

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CLF1G0035-100P; CLF1G0035S-100P Broadband RF power GaN HEMT Rev. 4 — 24 February 2016

AMPLEON

Product data sheet

Product profile

1.1 General description

The CLF1G0035-100P and CLF1G0035S-100P are 100 W general purpose broadband GaN HEMTs usable from DC to 3.5 GHz.

CW and pulsed RF application information

Typical RF performance at $T_{case} = 25 \, ^{\circ}\mathrm{C}$; $I_{Dq} = 330 \, \mathrm{mA}$; $V_{DS} = 50 \, \mathrm{V}$ in a class-AB broadband demo board.

Test signal	f	PL	Gp	η _D
	(MHz)	(W)	(dB)	(%)
1-Tone CW	2500	100	12.8	51
	2600	100	12.7	52.4
	2700	100	12.3	50
	2800	100	11.7	49
	2900	100	11.5	49
	3000	100	10.5	47
1-Tone pulsed [1]	2500	100	14.2	52
	2600	100	14.4	54.4
	2700	100	14.1	52.5
	2800	100	13.7	51.5
	2900	100	13.6	51.8
	3000	100	12.7	50.1

^[1] Pulsed RF; $t_p = 100 \mu s$; $\delta = 10 \%$.

2-Tone CW application information

Typical 2-Tone performance at T_{case} = 25 °C; I_{Dq} = 330 mA; V_{DS} = 50 V in a class-AB broadband demo board.

Test signal	f	P _{L(PEP)}	IMD3
	(MHz)	(W)	(dBc)
2-Tone CW [1]	2500	20	-41.6
	2600	20	-43
	2700	20	-41.5
	2800	20	-41.3
	2900	20	-41.3
	3000	20	-40

^{[1] 2-}Tone CW; $\Delta f = 100 \text{ kHz}$.

1.2 Features and benefits

- Frequency of operation is from DC to 3.5 GHz
- 100 W general purpose broadband RF Power GaN HEMT
- Excellent ruggedness (VSWR = 10 : 1)
- High voltage operation (50 V)
- Thermally enhanced package

1.3 Applications

- Commercial wireless infrastructure (cellular, WiMAX)
- Radar
- Broadband general purpose amplifier
- Public mobile radios

- Industrial, scientific, medical
- Jammers
- EMC testing
- Defense application

2. Pinning information

Table 3. Pinning

Pin	Description	Simplified outline	Graphic symbol
CLF1G0035-1	00P (SOT1228A)		
1	drain1		14
2	drain2	1 2	3-
3	gate1		5
4	gate2	3 4 5	4 1 2
5	source [1]		aaa-005775
CLF1G0035S-	100P (SOT1228B)		
1	drain1		14
2	drain2	1 2	3 -
3	gate1		5
4	gate2		471
5	source [1]	3 4	aaa-005775

^[1] Connected to flange.

3. Ordering information

Table 4. Ordering information

Type number	Package	Package				
	Name	Name Description Version				
CLF1G0035-100P	-	flanged ceramic package; 2 mounting holes; 4 leads	SOT1228A			
CLF1G0035S-100P	-	earless flanged ceramic package; 4 leads	SOT1228B			

4. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage		-	150	V
V_{GS}	gate-source voltage		-8	+3	V
I _{GF}	forward gate current	external $R_G = 5 \Omega$	-	36	mA
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature	measured via IR scan	-	250	°C

5. Thermal characteristics

Table 6. Thermal characteristics

Symbol	Parameter	Conditions		Тур	Unit
R _{th(j-c)}	thermal resistance from junction to case	T _j = 200 °C	[1]	1.02	K/W

^[1] T_i is measured via IR scan with case temperature of 85 °C and power dissipation of 108.6 W.

6. Characteristics

Table 7. DC characteristics

 T_{case} = 25 °C; per section; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$V_{(BR)DSS}$	drain-source breakdown voltage	$V_{GS} = -7 \text{ V};$ $I_{DS} = 12 \text{ mA}$	150	-	-	V
$V_{GS(th)}$	gate-source threshold voltage	V _{DS} = 0.1 V; I _{DS} = 12 mA	-2.4	-2	-1.6	V
I _{DSX}	drain cut-off current	V _{DS} = 10 V; V _{GS} = 3 V	-	8.8	-	Α
9 _{fs}	forward transconductance	V _{DS} = 10 V; V _{GS} = 0 V	-	1.8	-	S

Table 8. RF characteristics

Test signal: pulsed RF; f = 3000 MHz; t_p = 100 μ s; δ = 10 %; RF performance at V_{DS} = 50 V; I_{Dq} = 330 mA; T_{case} = 25 °C; unless otherwise specified in a class-AB production circuit.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
η_{D}	drain efficiency	P _L = 100 W	43	49	-	%
Gp	power gain	P _L = 100 W	10.3	12.5	-	dB
RLin	input return loss	P _L = 100 W	-	-6	-	dB
P _{droop(pulse)}	pulse droop power	P _L = 100 W	-	0.2	-	dB
t _r	rise time	P _L = 100 W	-	5	-	ns
t _f	fall time	P _L = 100 W	-	5	-	ns

7. Application information

7.1 Demo circuit

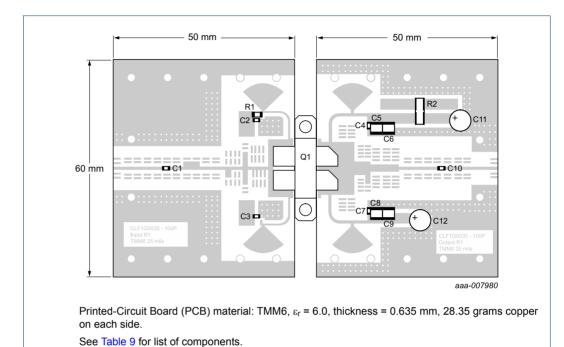


Fig 1. The broadband amplifier (2500 MHz to 3000 MHz) demo circuit outline

Table 9. List of components See Figure 1.

Component	Description	Value	Remarks
C1, C10	multilayer ceramic chip capacitor	20 pF	ATC800A
C2, C3,C4, C7	multilayer ceramic chip capacitor	1 nF	ATC700A
C5, C8	multilayer ceramic chip capacitor	4.7 μF, 50 V	
C6, C9	multilayer ceramic chip capacitor	10 μF, 50 V	
C11, C12	electrolytic capacitor	220 μF, 50 V	
Q1	transistor	-	CLF1G0035-100P
R1	resistor	4.7 Ω	
R2	resistor	0.01 Ω	LVK25R01, 2W, 1 % tolerance

7.2 Application test results

Table 10. CW and pulsed RF application information

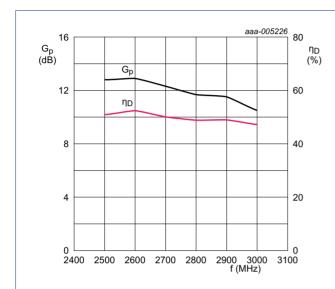
Typical RF performance at T_{case} = 25 °C; I_{Dq} = 330 mA; V_{DS} = 50 V in a class-AB broadband demo board.

Test signal	f	PL	Gp	η_{D}
	(MHz)	(W)	(dB)	(%)
1-Tone CW	2500	100	12.8	51
	2600	100	12.7	52.4
	2700	100	12.3	50
	2800	100	11.7	49
	2900	100	11.5	49
	3000	100	10.5	47
1-Tone pulsed [1]	2500	100	14.2	52
	2600	100	14.4	54.4
	2700	100	14.1	52.5
	2800	100	13.7	51.5
	2900	100	13.6	51.8
	3000	100	12.7	50.1

^[1] Pulsed RF; t_p = 100 μ s; δ = 10 %.

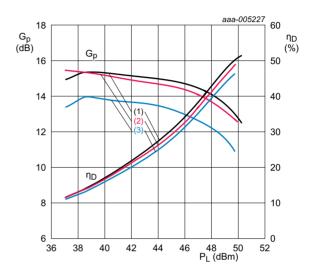
Table 11. 2-Tone CW application information

Typical 2-Tone performance at $T_{\rm case}$ = 25 °C; $I_{\rm Dq}$ = 330 mA; $V_{\rm DS}$ = 50 V in a class-AB broadband demo board.


Test signal	f	P _{L(PEP)}	IMD3
	(MHz)	(W)	(dBc)
2-Tone CW [1]	2500	20	-41.6
	2600	20	-43
	2700	20	-41.5
	2800	20	-41.3
	2900	20	-41.3
	3000	20	-40

^{[1] 2-}Tone CW; $\Delta f = 100 \text{ kHz}$.

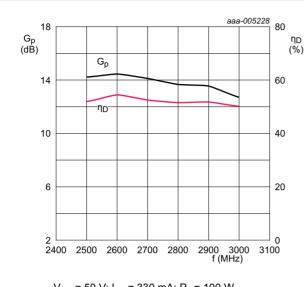
7.3 Graphical data


The following figures are measured in a broadband amplifier demo board from 2500 MHz to 3000 MHz.

7.3.1 1-Tone CW RF performance

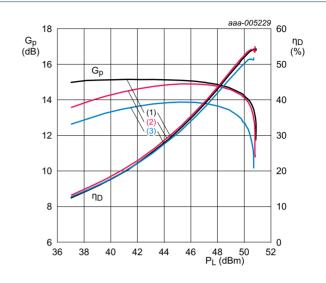
 $V_{DS} = 50 \text{ V}$; $I_{Dq} = 330 \text{ mA}$; $P_L = 100 \text{ W}$.

Fig 2. Power gain and drain efficiency as function of frequency; typical values



 $V_{DS} = 50 \text{ V}; I_{Dq} = 330 \text{ mA}.$

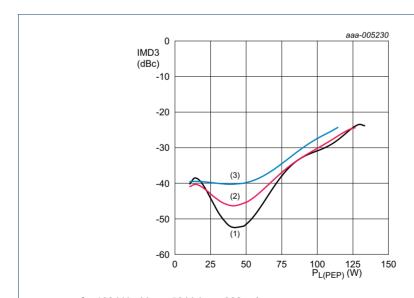
- (1) f = 2500 MHz
- (2) f = 2700 MHz
- (3) f = 3000 MHz


Fig 3. Power gain and drain efficiency as a function of output power; typical values

7.3.2 1-Tone pulsed RF performance

 V_{DS} = 50 V; I_{Dq} = 330 mA; P_{L} = 100 W.

Fig 4. Power gain and drain efficiency as function of frequency; typical values



 V_{DS} = 50 V; I_{Dq} = 330 mA.

- (1) f = 2500 MHz
- (2) f = 2700 MHz
- (3) f = 3000 MHz

Fig 5. Power gain and drain efficiency as function of output power; typical values

7.3.3 2-Tone CW performance

 Δf = 100 kHz; V_{DS} = 50 V; I_{Dq} = 330 mA.

- (1) f = 2500 MHz
- (2) f = 2700 MHz
- (3) f = 3000 MHz

Fig 6. Third-order intermodulation distortion as a function of peak envelope power load power; typical values

CLF1G0035-100P_1G0035S-100P

All information provided in this document is subject to legal disclaimers

© Ampleon Netherlands B.V. 2016. All rights reserved.

8. Test information

8.1 Ruggedness in class-AB operation

The CLF1G0035-100P and CLF1G0035S-100P are capable of withstanding a load mismatch corresponding to VSWR = 10 : 1 through all phases under the following conditions: $V_{DS} = 50 \text{ V}$; $P_L = 100 \text{ W}$ (CW), f = 2500 MHz.

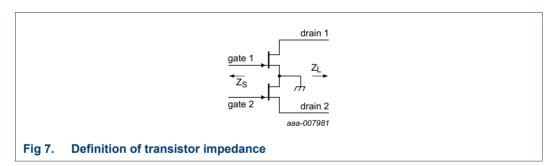

8.2 Load pull impedance information

Table 12. Typical impedance

Measured load-pull data half device. Typical values unless otherwise specified. $I_{Dq} = 150 \text{ mA}$; $V_{DS} = 50 \text{ V. } Z_S \text{ and } Z_L \text{ defined in Figure 7}$.

f	Z _S [1]	Z _L (maximum P _{L(M)}) [2]	Z _L (maximum η _D) [2]
(MHz)	(Ω)	(Ω)	(Ω)
500	6.4 + 4j	9.7 + 7j	10 + 5j
1000	1.9 + 2.2j	9.1 + 12.4j	10 + 6j
2000	1.9 – 2.9j	5 + 4.1j	6.6 + 1.4j
2500	2.1 – 6.3j	3.6 + 0.75j	4.5 – 0.4j
3000	2.5 – 9j	3.9 – 1.2j	5.8 – 1.8j
3500	2.9 – 14j	6.6 – 2j	5.8 – 3j

- [1] measured at gate1 and gate2
- [2] measured at drain1 and drain2

 Z_S is the measured source pull impedance presented to the device. Z_L is the measured load pull impedance presented to the device.

8.3 Packaged S-parameter data

Table 13. S-parameter data half device

Small signal; typical values unless otherwise specified; V_{DS} = 50 V; I_{Dq} = 150 mA; Z_S = Z_L = 50 Ω .

f (MHz)	S ₁₁		S ₂₁		S ₁₂		S ₂₂	
	Magnitude (ratio)	Angle (degree)	Magnitude (ratio)	Angle (degree)	Magnitude (ratio)	Angle (degree)	Magnitude (ratio)	Angle (degree)
500	0.82686	-168.9	9.6028	67.238	0.01482	-9.5809	0.48482	-133.17
600	0.82717	-171.62	7.7589	61.123	0.013844	-12.463	0.52053	-136.01
700	0.82892	-173.81	6.4386	55.547	0.01282	-14.415	0.55589	-138.65
800	0.83183	-175.69	5.4524	50.412	0.011783	-15.413	0.58964	-141.17
900	0.83572	-177.39	4.6934	45.655	0.010764	-15.358	0.62126	-143.61
1000	0.84047	-178.98	4.096	41.233	0.0097946	-14.091	0.65063	-145.96
1100	0.84604	179.5	3.618	37.11	0.008907	-11.409	0.67787	-148.22
1200	0.85244	178	3.2306	33.257	0.0081421	-7.0907	0.70319	-150.39
1300	0.8597	176.51	2.9136	29.648	0.0075495	-0.99281	0.72687	-152.47
1400	0.86785	175.01	2.6525	26.259	0.0071873	6.7932	0.74919	-154.47
1500	0.87697	173.47	2.4362	23.07	0.0071125	15.766	0.77044	-156.39
1600	0.88715	171.88	2.2569	20.062	0.0073641	25.034	0.79086	-158.24
1700	0.89848	170.23	2.1083	17.22	0.007952	33.645	0.81069	-160.04
1800	0.90446	168.57	1.972	14.461	0.0088014	40.908	0.8252	-161.7
1900	0.90172	166.97	1.839	11.713	0.0098257	46.58	0.83233	-163.2
2000	0.89927	165.33	1.7253	9.0465	0.011062	50.849	0.83898	-164.63
2100	0.89713	163.64	1.6281	6.4503	0.012486	53.942	0.84528	-166
2200	0.89532	161.88	1.5454	3.9129	0.014088	56.092	0.85135	-167.32
2300	0.89386	160.04	1.4755	1.4231	0.015869	57.498	0.85727	-168.6
2400	0.89277	158.1	1.4171	-1.0309	0.01784	58.314	0.86313	-169.84
2500	0.89205	156.03	1.3692	-3.4611	0.020023	58.659	0.86899	-171.05
2600	0.89096	153.83	1.3297	-5.8933	0.022423	58.605	0.87436	-172.23
2700	0.88445	151.58	1.2888	-8.4222	0.024891	58.132	0.87579	-173.35
2800	0.87762	149.17	1.2551	-10.982	0.027588	57.364	0.87715	-174.44
2900	0.87039	146.59	1.2281	-13.588	0.030547	56.329	0.87847	-175.5
3000	0.86268	143.8	1.2076	-16.259	0.033808	55.045	0.8798	-176.54
3100	0.85434	140.75	1.1934	-19.013	0.037423	53.519	0.88118	-177.56
3200	0.84525	137.4	1.1855	-21.877	0.041451	51.748	0.88265	-178.56
3300	0.83522	133.68	1.1839	-24.877	0.045967	49.721	0.88425	-179.53
3400	0.82403	129.52	1.1889	-28.05	0.051058	47.418	0.88607	179.52
3500	0.80856	125.24	1.1872	-31.326	0.056194	44.92	0.88556	178.56
3600	0.79077	120.6	1.1867	-34.765	0.061705	42.174	0.88468	177.6
3700	0.77106	115.45	1.1896	-38.412	0.067742	39.146	0.88406	176.66
3800	0.74926	109.7	1.1956	-42.297	0.074348	35.812	0.88382	175.74
3900	0.72527	103.23	1.2044	-46.449	0.081559	32.146	0.88412	174.82
4000	0.69912	95.917	1.2152	-50.902	0.089394	28.121	0.88516	173.9
4100	0.67108	87.595	1.2274	-55.686	0.097849	23.71	0.88717	172.98

CLF1G0035-100P_1G0035S-100P

All information provided in this document is subject to legal disclaimers.

Table 13. S-parameter data half device ...continued

Small signal; typical values unless otherwise specified; V_{DS} = 50 V; I_{Dq} = 150 mA; Z_{S} = Z_{L} = 50 Ω .

f (MHz)	S ₁₁		S ₂₁		S ₁₂		S ₂₂	
	Magnitude (ratio)	Angle (degree)	Magnitude (ratio)	Angle (degree)	Magnitude (ratio)	Angle (degree)	Magnitude (ratio)	Angle (degree)
4200	0.64183	78.092	1.24	-60.826	0.10688	18.891	0.89042	172.03
4300	0.6126	67.228	1.2515	-66.34	0.11639	13.65	0.89516	171.03
4400	0.58534	54.856	1.2604	-72.231	0.12622	7.9864	0.90159	169.95
4500	0.5628	40.93	1.2649	-78.48	0.13615	1.9193	0.90984	168.75
4600	0.54816	25.608	1.2633	-85.047	0.14588	-4.5074	0.91983	167.38
4700	0.54433	9.3292	1.2542	-91.862	0.15511	-11.224	0.9313	165.79
4800	0.55279	-7.214	1.2369	-98.835	0.16356	-18.138	0.94381	163.95
4900	0.57293	-23.266	1.2115	-105.86	0.17103	-25.144	0.95677	161.82
5000	0.60219	-38.234	1.1791	-112.84	0.17745	-32.138	0.96962	159.39
5100	0.63534	-51.341	1.1406	-119.47	0.18272	-38.825	0.9807	156.67
5200	0.66527	-61.779	1.0972	-125.31	0.18683	-44.756	0.98704	153.74
5300	0.69493	-71.079	1.0544	-130.96	0.1906	-50.53	0.99214	150.52
5400	0.72195	-78.947	1.0134	-136.23	0.19423	-55.963	0.99508	147.04
5500	0.74577	-85.567	0.97537	-141.15	0.19795	-61.088	0.99579	143.28
5600	0.76759	-91.49	0.94075	-146	0.20193	-66.161	0.99532	139.15
5700	0.78744	-96.798	0.90986	-150.8	0.20632	-71.236	0.99371	134.58
5800	0.80548	-101.57	0.88283	-155.64	0.21125	-76.374	0.99093	129.47
5900	0.82197	-105.86	0.85961	-160.58	0.21682	-81.647	0.98694	123.72
6000	0.83722	-109.72	0.84	-165.71	0.22309	-87.14	0.98164	117.18

9. Package outline

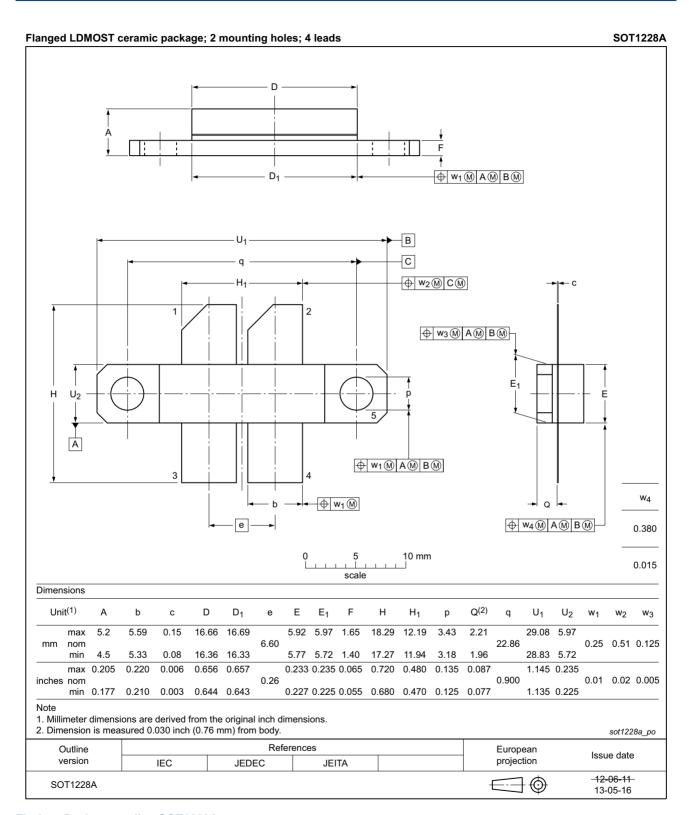


Fig 8. Package outline SOT1228A

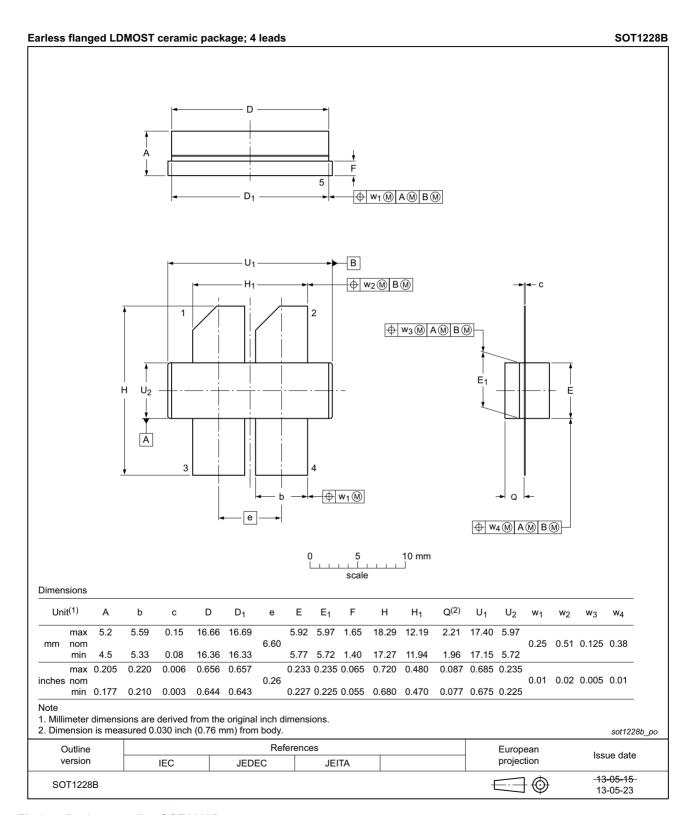


Fig 9. Package outline SOT1228B

10. Handling information

10.1 ESD Sensitivity

Table 14. ESD sensitivity

ESD model	Class
Human Body Model (HBM); According JEDEC standard JESD22-A114F	1B [1]

^[1] Classification 1B is granted to any part that passes after exposure to an ESD pulse of 500 V, but fails after exposure to an ESD pulse of 1000 V.

11. Abbreviations

Table 15. Abbreviations

Acronym	Description
CW	Continuous Wave
EMC	ElectroMagnetic Compatibility
ESD	ElectroStatic Discharge
GaN	Gallium Nitride
HEMT	High Electron Mobility Transistor
VSWR	Voltage Standing-Wave Ratio
WiMAX	Worldwide Interoperability for Microwave Access

12. Revision history

Table 16. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
CLF1G0035-100P_1G0035S-100P v.4	20160224	Product data sheet	-	CLF1G0035-100P_ 1G0035S-100P#3
Modifications:	Table 8 on pa	ge 3: table updated		
CLF1G0035-100P_1G0035S-100P#3	20150901	Objective data sheet	-	CLF1G0035-100P_ 1G0035S-100P v.1
CLF1G0035-100P_1G0035S-100P v.2	20130620	Objective data sheet	-	CLF1G0035-100P_ 1G0035S-100P v.1
CLF1G0035-100P_1G0035S-100P v.1	20121210	Objective data sheet	-	-

13. Legal information

13.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status [3] information is available on the Internet at URL http://www.ampleon.com.

13.2 **Definitions**

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Ampleon does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Ampleon sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Ampleon and its customer, unless Ampleon and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Ampleon product is deemed to offer functions and qualities beyond those described in the Product data sheet.

13.3 **Disclaimers**

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Ampleon does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Ampleon takes no responsibility for the content in this document if provided by an information source outside of Ampleon.

In no event shall Ampleon be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Ampleon's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Ampleon.

Right to make changes — Ampleon reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Ampleon products are not designed, authorized or warranted to be suitable for use in life support. life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Ampleon product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Ampleon and its suppliers accept no liability for inclusion and/or use of Ampleon products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Ampleon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Ampleon products, and Ampleon accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Ampleon product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products

Ampleon does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Ampleon products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Ampleon does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Ampleon products are sold subject to the general terms and conditions of commercial sale, as published at http://www.ampleon.com/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Ampleon hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Ampleon products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

CLF1G0035-100P 1G0035S-100P

All information provided in this document is subject to legal disclaimers.

© Ampleon Netherlands B.V. 2016. All rights reserved.

CLF1G0035(S)-100P

Broadband RF power GaN HEMT

Non-automotive qualified products — Unless this data sheet expressly states that this specific Ampleon product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Ampleon accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Ampleon' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Ampleon' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Ampleon for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Ampleon' standard warranty and Ampleon' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

13.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Any reference or use of any 'NXP' trademark in this document or in or on the surface of Ampleon products does not result in any claim, liability or entitlement vis-à-vis the owner of this trademark. Ampleon is no longer part of the NXP group of companies and any reference to or use of the 'NXP' trademarks will be replaced by reference to or use of Ampleon's own trademarks.

14. Contact information

For more information, please visit: http://www.ampleon.com

For sales office addresses, please visit: http://www.ampleon.com/sales

AMPLEON

CLF1G0035(S)-100P

Broadband RF power GaN HEMT

15. Contents

1	Product profile	1
1.1	General description	
1.2	Features and benefits	
1.3	Applications	2
2	Pinning information	2
3	Ordering information	2
4	Limiting values	3
5	Thermal characteristics	3
6	Characteristics	3
7	Application information	4
7.1	Demo circuit	
7.2	Application test results	5
7.3	Graphical data	6
7.3.1	1-Tone CW RF performance	6
7.3.2	1-Tone pulsed RF performance	
7.3.3	2-Tone CW performance	
8	Test information	8
8.1	Ruggedness in class-AB operation	
8.2	Load pull impedance information	
8.3	Packaged S-parameter data	9
9	Package outline	. 11
10	Handling information	. 13
10.1	ESD Sensitivity	. 13
11	Abbreviations	. 13
12	Revision history	. 13
13	Legal information	
13.1	Data sheet status	
13.2	Definitions	. 14
13.3	Disclaimers	
13.4	Trademarks	. 15
14	Contact information	. 15
15	Contents	16

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.