mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LCD and Camera EMI Filter Array with ESD Protection

Product Description

The CM1630 is a family of pi-style EMI filter arrays with ESD protection, which integrates four, six and eight filters (C-R-C) in small form factor UDFN 0.40 mm pitch packages. The CM1630 has component values of $8.5 \text{ pF} - 100 \Omega - 8.5 \text{ pF}$ per channel. The CM1630 has a cut-off frequency of 200 MHz and can be used in applications with data rates up to 80 Mbps. The parts include ESD diodes on every pin, which provide a very high level of protection for sensitive electronic components that may be subjected to electrostatic discharge (ESD). The ESD protection diodes safely dissipate ESD strikes of $\pm 15 \text{ kV}$, well beyond the maximum requirement of the IEC61000-4-2 international standard. Using the MIL-STD-883 (Method 3015) specification for Human Body Model (HBM) ESD, the pins are protected for contact discharges at greater than $\pm 30 \text{ kV}$.

These devices are particularly well-suited for portable electronics (e.g. wireless handsets, PDAs, notebook computers) because of their small package and easy-to-use pin assignments. In particular, the CM1630 is ideal for EMI filtering and protecting data and control lines for the I/O data ports, LCD display and camera interface in mobile handsets.

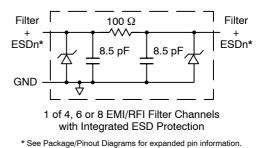
The CM1630 is housed in space-saving, low-profile 8-, 12- and 16-lead UDFN packages with a 0.4 mm pitch and is available with lead-free finishing. This new small UDFN package provides up to 42% board space savings vs. the 0.50 mm pitch UDFN packages.

Features

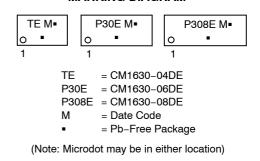
- Four, Six and Eight Channels of EMI Filtering with Integrated ESD Protection
- Pi-Style EMI Filters in a Capacitor-Resistor-Capacitor (C-R-C) Network
- ±15 kV ESD Protection on Each Channel (IEC 61000-4-2 Level 4, Contact Discharge)
- ±30 kV ESD Protection on Each Channel (HBM)
- Greater than 25 dB Attenuation (Typical) at 1 GHz
- UDFN Package with 0.40 mm Lead Pitch:
 - 4-ch. = 8-lead UDFN
 - ◆ 6-ch. = 12-lead UDFN
 - ◆ 8-ch. = 16-lead UDFN
- Tiny UDFN Package Size:
 - 8-lead: 1.70 mm x 1.35 mm x 0.50 mm
 - 12-lead: 2.50 mm x 1.35 mm x 0.50 mm
 - 16-lead: 3.30 mm x 1.35 mm x 0.50 mm
- Increased Robustness against Vertical Impacts During Manufacturing Process
- These Devices are Pb-Free and are RoHS Compliant

Applications

- LCD and Camera Data Lines in Mobile Handsets
- LCD and Camera Modules
- Handheld PCs/PDAs
- Wireless Handsets

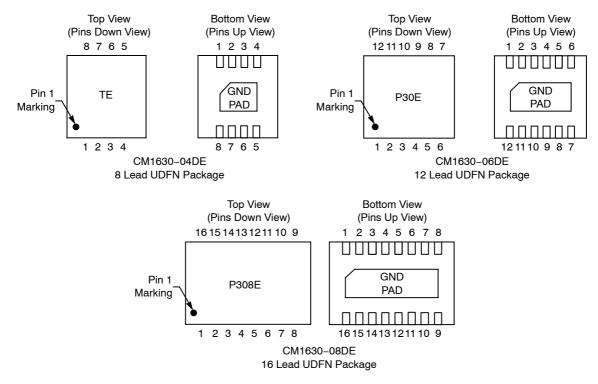


ON Semiconductor®


http://onsemi.com

ELECTRICAL SCHEMATIC

MARKING DIAGRAM


ORDERING INFORMATION

Device	Package	Shipping [†]
CM1630-04DE	UDFN-8 (Pb-Free)	3000/Tape & Reel
CM1630-06DE	UDFN-12 (Pb-Free)	3000/Tape & Reel
CM1630-08DE	UDFN-16 (Pb-Free)	3000/Tape & Reel

+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

- I/O Port Protection for Mobile Handsets, Notebook Computers, PDAs, etc.
- EMI Filtering for Data Ports in Cell Phones, PDAs or Notebook Computers

PACKAGE / PINOUT DIAGRAMS

Table 1. PIN DESCRIPTIONS

De	vice Pir	n(s)			De	Device Pin(s)		Device Pin(s)		Device Pin(s)			
-04	-06	-08	Name	Description	-04	-06	-08	Name	Description				
1	1	1	FILTER1	Filter + ESD Channel 1	8	12	16	FILTER1	Filter + ESD Channel 1				
2	2	2	FILTER2	Filter + ESD Channel 2	7	11	15	FILTER2	Filter + ESD Channel 2				
3	3	3	FILTER3	Filter + ESD Channel 3	6	10	14	FILTER3	Filter + ESD Channel 3				
4	4	4	FILTER4	Filter + ESD Channel 4	5	9	13	FILTER4	Filter + ESD Channel 4				
-	5	5	FILTER5	Filter + ESD Channel 5	-	8	12	FILTER5	Filter + ESD Channel 5				
-	6	6	FILTER6	Filter + ESD Channel 6	-	7	11	FILTER6	Filter + ESD Channel 6				
-	-	7	FILTER7	Filter + ESD Channel 7	-	-	10	FILTER7	Filter + ESD Channel 7				
-	-	8	FILTER8	Filter + ESD Channel 8	-	-	9	FILTER8	Filter + ESD Channel 8				
G	and Pai	D	GND	Device Ground	-	-	-	-					

SPECIFICATIONS

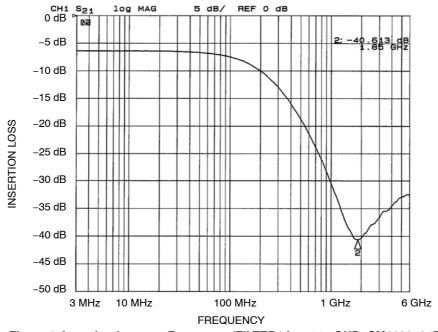
Table 2. ABSOLUTE MAXIMUM RATINGS

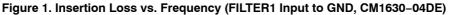
Parameter	Rating	Units
Storage Temperature Range	-65 to +150	°C
DC Power per Resistor	100	mW
DC Package Power Rating	500	mW

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. STANDARD OPERATING CONDITIONS

Parameter	Rating	Units
Operating Temperature Range	-40 to +85	°C


Table 4. ELECTRICAL OPERATING CHARACTERISTICS (Note 1)


Symbol	Parameter	Conditions	Min	Тур	Max	Units	
R	Resistance	sistance		100	120	Ω	
C _{TOTAL}	Total Channel Capacitance	At 2.5 V DC Reverse Bias, 1 MHz, 30 mV AC	14	17	22	pF	
С	Capacitance C1	At 2.5 V DC Reverse Bias, 1 MHz, 30 mV AC	7.0	8.5	11.0	pF	
V _{DIODE}	Stand-off Voltage	I _{DIODE} = 10 μA		6.0		V	
I _{LEAK}	Diode Leakage Current (Reverse Bias)	V _{DIODE} = 3.3 V		0.1	1.0	μA	
V _{SIG}	Signal Clamp Voltage Positive Clamp Negative Clamp	I _{LOAD} = 10 mA I _{LOAD} = -10 mA	5.6 -0.4	6.8 -0.8		V	
V _{ESD}	In-system ESD Withstand Voltage a) Human Body Model, MIL-STD-883, Method 3015 b) Contact Discharge per IEC 61000-4-2 Level 4	(Note 2)	±30 ±15			kV	
R _{DYN}	Dynamic Resistance Positive Negative			2.3 0.9		Ω	
f _C	Cut–off Frequency Z_{SOURCE} = 50 Ω , Z_{LOAD} = 50 Ω	Channel R = 100 Ω , Channel C = 8.5 pF		200		MHz	
A _{1GHz}	Absolute Attenuation @ 1 GHz from 0 dB Level	$Z_{\text{SOURCE}} = 50 \ \Omega$, $Z_{\text{LOAD}} = 50 \ \Omega$, DC Bias = 0 V (Notes 1 and 3)		30		dB	
4 _{800MHz} – 6GHz	Absolute Attenuation @ 800 MHz to 6 GHz from 0 dB Level	$Z_{\text{SOURCE}} = 50 \ \Omega$, $Z_{\text{LOAD}} = 50 \ \Omega$, DC Bias = 0 V (Notes 1 and 3)		25		dB	

T_A = 25°C unless otherwise specified.
ESD applied to input and output pins with respect to GND, one at a time.

3. Attenuation / RF curves characterized by a network analyzer using microprobes.

PERFORMANCE INFORMATION

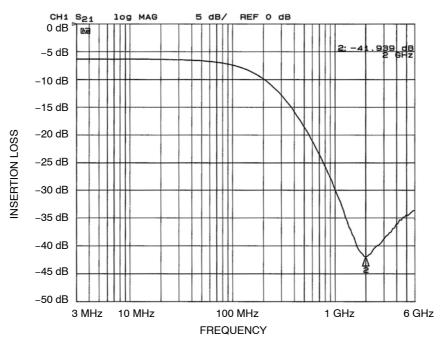


Figure 2. Insertion Loss vs. Frequency (FILTER2 Input to GND, CM1630-04DE)

PERFORMANCE INFORMATION (Cont'd)

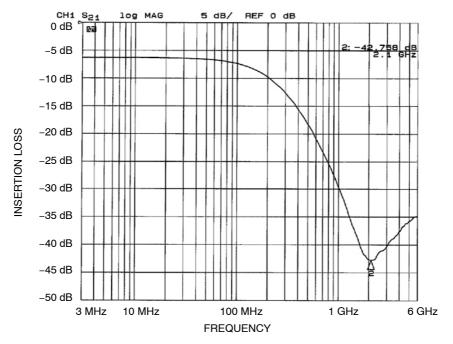


Figure 3. Insertion Loss vs. Frequency (FILTER3 Input to GND, CM1630-04DE)

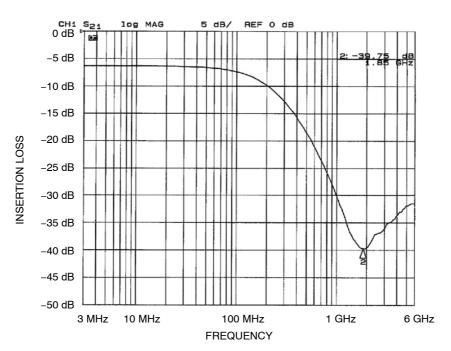


Figure 4. Insertion Loss vs. Frequency (FILTER4 Input to GND, CM1630-04DE)

PERFORMANCE INFORMATION (Cont'd)

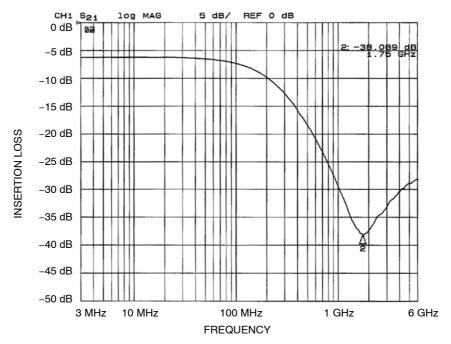


Figure 5. Insertion Loss vs. Frequency (FILTER1 Input to GND, CM1630-06DE)

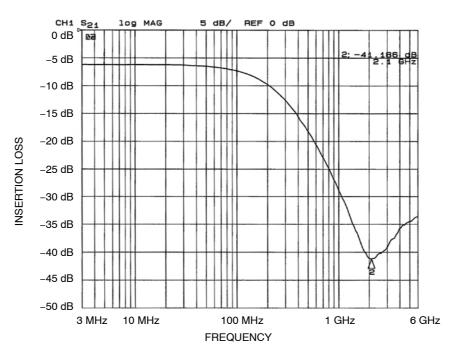


Figure 6. Insertion Loss vs. Frequency (FILTER2 Input to GND, CM1630-06DE)

PERFORMANCE INFORMATION (Cont'd)

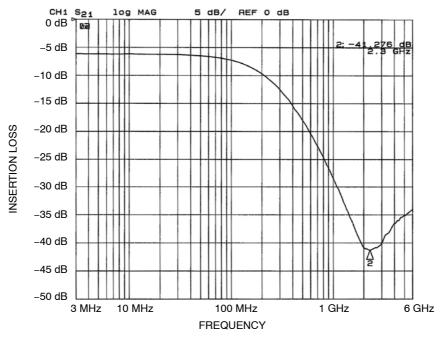


Figure 7. Insertion Loss vs. Frequency (FILTER3 Input to GND, CM1630-06DE)

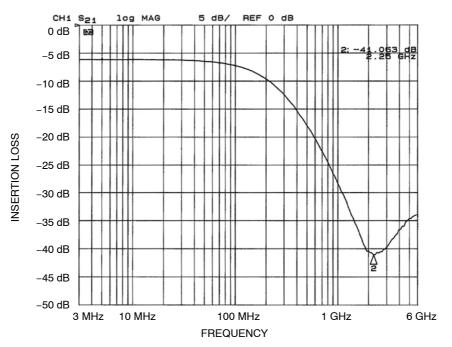


Figure 8. Insertion Loss vs. Frequency (FILTER4 Input to GND, CM1630-06DE)

PERFORMANCE INFORMATION (Cont'd)

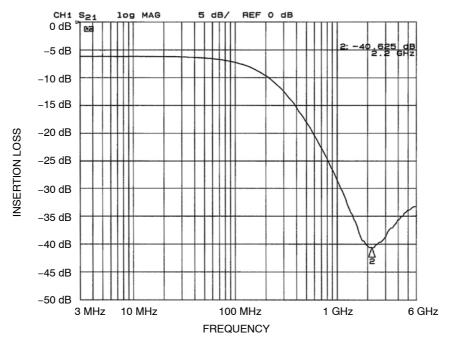


Figure 9. Insertion Loss vs. Frequency (FILTER5 Input to GND, CM1630-06DE)

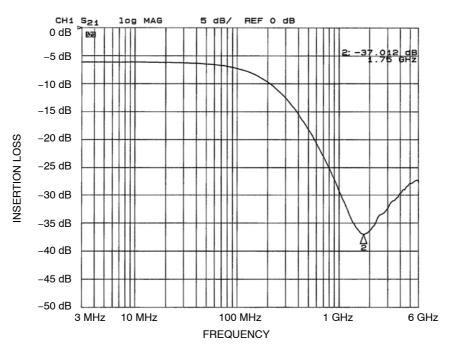


Figure 10. Insertion Loss vs. Frequency (FILTER6 Input to GND, CM1630-06DE)

PERFORMANCE INFORMATION (Cont'd)

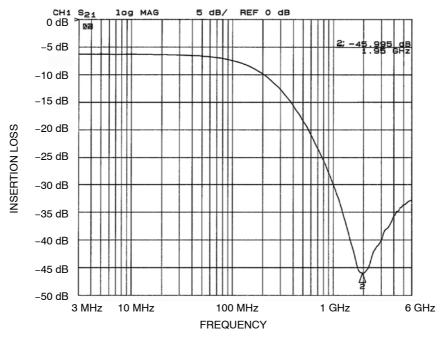


Figure 11. Insertion Loss vs. Frequency (FILTER1 Input to GND, CM1630-08DE)

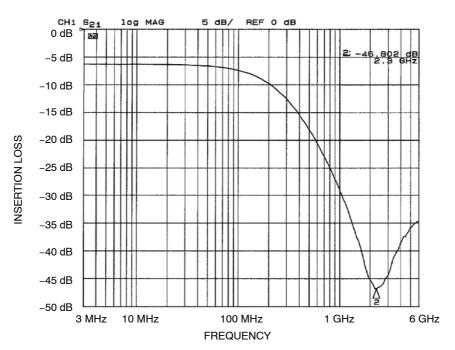


Figure 12. Insertion Loss vs. Frequency (FILTER2 Input to GND, CM1630-08DE)

PERFORMANCE INFORMATION (Cont'd)

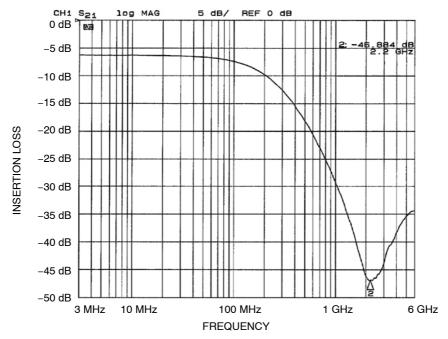


Figure 13. Insertion Loss vs. Frequency (FILTER3 Input to GND, CM1630-08DE)

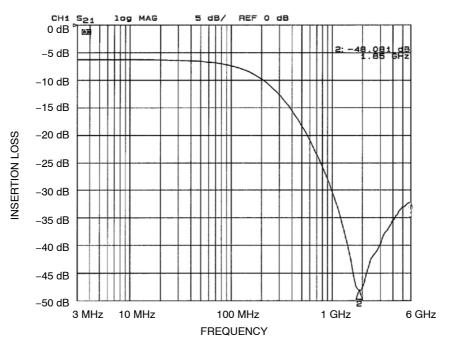


Figure 14. Insertion Loss vs. Frequency (FILTER4 Input to GND, CM1630-08DE)

PERFORMANCE INFORMATION (Cont'd)

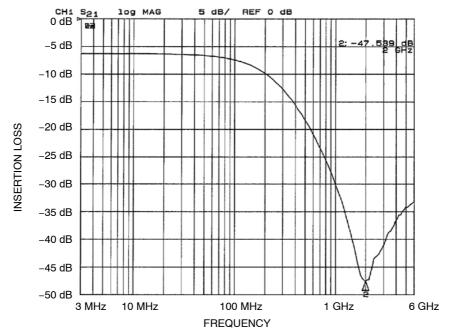


Figure 15. Insertion Loss vs. Frequency (FILTER5 Input to GND, CM1630-08DE)

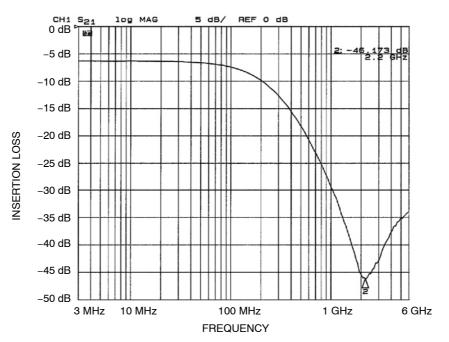


Figure 16. Insertion Loss vs. Frequency (FILTER6 Input to GND, CM1630-08DE)

PERFORMANCE INFORMATION (Cont'd)

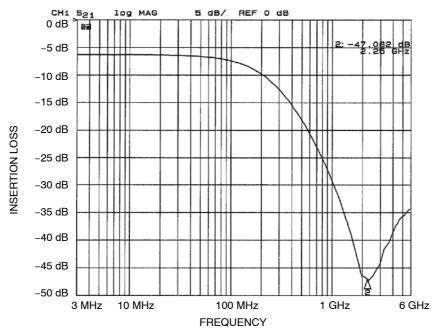


Figure 17. Insertion Loss vs. Frequency (FILTER7 Input to GND, CM1630-08DE)

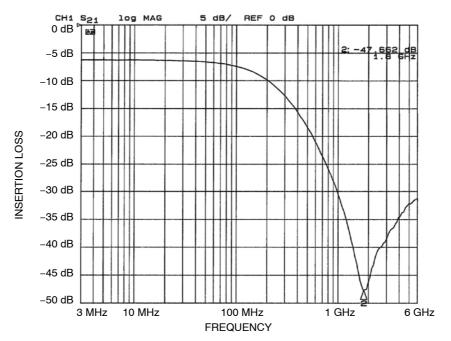


Figure 18. Insertion Loss vs. Frequency (FILTER8 Input to GND, CM1630-08DE)

PERFORMANCE INFORMATION (Cont'd)

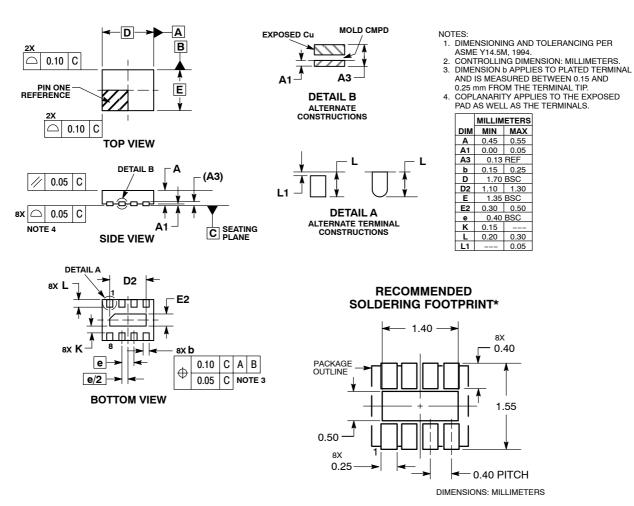
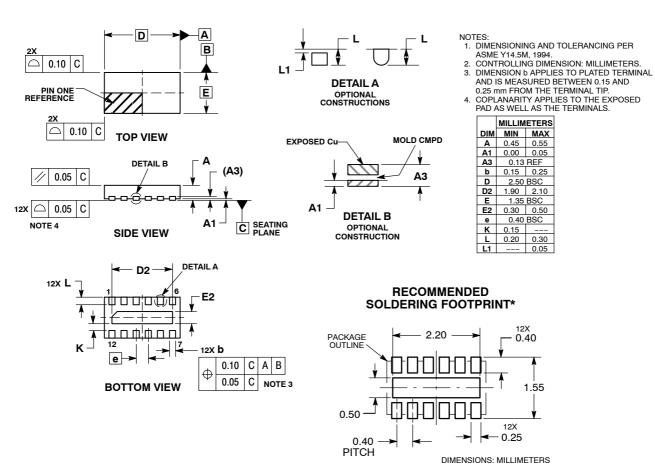


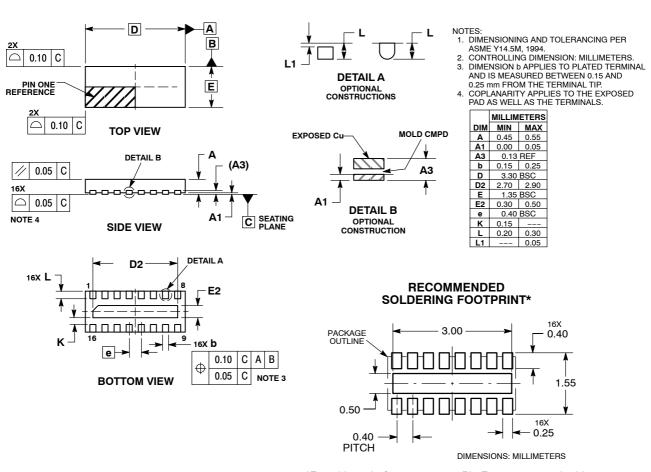
Figure 19. Filter Capacitance vs. Input Voltage (normalized to capacitance at 2.5 V DC and 25°C)

PACKAGE DIMENSIONS


UDFN8, 1.7x1.35, 0.4P CASE 517BC-01 ISSUE O

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS


UDFN12, 2.5x1.35, 0.4P CASE 517BD-01 ISSUE O

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

UDFN16, 3.3x1.35, 0.4P CASE 517BE-01 ISSUE O

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agosciated with such unintended or unauthorized use patent shall claims and so for the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for seale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative