imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

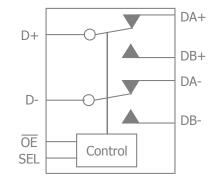
COMLINEAR[®] CLCUSB30 Low Power, High-Speed (480MSPS) USB 2.0 Analog Switch

FEATURES

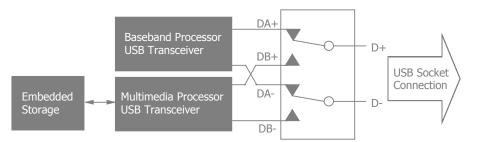
- ±8kV ESD protection on all pins
- 7pF on capacitance
- 4.0Ω on resistance
- 720MHz -3dB bandwidth
- <1µA supply current in standby mode</p>
- <6µA over a wide control voltage range</p>
- -45dB crosstalk
- Power-off protection when V_S = 0V;
 D+ and D- tolerate up to 5.25V
- Power-on protection when $V_S \neq 0V$; D+ and D- tolerate up to 5.25V
- Input voltage range extends 0.3V beyond V_S
- Operates from 3V to 4.3V supplies
- Pb-free MSOP-10 package

APPLICATIONS

- Cell phones
- PDAs
- Digital cameras
- Notebooks
- LCD TVs
- Set top box
- High-speed differential signal applications
- USB 2.0 switching


General Description

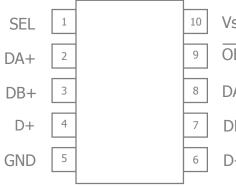
The CLCUSB30 is a dual-pole, double-throw (DPDT) analog switch designed for switching high-speed analog signals. The CLCUSB30 is optimized for switching 480Mbps (USB2.0) signals in portable devices such as cell phones, digital cameras, PDAs, and notebook computers.


The CLCUSB30 offers superior crosstalk (-45dB) and off-isolation (-30dB) to reduce channel-to-channel interference and provide good signal integrity. The low on-channel resistance and capacitance reduce attenuation and distortion during bi-directional HS signal routing.

The CLCUSB30 also features protection circuitry on D+ and D- pins that allows the switch to handle overvoltage conditions when powered on or off.

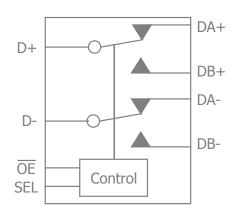
Functional Block Diagram

Typical Application



Ordering Information

Part Number	Package	Pb-Free	RoHS Compliant	Operating Temperature Range	Packaging Method
CLCUSB30IMP10X	MSOP-10	Yes	Yes	-40°C to +125°C	Reel


Moisture sensitivity level for all parts is MSL-1.

Pin Configuration

Pin Assignments

	Pin No.	Pin Name	Description
Vs	1	SEL	Select Input
	2	DA+	A Data Port
ЭЕ	3	DB+	B Data Port
	4	D+	Common Data Port
DA-	5	GND	Ground
	6	D-	Common Data Port
DB-	7	DB-	B Data Port
D-	8	DA-	A Data Port
U-	9	ŌĒ	Output Enable Bar
	10	VS	Positive supply

Truth Table

SEL	ŌĒ	Function
Х	HIGH	Disconnect
LOW	LOW	Select A Port; (D+, D- = DA+, DA-)
HIGH	LOW	Select B Port; (D+, D- = DB+, DB-)

Absolute Maximum Ratings

The safety of the device is not guaranteed when it is operated above the "Absolute Maximum Ratings". The device should not be operated at these "absolute" limits. Adhere to the "Recommended Operating Conditions" for proper device function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the operating conditions noted on the tables and plots.

Parameter	Min	Max	Unit
Supply Voltage	-0.5	4.6	V
SEL Voltage	-0.5	4.6	V
Input Voltage Range (DA/B+, DA/B-)	0.5	+V _s +0.3V	V
Input Voltage Range (D+, D- when $V_s > 0$)	0.5	+V _s +0.3V	V
Input Voltage Range (D+, D- when $V_s = 0$)	-0.5	5.25	V
Input / Output Current		50	mA

Reliability Information

Min	Тур	Max	Unit			
		150	°C			
-65		150	°C			
		260	°C			
Package Thermal Resistance						
	130		°C/W			
		-65	-65 150 260			

Notes:

Package thermal resistance (θ_{1A}), JDEC standard, multi-layer test boards, still air.

ESD Protection

Product	MSOP-10
Human Body Model (HBM)	8kV
Charged Device Model (CDM)	2kV
Charged Device Model (MM)	400V

Recommended Operating Conditions

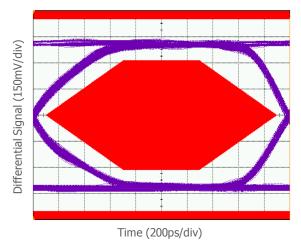
Parameter	Min	Тур	Max	Unit
Operating Temperature Range	-40		+125	°C
Supply Voltage Range	3		4.3	V
SEL Voltage Range	0		Vs	V
Input Voltage Range (D+, D-, DA/B+, DA/B-)	0		Vs	V

Electrical Characteristics

 $T_A = 25^{\circ}C$, $V_s = +3V$; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
Frequency Do	bmain Response	1				
		$R_{L} = R_{S} = 50\Omega, C_{L} = 0pF$		720		MHz
BW _{-3dB}	-3dB Bandwidth	$R_{L} = R_{S} = 50\Omega, C_{L} = 5pF$		550		MHz
Time Domain	Response				,	
t _{ON}	Turn-On Time	$\label{eq:VINVOUT} \begin{array}{l} V_{INVOUT} = 0.8V, R_L = 50\Omega, C_L = 5pF, \\ V_{SEL_HIGH} = V_S, V_{SEL_LOW} = 0, 3 \leq V_S \leq 3.6V \end{array}$		13		ns
t _{OFF}	Turn-Off Time	$\label{eq:VIN/OUT} \begin{array}{l} V_{IN/OUT} = 0.8V, R_L = 50\Omega, C_L = 5pF, \\ V_{SEL_HIGH} = V_S, V_{SEL_LOW} = 0, 3 \leq V_S \leq 3.6V \end{array}$		12		ns
t _{PD_RISE/FALL}	Rise/Fall Propagation Delay	$R_L = R_S = 50\Omega, C_L = 5pF, V_S = 3.3V$		0.25		ns
t _{BBM}	Break-Before-Make Delay Time	$R_L = R_S = 50\Omega, C_L = 5pF, 3 \le V_S \le 3.6V$		5		ns
t _{SK1}	Output Skew Between Switches	Skew between Switch 1 and Switch 2, $R_L = 50\Omega$, $C_L = 5pF$, $3 \le V_S \le 3.6V$		0.05		ns
t _{SK2}	Output Skew of Same Switches	Skew between opposite transitions in same switch, $R_L = 50\Omega$, $C_L = 5pF$, $3 \le V_S \le 3.6V$		0.02		ns
Distortion/Noi	ise Response	1	1	1	1	1
OFFISO	Off Isolation	$f = 240MHz, R_L = R_S = 50\Omega, C_L = 0pF, V_S = 3V$		-30		dB
X _{TALK}	Crosstalk	Channel-to-channel at f = 240MHz, $R_L = R_S = 50\Omega$, $C_L = 0pF$, $V_S = 3V$		-45		dB
DC Performan	nce	1	1	1	1	1
		$3 \le V_S \le 3.6V$	1.3			V
V_{SEL_HIGH}	Control Input High Voltage	V _S = 4.3V	1.7			V
		$3 \le V_S \le 3.6V$			0.5	V
V_{SEL_LOW}	Control Input Low Voltage	V _S = 4.3V			0.7	V
I_{SEL}	Control Input Leakage Current	$0 \le V_{SEL} \le V_S, V_S = 4.3V$	-1		1	μA
I _S	Quiescent Supply Current	$V_{SEL} = 0V \text{ or } V_{S, I_{IN/OUT}} = 0A$			1	μΑ
T		$V_{SEL} = 2.6V, V_{S} = 4.3V$			10	μΑ
I _{ST}	Increase in I_S on V_S pin per Control Voltage	$V_{SEL} = 1.8V, V_{S} = 4.3V$			30	μA
I _{LEAK}	OFF-State Leakage Current on D±, DA/B±	$0 < V_{D\pm, DA\pm, DB\pm} \le 3.6V, V_S = 4.3V$	-2		2	μA
I_{OFF}	Power OFF Leakage Current on D±	$V_{D\pm} = 4.3V$, $V_{S} = 0V$	-2		2	μA
R _{ON}	ON Resistance	$V_{IN/OUT}$ = 0.4V, $I_{IN/OUT}$ = 8mA, V_S = 3V		4	6.5	Ω
ΔR_{ON}	ON Resistance Match Between Channels ⁽¹⁾	$V_{IN/OUT} = 0.4V$, $I_{IN/OUT} = 8mA$, $V_S = 3V$		0.35		Ω
R _{FLAT_ON}	R _{ON} Flatness ⁽²⁾	$0V < V_{IN/OUT} \le 1.0V, \ I_{IN/OUT} = 8mA, \ V_S = 3V$		1		Ω
Capacitance						
C _{IN}	Control Pin Input Capacitance	$f = 240MHz, V_S = 0V$		1.5		pF
C _{ON}	ON Capacitance	$f = 240MHz, V_S = 3.6V$		7		pF
C _{OFF}	OFF Capacitance	$f = 240MHz, V_S = 3.6V$		3.5		pF

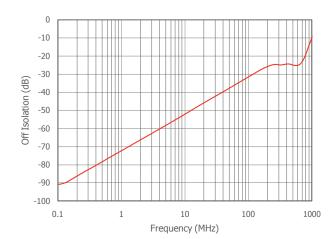
Notes:

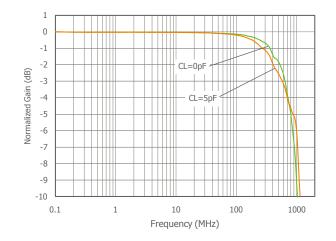

1. $\Delta R_{ON(MAX)} = | R_{ON} (Channel1) - R_{ON} (Channel2) |$

2. R_{FLAT_ON} is defined as the difference between the maximun and minimum value of R_{ON} measured over specified $V_{IN/OUT}$ range.

Typical Performance Characteristics

 $T_A = 25^{\circ}C$, $V_s = +3V$; unless otherwise noted.


Eye Diagram


Crosstalk vs. Frequency

Off Isolation vs. Frequency

Timing Diagrams

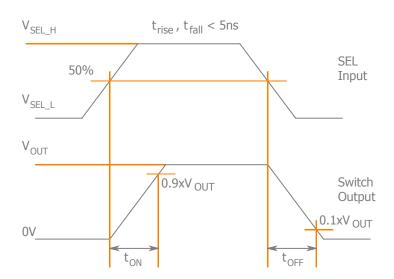


Figure 1. t_{ON}, t_{OFF}

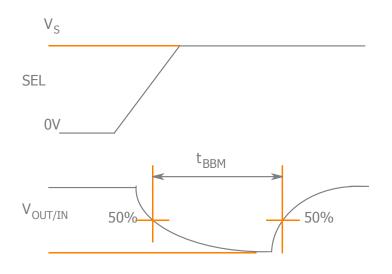
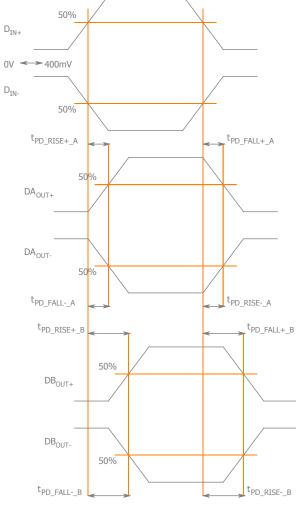



Figure 2. Break - Before - Make Time

Rise-Time Propagation Delay

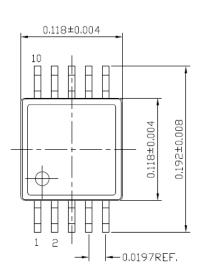
t_{PD_RISE+}, t_{PD_RISE-}

Fall-Time Propagation Delay

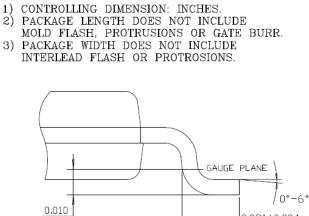
tPD_FALL+, tPD_FALL-

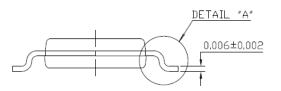
Output Skew Between Switches

 $t_{SK(O)} = \mid (t_{PD_RISE+/-_A}) - (t_{PD_RISE+/-_B}) \mid \\ OR \ t_{SK(O)} = \mid (t_{PD_FALL+/-_A}) - (t_{PD_FALL+/-_B}) \mid$

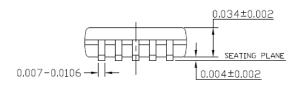

Output Skew Same Switch

 $t_{SK(P)} = \mid (t_{PD_RISE+_A/B}) - (t_{PD_FALL+_A/B}) \mid \\ OR \ t_{SK(P)} = \mid (t_{PD_RISE-_A/B}) - (t_{PD_FALL-_A/B}) \mid$




Mechanical Dimensions

MSOP-10 Package (compliant to JEDEC MO-187)


NOTE:

″A″

<u>detail</u>

Exar Corporation Headquarters and Sales Offices 48720 Kato Road Tel.: +1 (510) 668-7000

Fax: +1 (510) 668-7001 www.exar.com

48720 Kato Road Fremont, CA 94538 - USA

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances. Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

©2009-2013 Exar Corporation

0.021±0.004