imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

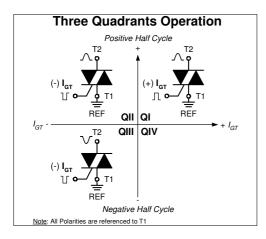
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

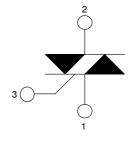
High Efficiency Thyristor

V_{RRM}	=	1200 V
I _{tav}	=	40 A
V _T	=	1,26 V


Three Quadrants operation: QI - QIII 1~ Triac

Part number

CLA80MT1200NHB



Backside: Terminal 2

Features / Advantages:

- Triac for line frequency
- Three Quadrants Operation - QI - QIII
- Planar passivated chip
- Long-term stability
- of blocking currents and voltages

Applications:

- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: TO-247

- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0

Terms Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application and assertion and applications and principles of the product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you.

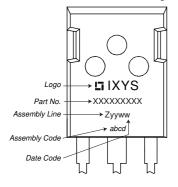
Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you. Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend to perform joint risk and quality assessments;
the conclusion of quality agreements;

- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

LIXYS

CLA80MT1200NHB


Rectifier				1	Ratings		
Symbol	Definition	Conditions	T 0500	min.	typ.	max.	Uni
V _{RSM/DSM}	max. non-repetitive reverse/forward	0 0	$T_{VJ} = 25^{\circ}C$			1300	١
V _{RRM/DRM}	max. repetitive reverse/forward block		$T_{VJ} = 25^{\circ}C$			1200	\
R/D	reverse current, drain current	$V_{R/D} = 1200 V$	$T_{vJ} = 25^{\circ}C$			10	μA
		V _{R/D} = 1200 V	$T_{vJ} = 125^{\circ}C$			2	mA
V _T	forward voltage drop	$I_{T} = 40 \text{ A}$	$T_{vJ} = 25^{\circ}C$			1,30	١
		$I_{T} = 80 \text{ A}$				1,59	١
		$I_{T} = 40 \text{ A}$	T _{vJ} = 125 °C			1,26	١
		Ι _τ = 80 A				1,64	١
ITAV	average forward current	T _c = 120°C	T _{v.i} = 150°C			40	ļ
I _{RMS}	RMS forward current per phase	180° sine				88	A
V _{T0}	threshold voltage		T _{v.i} = 150°C			0,88	١
r _T	slope resistance { for power loss	calculation only	VJ			10	mΩ
R _{thJC}	thermal resistance junction to case					0,4	K/W
	thermal resistance case to heatsink				0,25	0,1	K/W
	total power dissipation		$T_c = 25^{\circ}C$		0,20	310	W
	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{c} = 25 \text{ C}$ $T_{v_{i}} = 45^{\circ}\text{C}$			520	A
I _{TSM}	max. Iorward surge current		••				
		t = 8,3 ms; (60 Hz), sine	$V_{\rm R} = 0 V$			560	A
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 150 ^{\circ}C$			440	A
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			475	4
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{vJ} = 45^{\circ}C$			1,35	kA²s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			1,31	kA ² s
		t = 10 ms; (50 Hz), sine	$T_{vJ} = 150 ^{\circ}C$			970	A ² s
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			940	A ² s
C	junction capacitance	$V_{R} = 400 V f = 1 MHz$	$T_{VJ} = 25^{\circ}C$		25		pF
P _{GM}	max. gate power dissipation	t _P = 30 μs	T _c = 150°C			10	W
		t _P = 300 μs				5	W
P _{GAV}	average gate power dissipation					0,5	W
(di/dt) _{cr}	critical rate of rise of current	T _{vJ} = 150 °C; f = 50 Hz repe	etitive. $I_{\rm T} = 120 \text{A}$			150	A/μs
(all, all)cr		$t_{\rm P} = 200 \mu {\rm s}; {\rm di}_{\rm G}/{\rm dt} = 0.3 {\rm A}/\mu {\rm s};$					
			-repet., $I_{T} = 40 \text{ A}$			500	A/με
(a) (a) +)	critical rate of rise of voltage	$V = \frac{2}{3} V_{DRM}$ Norm	$T_{VJ} = 150^{\circ}C$				
(dv/dt) _{cr}	chical fale of fise of voltage	5111				500	V/µs
		$R_{GK} = \infty$; method 1 (linear voltage					
V _{GT}	gate trigger voltage	$V_{D} = 6 V$	$T_{VJ} = 25^{\circ}C$			1,7	V
			$T_{vJ} = -40 ^{\circ}C$			1,9	V
I _{GT}	gate trigger current	$V_{D} = 6 V$	$T_{VJ} = 25^{\circ}C$			± 70	mA
			$T_{vJ} = -40^{\circ}C$			± 90	mA
V _{gd}	gate non-trigger voltage	$V_{D} = \frac{2}{3} V_{DRM}$	$T_{vJ} = 150^{\circ}C$			0,2	\
I _{GD}	gate non-trigger current					± 1	mA
I.	latching current	t _p = 10 μs	$T_{vJ} = 25 °C$			100	mA
		$I_{G} = 0.3 \text{ A}; \text{ di}_{G}/\text{dt} = 0.3 \text{ A}/\mu\text{s}$					
I _H	holding current	$V_{\rm D} = 6 \ V \ R_{\rm GK} = \infty$	$T_{vJ} = 25 ^{\circ}C$			70	mA
t _{gd}	gate controlled delay time	$V_{\rm D} = \frac{1}{2} V_{\rm DRM}$	$T_{VJ} = 25^{\circ}C$			2	μ
-ga		$I_{\rm G} = 0.3 \text{A}; \text{di}_{\rm G}/\text{dt} = 0.3 \text{A}/\mu\text{s}$. _{vj} – 20 0			-	μ
•	turn-off time	$V_{\rm R} = 100 \text{ V}; \ I_{\rm T} = 40 \text{ A}; \ V = \frac{2}{3} \text{ V}$	/ T 105 00		150		
t _q					150		με
		$di/dt = 10 \text{ A}/\mu \text{s} dv/dt = 20 \text{ V}/\mu \text{s}$	s τ _p = 200 μs				ł

 $\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, conditions and dimensions.

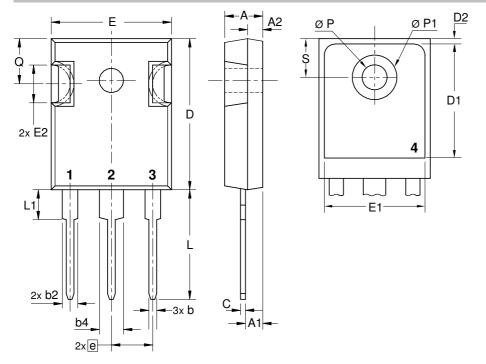
Package TO-247			Ratings			
Symbol	Definition	Conditions	min	typ.	max.	Unit
I _{RMS}	RMS current	per terminal			70	Α
T _{vj}	virtual junction temperature		-4()	150	°C
T _{op}	operation temperature		-4()	125	°C
T _{stg}	storage temperature		-4()	150	°C
Weight				6		g
M _D	mounting torque		0,8	3	1,2	Nm
F _c	mounting force with clip		20)	120	Ν

Product Marking

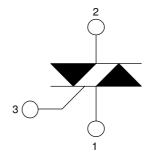
Part description

- C = Thyristor (SCR)
- L = High Efficiency Thyristor
- A = (up to 1200V)
- 80 = Current Rating [A] MT = 1~ Triac
- 1200 = Reverse Voltage [V]
- N = Three Quadrants operation: QI QIII
- HB = TO-247AD (3)

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	CLA80MT1200NHB	CLA80MT1200NHB	Tube	30	517024


Similar Part	Package	Voltage class
CLA80MT1200NHR	ISO247 (3)	1200

Equivalent Circuits for Simulation			* on die level	T _{vj} = 150 °C
	- Ro -	Thyristor		
V _{0 max}	threshold voltage	0,88		V
$\mathbf{R}_{0 \max}$	slope resistance *	7,5		mΩ


IXYS reserves the right to change limits, conditions and dimensions.

LIXYS

Outlines TO-247

Sym.	Inches		Millim	eter
	min.	max.	min.	max.
А	0.185	0.209	4.70	5.30
A1	0.087	0.102	2.21	2.59
A2	0.059	0.098	1.50	2.49
D	0.819	0.845	20.79	21.45
E	0.610	0.640	15.48	16.24
E2	0.170	0.216	4.31	5.48
е	0.215	BSC	5.46	BSC
L	0.780	0.800	19.80	20.30
L1	-	0.177	-	4.49
ØР	0.140	0.144	3.55	3.65
Q	0.212	0.244	5.38	6.19
S	0.242 BSC		6.14	BSC
b	0.039	0.055	0.99	1.40
b2	0.065	0.094	1.65	2.39
b4	0.102	0.135	2.59	3.43
с	0.015	0.035	0.38	0.89
D1	0.515	-	13.07	-
D2	0.020	0.053	0.51	1.35
E1	0.530	-	13.45	-
Ø P1	-	0.29	-	7.39

IXYS reserves the right to change limits, conditions and dimensions.

Thyristor

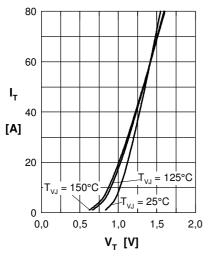


Fig. 1 Forward characteristics

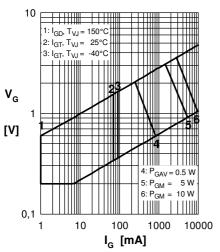
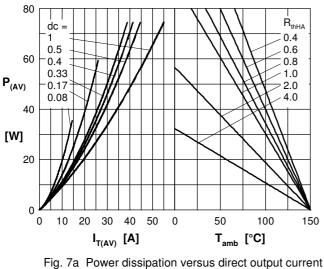
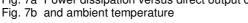
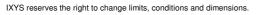





Fig. 4 Gate voltage & gate current

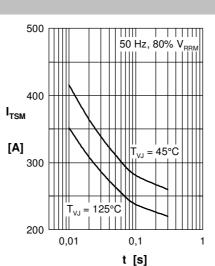


Fig. 2 Surge overload current I_{TSM}: crest value, t: duration

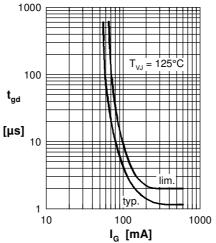


Fig. 5 Gate controlled delay time t_{ad}

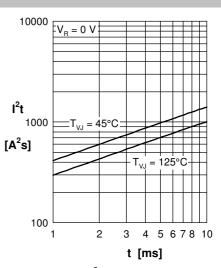
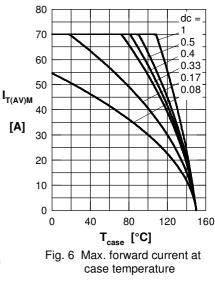
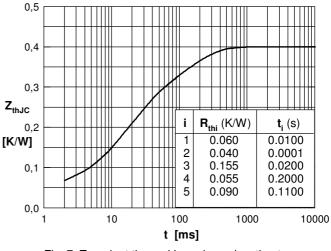




Fig. 3 I²t versus time (1-10 s)

