: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Comlinear ${ }^{\odot}$ CLC1008, CLC2008

FEATURES

- 505 μ A supply current
- 75MHz bandwidth
- Input voltage range with 5 V supply: -0.3 V to 3.8 V
- Output voltage range with 5 V supply: 0.07 V to 4.86 V
- 50V/us slew rate
- $12 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ input voltage noise
- 15 mA linear output current
- Fully specified at 2.7 V and 5 V supplies
- Replaces AD8031 in $V_{S} \leq 5$ applications

APPLICATIONS

- Portable/battery-powered applications
- Mobile communications, cell phones,
pagers
- ADC buffer
- Active filters
- Portable test instruments
- Signal conditioning
- Medical Equipment
- Portable medical instrumentation

General Description

The COMLINEAR CLC1008 (single) and CLC2008 (dual) offer superior dynamic performance with 75 MHz small signal bandwidth and $50 \mathrm{~V} / \mu$ s slew rate. These amplifiers use only $505 \mu \mathrm{~A}$ of supply current and are designed to operate from a supply range of 2.5 V to $5.5 \mathrm{~V}(\pm 1.25$ to $\pm 2.75)$. The combination of low power, high output current drive, and rail-to-rail performance make the CLC1008 and CLC2008 well suited for battery-powered communication/ computing systems.

The combination of low cost and high performance make the CLC1008 and CLC2008 suitable for high volume applications in both consumer and industrial applications such as wireless phones, scanners, and color copiers.

Typical Performance Examples

Frequency Response vs. Temperature

Ordering Information

Part Number	Package	Pb-Free	RoHS Compliant	Operating Temperature Range	Packaging Method
CLC1008IST5X	SOT23-5	Yes	Yes	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Reel
CLC2008ISO8X	SOIC-8	Yes	Yes	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Reel

[^0]

CLC1008 Pin Configuration

CLC1008 Pin Assignments

Pin No.	Pin Name	Description
1	OUT	Output
2	$-V_{S}$	Negative supply
3	+ IN	Positive input
4	- IN	Negative input
5	$+V_{S}$	Positive supply

CLC2008 Pin Configuration

Pin No.	Pin Name	Description
1	OUT1	Output, channel 1
2	-IN1	Negative input, channel 1
3	+ IN1	Positive input, channel 1
4	$-V_{S}$	Negative supply
5	+ IN2	Positive input, channel 2
6	- IN2	Negative input, channel 2
7	OUT2	Output, channel 2
8	$+V_{S}$	Positive supply

Absolute Maximum Ratings

The safety of the device is not guaranteed when it is operated above the "Absolute Maximum Ratings". The device should not be operated at these "absolute" limits. Adhere to the "Recommended Operating Conditions" for proper device function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the operating conditions noted on the tables and plots.

Parameter	Min	Max	Unit
Supply Voltage	0	6	V
Input Voltage Range	$-\mathrm{V}_{\mathrm{S}}-0.5 \mathrm{~V}$	$+\mathrm{V}_{\mathrm{S}}+0.5 \mathrm{~V}$	V
Continuous Output Current	-30	30	mA

Reliability Information

Parameter	Min	Typ	Max	Unit
Junction Temperature			175	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65		150	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s)			260	${ }^{\circ} \mathrm{C}$
Package Thermal Resistance		221		${ }^{\circ} \mathrm{C} / \mathrm{W}$
5-Lead SOT23		100		${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead SOIC				

Notes:
Package thermal resistance $\left(\theta_{J A}\right)$, JDEC standard, multi-layer test boards, still air.

Recommended Operating Conditions

Parameter	Min	Typ	Max	Unit
Operating Temperature Range	-40		+85	${ }^{\circ} \mathrm{C}$
Supply Voltage Range	2.5		5.5	V

Electrical Characteristics at +2.7 V

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2, \mathrm{G}=2$; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Tур	Max	Units
Frequency Domain Response						
UGBW ${ }_{\text {SS }}$	Unity Gain -3dB Bandwidth	$\mathrm{G}=+1, \mathrm{~V}_{\text {OUT }}=0.05 \mathrm{~V}_{\text {pp }}, \mathrm{R}_{\mathrm{f}}=0$		65		MHz
$\mathrm{BW}_{\text {SS }}$	-3dB Bandwidth	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}<0.2 \mathrm{~V}_{\mathrm{pp}}$		30		MHz
$\mathrm{BW}_{\text {LS }}$	Large Signal Bandwidth	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{pp}}$		12		MHz
GBWP	Gain Bandwidth Product	$\mathrm{G}=+11, \mathrm{~V}_{\text {OUT }}=0.2 \mathrm{~V}_{\mathrm{pp}}$		28		MHz
Time Domain Response						
$\mathrm{t}_{\mathrm{R},} \mathrm{t}_{\mathrm{F}}$	Rise and Fall Time	$\mathrm{V}_{\text {Out }}=0.2 \mathrm{~V}$ step; (10% to 90%)		7.5		ns
t_{5}	Settling Time to 0.1\%	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ step		60		ns
OS	Overshoot	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ step		10		\%
SR	Slew Rate	2V step, G = -1		40		V/us
Distortion/Noise Response						
HD2	2nd Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {pp }}, 1 \mathrm{MHz}$		-67		dBc
HD3	3rd Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {pp }}, 1 \mathrm{MHz}$		-72		dBc
THD	Total Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {pp, }}, 1 \mathrm{MHz}$		65		dB
e_{n}	Input Voltage Noise	$>10 \mathrm{kHz}$		12		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
DC Performance						
V_{IO}	Input Offset Voltage			0		mV
$\mathrm{dV}_{\text {IO }}$	Average Drift			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{b}	Input Bias Current			1.2		$\mu \mathrm{A}$
dI_{b}	Average Drift			3.5		$n \mathrm{n} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {OS }}$	Input Offset Current			30		nA
PSRR	Power Supply Rejection Ratio ${ }^{(1)}$	DC	60	66		dB
A_{OL}	Open-Loop Gain	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{S}} / 2$		98		dB
I_{S}	Supply Current	per channel		470		$\mu \mathrm{A}$
Input Characteristics						
R_{IN}	Input Resistance	Non-inverting		9		M Ω
$\mathrm{C}_{\text {IN }}$	Input Capacitance			1.5		pF
CMIR	Common Mode Input Range			$\begin{gathered} -0.3 \text { to } \\ 1.5 \end{gathered}$		V
CMRR	Common Mode Rejection Ratio	$D C, V_{C M}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{S}}-1.5$		74		dB
Output Characteristics						
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$		$\begin{gathered} 0.09 \text { to } \\ 2.53 \\ \hline \end{gathered}$		V
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$		$\begin{gathered} 0.05 \text { to } \\ 2.6 \\ \hline \end{gathered}$		V
$\mathrm{I}_{\text {OUT }}$	Output Current			± 15		mA
$\mathrm{I}_{\text {SC }}$	Short Circuit Output Current			± 30		mA

Notes:

1. 100% tested at $25^{\circ} \mathrm{C}$

Electrical Characteristics at +5 V

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{f}=\mathrm{R}_{\mathrm{g}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2, \mathrm{G}=2$; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Tур	Max	Units
Frequency Domain Response						
UGBW ${ }_{\text {SS }}$	Unity Gain -3dB Bandwidth	$\mathrm{G}=+1, \mathrm{~V}_{\text {OUT }}=0.05 \mathrm{~V}_{\text {pp }}, \mathrm{R}_{\mathrm{f}}=0$		75		MHz
$\mathrm{BW}_{\text {SS }}$	-3dB Bandwidth	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}<0.2 \mathrm{~V}_{\mathrm{pp}}$		35		MHz
$\mathrm{BW}_{\text {LS }}$	Large Signal Bandwidth	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{pp}}$		15		MHz
GBWP	Gain Bandwidth Product	$\mathrm{G}=+11, \mathrm{~V}_{\text {OUT }}=0.2 \mathrm{~V}_{\mathrm{pp}}$		33		MHz
Time Domain Response						
$\mathrm{t}_{\mathrm{R},} \mathrm{t}_{\mathrm{F}}$	Rise and Fall Time	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}$ step; (10% to 90%)		6		ns
t_{5}	Settling Time to 0.1\%	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ step		60		ns
OS	Overshoot	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ step		12		\%
SR	Slew Rate	2V step, G = -1		50		V/us
Distortion/Noise Response						
HD2	2nd Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {pp, }}, 1 \mathrm{MHz}$		-64		dBc
HD3	3rd Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {pp }}, 1 \mathrm{MHz}$		-62		dBc
THD	Total Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {pp, }}, 1 \mathrm{MHz}$		60		dB
e_{n}	Input Voltage Noise	$>10 \mathrm{kHz}$		12		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
DC Performance						
V_{IO}	Input Offset Voltage ${ }^{(1)}$		-5	-1	5	mV
$\mathrm{dV}_{\text {IO }}$	Average Drift			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{b}	Input Bias Current ${ }^{(1)}$		-3.5	1.2	3.5	$\mu \mathrm{A}$
dI_{b}	Average Drift			3.5		$n \mathrm{n} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {OS }}$	Input Offset Current ${ }^{(1)}$			30	350	nA
PSRR	Power Supply Rejection Ratio (1)	DC	60	66		dB
A_{OL}	Open-Loop Gain ${ }^{(1)}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{S}} / 2$	65	80		dB
I_{S}	Supply Current ${ }^{(1)}$	per channel		505	620	$\mu \mathrm{A}$
Input Characteristics						
R_{IN}	Input Resistance	Non-inverting		9		M Ω
$\mathrm{C}_{\text {IN }}$	Input Capacitance			1.5		pF
CMIR	Common Mode Input Range			$\begin{gathered} -0.3 \text { to } \\ 3.8 \end{gathered}$		V
CMRR	Common Mode Rejection Ratio ${ }^{(1)}$	$D C, V_{C M}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{S}}-1.5$	65	74		dB
Output Characteristics						
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2^{(1)}$	$\begin{gathered} 0.2 \text { to } \\ 4.65 \\ \hline \end{gathered}$	$\begin{gathered} 0.13 \text { to } \\ 4.73 \\ \hline \end{gathered}$		V
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$		$\begin{gathered} 0.08 \text { to } \\ 4.84 \end{gathered}$		V
$\mathrm{I}_{\text {OUT }}$	Output Current			± 15		mA
I_{SC}	Short Circuit Output Current			± 30		mA

Notes:

1. 100% tested at $25^{\circ} \mathrm{C}$

Typical Performance Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2, \mathrm{G}=2$; unless otherwise noted.

Non-Inverting Frequency Response at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Non-Inverting Frequency Response

Frequency Response vs. C_{L}

Inverting Frequency Response at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Inverting Frequency Response

Frequency Response vs. R_{L}

Typical Performance Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2, \mathrm{G}=2$; unless otherwise noted.

Frequency Response vs. $\mathrm{V}_{\text {OUT }}$

2nd Harmonic Distortion vs. V OUT

2nd \& 3rd Harmonic Distortion

Open Loop Gain \& Phase vs. Frequency

3rd Harmonic Distortion vs. VOUT

Frequency Response vs. Temperature

Typical Performance Characteristics - Continued

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2, \mathrm{G}=2$; unless otherwise noted.

CMRR

Output Swing

Small Signal Pulse Response

PSRR

Output Voltage vs. Output Current

Small Signal Pulse Response at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Typical Performance Characteristics - Continued
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2, \mathrm{G}=2$; unless otherwise noted.

Large Signal Pulse Response at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Input Voltage Noise

Application Information

General Description

The CLC1008 family are a single supply, general purpose, voltage-feedback amplifiers fabricated on a complementary bipolar process. The CLC1008 offers 75 MHz unity gain bandwidth, $50 \mathrm{~V} / \mu$ s slew rate, and only $505 \mu \mathrm{~A}$ supply current. It features a rail-to-rail output stage and is unity gain stable.

Figures 1, 2, and 3 illustrate typical circuit configurations for non-inverting, inverting, and unity gain topologies for dual supply applications. They show the recommended bypass capacitor values and overall closed loop gain equations. Figure 4 shows the typical non-inverting gain circuit for single supply applicaitons.

The common mode input range extends to 300 mV below ground in single supply operation. Exceeding these values will not cause phase reversal. However, if the input voltage exceeds the rails by more than 0.5 V , the input ESD devices will begin to conduct.

The design uses a Darlington output stage. The output stage is short circuit protected and offers "soft" saturation protection that improves recovery time.

Figure 1. Typical Non-Inverting Gain Circuit

Figure 2. Typical Inverting Gain Circuit

Figure 3. Unity Gain Circuit

Figure 4. Single Supply Non-Inverting Gain Circuit

For optimum response at a gain of +2 , a feedback resistor of $1 \mathrm{k} \Omega$ is recommended. Figure 5 illustrates the CLC1008 frequency response with both $1 \mathrm{k} \Omega$ and $2 \mathrm{k} \Omega$ feedback resistors.

Figure 5. Frequency Response vs. R_{f}

Power Dissipation

Power dissipation should not be a factor when operating under the stated 1 k ohm load condition. However, applications with low impedance, DC coupled loads should be analyzed to ensure that maximum allowed junction temperature is not exceeded. Guidelines listed below can be used to verify that the particular application will not cause the device to operate beyond it's intended operating range.

Maximum power levels are set by the absolute maximum junction rating of $150^{\circ} \mathrm{C}$. To calculate the junction temperature, the package thermal resistance value Theta $_{\text {JA }}\left(\Theta_{J A}\right)$ is used along with the total die power dissipation.

$$
\mathrm{T}_{\text {Junction }}=\mathrm{T}_{\text {Ambient }}+\left(\Theta_{\mathrm{JA}} \times \mathrm{P}_{\mathrm{D}}\right)
$$

Where $\mathrm{T}_{\text {Ambient }}$ is the temperature of the working environment.
In order to determine P_{D}, the power dissipated in the load needs to be subtracted from the total power delivered by the supplies.

$$
P_{D}=P_{\text {supply }}-P_{\text {load }}
$$

Supply power is calculated by the standard power equation.

$$
\begin{gathered}
P_{\text {supply }}=V_{\text {supply }} \times I_{\text {RMS supply }} \\
V_{\text {supply }}=V_{S_{+}}-V_{S-}
\end{gathered}
$$

Power delivered to a purely resistive load is:

$$
\mathrm{P}_{\text {load }}=\left(\left(\mathrm{V}_{\mathrm{LOAD}}\right)_{\mathrm{RMS}^{2}}\right) / \text { Rload }_{\text {eff }}
$$

The effective load resistor (Rload ${ }_{\text {eff }}$) will need to include the effect of the feedback network. For instance,

Rload $_{\text {eff }}$ in Figure 3 would be calculated as:

$$
R_{L} \|\left(R_{f}+R_{g}\right)
$$

These measurements are basic and are relatively easy to perform with standard lab equipment. For design purposes however, prior knowledge of actual signal levels and load impedance is needed to determine the dissipated power. Here, P_{D} can be found from

$$
P_{D}=P_{Q u i e s c e n t ~}+P_{\text {Dynamic }}-P_{\text {Load }}
$$

Quiescent power can be derived from the specified I_{S} values along with known supply voltage, $V_{\text {Supply. }}$ Load power can be calculated as above with the desired signal amplitudes using:

$$
\left(\mathrm{V}_{\text {LOAD }}\right)_{\text {RMS }}=\mathrm{V}_{\text {PEAK }} / \sqrt{ } 2
$$

$$
\left(\mathrm{I}_{\text {LOAD }}\right)_{\text {RMS }}=\left(\mathrm{V}_{\text {LOAD }}\right)_{\text {RMS }} / \text { Rload }_{\text {eff }}
$$

The dynamic power is focused primarily within the output stage driving the load. This value can be calculated as:

$$
P_{\text {DYNAMIC }}=\left(\mathrm{V}_{\text {S+ }}-\mathrm{V}_{\text {LOAD }}\right)_{\text {RMS }} \times\left(\mathrm{I}_{\text {LOAD }}\right)_{\text {RMS }}
$$

Assuming the load is referenced in the middle of the power rails or $\mathrm{V}_{\text {supply }} / 2$.
The CLC1008 is short circuit protected. However, this may not guarantee that the maximum junction temperature $\left(+150^{\circ} \mathrm{C}\right)$ is not exceeded under all conditions. Figure 6 shows the maximum safe power dissipation in the package vs. the ambient temperature for the packages available.

Figure 6. Maximum Power Derating

Driving Capacitive Loads

Increased phase delay at the output due to capacitive loading can cause ringing, peaking in the frequency response, and possible unstable behavior. Use a series resistance, R_{S}, between the amplifier and the load to help improve stability and settling performance. Refer to Figure 7.

Figure 7. Addition of R_{S} for Driving Capacitive Loads
Table 1 provides the recommended R_{S} for various capacitive loads. The recommended R_{S} values result in
approximately $<1 \mathrm{~dB}$ peaking in the frequency response. The Frequency Response vs. C_{L} plot, on page 4, illustrates the response of the CLCx008.

$\mathrm{C}_{\mathrm{L}}(\mathrm{pF})$	$\mathrm{RS}_{\mathrm{S}}(\Omega)$	-3 dB BW (kHz)
10 pF	0	22
20 pF	100	19
50 pF	100	12
100 pF	100	10.2

Table 1: Recommended Rs vs. C_{L}
For a given load capacitance, adjust R_{S} to optimize the tradeoff between settling time and bandwidth. In general, reducing R_{S} will increase bandwidth at the expense of additional overshoot and ringing.

Overdrive Recovery

An overdrive condition is defined as the point when either one of the inputs or the output exceed their specified voltage range. Overdrive recovery is the time needed for the amplifier to return to its normal or linear operating point. The recovery time varies, based on whether the input or output is overdriven and by how much the range is exceeded. The CLC1008 and CLC2008 will typically recover in less than 20ns from an overdrive condition. Figure 8 shows the CLC1008 in an overdriven condition.

Figure 8. Overdrive Recovery

Layout Considerations

General layout and supply bypassing play major roles in
high frequency performance. CADEKA has evaluation boards to use as a guide for high frequency layout and as an aid in device testing and characterization. Follow the steps below as a basis for high frequency layout:

- Include $6.8 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ ceramic capacitors for power supply decoupling
- Place the $6.8 \mu \mathrm{~F}$ capacitor within 0.75 inches of the power pin
- Place the $0.1 \mu \mathrm{~F}$ capacitor within 0.1 inches of the power pin
- Remove the ground plane under and around the part, especially near the input and output pins to reduce parasitic capacitance
- Minimize all trace lengths to reduce series inductances

Refer to the evaluation board layouts below for more information.

Evaluation Board Information

The following evaluation boards are available to aid in the testing and layout of these devices:

Evaluation Board	Products
CEB002	CLC1008 in SOT23
CEB003	CLC1008 in SOIC
CEB006	CLC2008 in SOIC
CEB010	CLC2008 in MSOP

Evaluation Board Schematics

Evaluation board schematics and layouts are shown in Figures 8-14. These evaluation boards are built for dualsupply operation. Follow these steps to use the board in a single-supply application:

1. Short -Vs to ground.
2. Use C 3 and C 4 , if the $-\mathrm{V}_{\mathrm{S}}$ pin of the amplifier is not directly connected to the ground plane.

Figure 8. CEB002 \& CEB003 Schematic

Figure 9. CEB002 Top View

Figure 10. CEB002 Bottom View

Figure 11. CEB003 Top View

Figure 12. CEB003 Bottom View

Figure 13. CEB006 Bottom View

Figure 15. CEB010 Top View

Figure 16. CEBO10 Bottom View

Mechanical Dimensions

SOT23-5 Package

notes:

1. Dimensions and tolerances are as per ANSI Y14.5M-1982.
2. Package surface to be matte finish VDI $11 \sim 13$.
3. Die is facing up for mold. Die is facing down for trim/form, ie. reverse trim/form.
4. The footlength measuring is based on the guage plane method.

A Dimension are exclusive of mold flash and gate burr.
\triangle Dimension are exclusive of solder plating.

SOIC-8

SOIC-8		
SYMBOL	MIN	MAX
A1	0.10	0.25
B	0.36	0.48
C	0.19	0.25
D	4.80	4.98
E	3.81	3.99
e	1.27 BSC	
H	5.80	6.20
h	0.25	0.5
L	0.41	1.27
A	1.37	1.73
θ_{1}	0°	8°
X	0.55 ref	
θ_{2}	$7^{\circ} \mathrm{BSC}$	

NOTE:

1. All dimensions are in millimeters.
2. Lead coplanarity should be 0 to $0.1 \mathrm{~mm}\left(0.004^{\prime \prime}\right)$ max.
3. Package surface finishing: VDI $24 \sim 27$
4. All dimension excluding mold flashes.
5. The lead width, B to be determined at 0.1905 mm from the lead tip.
48720 Kato Road
Fremont, CA 94538 - USA

Fremont, CA 94538 - USA

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

 has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

[^0]: Moisture sensitivity level for all parts is MSL-1.

