2	1.0

BULK CASE PACKAGING

- Bulk case packaging can reduce the stock space and transportation costs.
- The bulk feeding system can increase the productivity.
- It can eliminate the components loss.

unit: mm

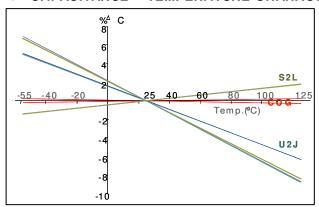
Symbol	Α	В	Т	С	D	E
Dimension	6.8±0.1	8.8±0.1	12±0.1	1.5+0.1/-0	2+0/-0.1	3.0+0.2/-0

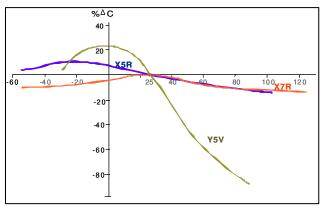
Symbol	F	W	G	Н	L	I
Dimension	31.5+0.2/-0	36+0/-0.2	19±0.35	7±0.35	110±0.7	5±0.35

QUANTITY OF BULK CASE PACKAGING

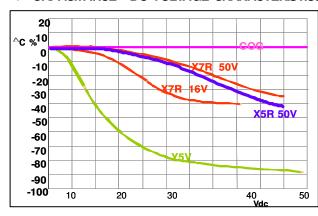
unit : pcs

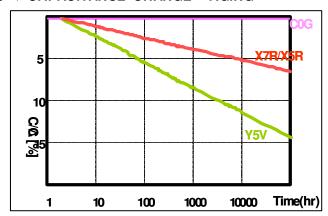
Ci	0400/4005)	0000(4000)	0805(2012)
Size	0402(1005)	0603(1608)	T=0.65mm	T=0.85mm
Quantity	50,000	10,000 or 15,000	10,000	5,000 or 10,000

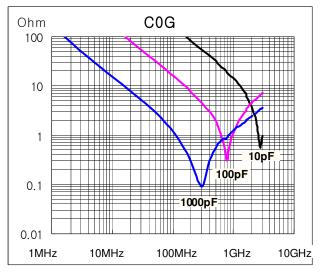


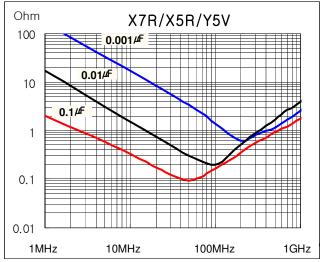


APPLICATION MANUAL


ELECTRICAL CHARACTERISTICS


► CAPACITANCE - TEMPERATURE CHARACTERISTICS




► CAPACITANCE - DC VOLTAGE CHARACTERISTICS ► CAPACITANCE CHANGE - AGING

► IMPEDANCE - FREQUENCY CHARACTERISTICS

STORAGE CONDITION

▶ Storage Environment

The electrical characteristics of MLCCs were degraded by the environment of high temperature or humidity. Therefore, the MLCCs shall be stored in the ambient temperature and the relative humidity of less than 40°C and 70%, respectively.

Guaranteed storage period is within 6 months from the outgoing date of delivery.

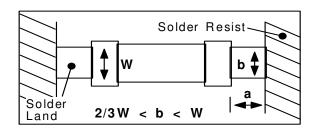
Corrosive Gases

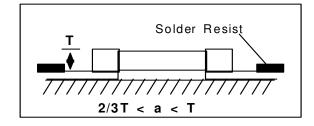
Since the solderability of the end termination in MLCC was degraded by a chemical atmosphere such as chlorine, acid or sulfide gases, MLCCs must be avoid from these gases.

▶ Temperature Fluctuations

Since dew condensation may occur by the differences in temperature when the MLCCs are taken out of storage, it is important to maintain the temperature-controlled environment.

DESIGN OF LAND PATTERN


When designing printed circuit boards, the shape and size of the lands must allow for the proper amount of solder on the capacitor.


The amount of solder at the end terminations has a direct effect on the crack.

The crack in MLCC will be easily occurred by the tensile stress which was due to too much amount of solder. In contrast, if too little solder is applied, the termination strength will be insufficiently.

Use the following illustrations as guidelines for proper land design.

Recommendation of Land Shape and Size.

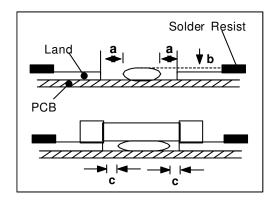
ADHESIVES

When flow soldering the MLCCs, apply the adhesive in accordance with the following conditions.

► Requirements for Adhesives

They must have enough adhesion, so that, the chips will not fall off or move during the handling of the circuit board.

They must maintain their adhesive strength when exposed to soldering temperature.


They should not spread or run when applied to the circuit board.

They should harden quickly. They should not corrode the circuit board or chip material.

They should be a good insulator. They should be non-toxic, and not produce harmful gases, nor be harmful when touched.

Application Method

It is important to use the proper amount of adhesive. Too little and much adhesive will cause poor adhesion and overflow into the land, respectively.

		unit : mm
Туре	21	31
а	0.2 min	0.2 min
b	70~100 µm	70~100 µm
С	> 0	> 0

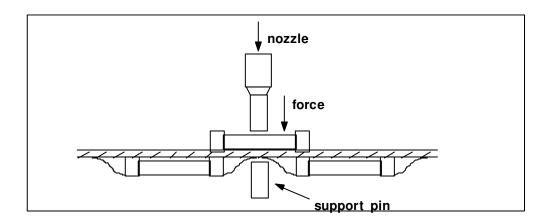
Adhesive hardening Characteristics

To prevent oxidation of the terminations, the adhesive must harden at 160 ℃ or less, within 2 minutes or less.

MOUNTING

Mounting Head Pressure

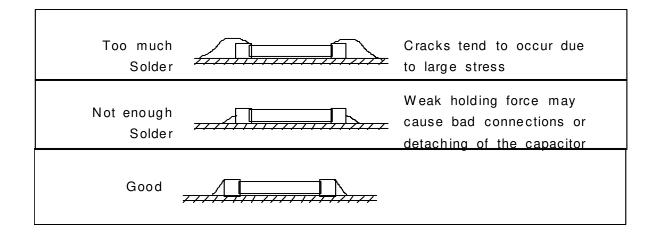
Excessive pressure will cause crack to MLCCs. The pressure of nozzle will be 300g maximum during mounting.



▶ Bending Stress

When double-sided circuit boards are used, MLCCs first are mounted and soldered onto one side of the board. When the MLCCs are mounted onto the other side,

it is important to support the board as shown in the illustration. If the circuit board is not supported, the crack occur to the ready-installed MLCCs by the bending stress.


▶ Manual Soldering

Manual soldering can pose a great risk of creating thermal cracks in chip capacitors.

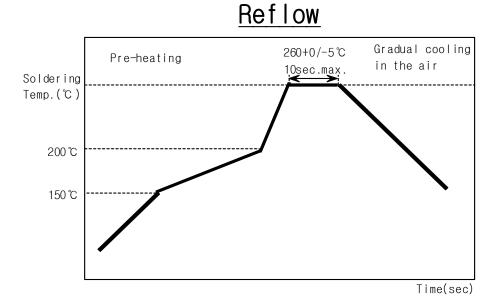
The hot soldering iron tip comes into direct contact with the end terminations, and operator's carelessness may cause the tip of the soldering iron to come into direct contact with the ceramic body of the capacitor.

Therefore the soldering iron must be handled carefully, and close attention must be paid to the selection of the soldering iron tip and to temperature control of the tip.

Amount of Solder

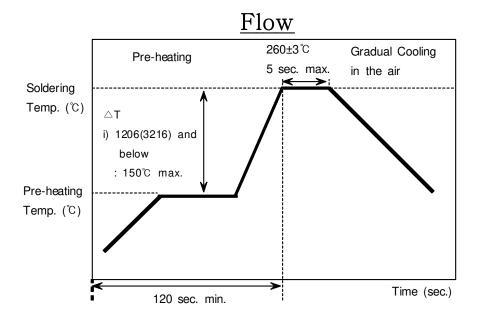
▶ Cooling

Natural cooling using air is recommended. If the chips are dipped into solvent for cleaning, the temperature difference($\triangle T$) must be less than 100 $^{\circ}$ C


▶ Cleaning

If rosin flux is used, cleaning usually is unnecessary. When strongly activated flux is used, chlorine in the flux may dissolve into some types of cleaning fluids, thereby affecting the chip capacitors. This means that the cleaning fluid must be carefully selected, and should always be new.

▶ Notes for Separating Multiple, Shared PC Boards.


A multi-PC board is separated into many individual circuit boards after soldering has been completed. If the board is bent or distorted at the time of separation, cracks may occur in the chip capacitors. Carefully choose a separation method that minimizes the bending often circuit board.

► Recommended Soldering Profile

Soldering Iron

Variation of Temp.	Soldering	Pre-heating	Soldering	Cooling
	Temp (℃)	Time (Sec)	Time(Sec)	Time(Sec)
△T≤130	300±10℃max	≥ 60	≤ 4	-

Condition of Iron facilities					
Wattage	Tip Diameter	Soldering Time			
20W Max	3mm Max	4 Sec Max			

^{*} Caution - Iron Tip Should Not Contact With Ceramic Body Directly.