

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

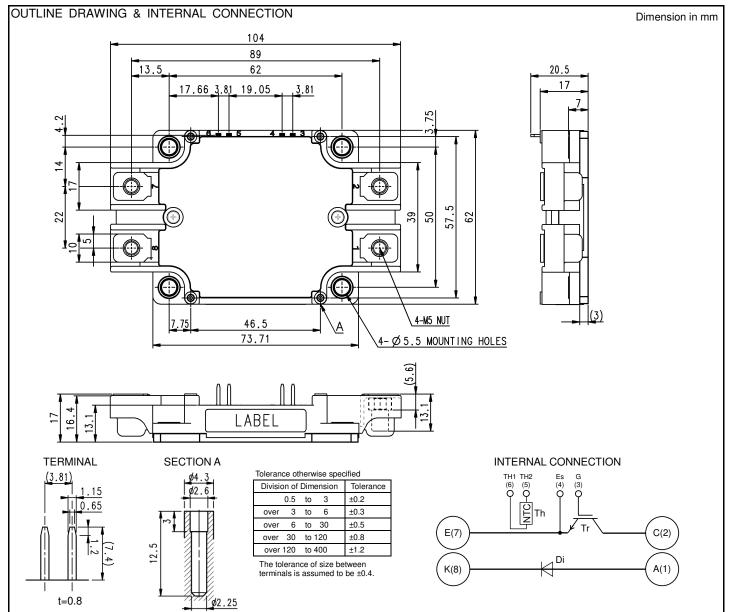
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

<IGBT Modules>

CM200EXS-34SA

HIGH POWER SWITCHING USE INSULATED TYPE



Brake-chopper

- Flat base Type
- Copper base plate (non-plating)
- •Tin plating pin terminals
- •RoHS Directive compliant
- •Recognized under UL1557, File E323585

APPLICATION

Brake

1

<IGBT Modules>

CM200EXS-34SA

HIGH POWER SWITCHING USE

INSULATED TYPE

MAXIMUM RATINGS (T_j=25 °C, unless otherwise specified)

IGBT PART

Symbol	Item	Conditions	Rating	Unit
V _{CES}	Collector-emitter voltage	G-E short-circuited	1700	V
V_{GES}	Gate-emitter voltage	C-E short-circuited	± 20	V
Ic	Collector current	DC, T _C =125 °C (Note1, 3)	200	۸
I _{CRM}	Collector current	Pulse, Repetitive (Note2)	400	Α
P _{tot}	Total power dissipation	T _C =25 °C (Note1, 3)	2000	W

DIODE PART

Symbol	Item	Conditions	Rating	Unit
V_{RRM}	Repetitive peak reverse voltage	-	1700	V
I _F	Forward current	DC (Note1)	200	۸
I _{FBM}	Forward current	Pulse, Repetitive (Note2)	400	Α

MODULE

Symbol	Item	Conditions	Rating	Unit
V _{isol}	Isolation voltage	Terminals to base plate, RMS, f=60 Hz, AC 1 min	4000	V
T _{jmax}	Maximum junction temperature	Instantaneous event (overload)	175	°C
T _{Cmax}	Maximum case temperature	(Note3)	125	C
T _{jop}	Operating junction temperature	Continuous operation (under switching)	-40 ~ +150	°C
T _{stg}	Storage temperature	-	-40 ~ +125	C

ELECTRICAL CHARACTERISTICS (T_j =25 °C, unless otherwise specified)

IGBT PART

Cumbal	Item	Conditions			Limits		Unit
Symbol	item	Conditions		Min.	Тур.	Max.	Unit
I _{CES}	Collector-emitter cut-off current	V _{CE} =V _{CES} , G-E short-circuited		1	-	1.0	mA
I _{GES}	Gate-emitter leakage current	V _{GE} =V _{GES} , C-E short-circuited		-	-	0.5	μA
$V_{GE(th)}$	Gate-emitter threshold voltage	I _C =20 mA, V _{CE} =10 V		5.4	6.0	6.6	V
		I _C =200 A, V _{GE} =15 V,	T _j =25 °C	-	2.00	2.50	
V _{Cesat}		Refer to the figure of test circuit.	T _j =125 °C	-	2.20	-	V
(Terminal)	Callacter are the restriction valters	(Note5)	T _j =150 °C	-	2.25	-	
	Collector-emitter saturation voltage I _C =200 A,	I _C =200 A,	T _j =25 °C	-	1.90	2.40	
V _{Cesat}			T _j =125 °C	-	2.10	-	V
(Chip)			T _j =150 °C	1	2.15	-	1
Cies	Input capacitance			-	-	53	
Coes	Output capacitance	V _{CE} =10 V, G-E short-circuited		ı	-	4.3	nF
C _{res}	Reverse transfer capacitance			-	-	0.97	
Q _G	Gate charge	V _{CC} =1000 V, I _C =200 A, V _{GE} =15 V		-	1100	-	nC
t _{d(on)}	Turn-on delay time	V 1000 V L 200 A V 115 V		-	-	400	
t _r	Rise time	V_{CC} =1000 V, I_{C} =200 A, V_{GE} =±15 V,		-	-	100	
t _{d(off)}	Turn-off delay time	B. O.O. Individual land		-	-	700	ns
tf	Fall time	$R_{G}=0 \Omega$, Inductive load		-	-	600	
Eon	Turn-on switching energy per pulse	V _{CC} =1000 V, I _C =I _E =200 A,		-	28	-	
E _{off}	Turn-off switching energy per pulse	$V_{GE}=\pm 15 \text{ V}, R_{G}=0 \Omega, T_{j}=150 \text{ °C},$		-	52	-	mJ
R _{CC'+EE'}	Internal lead resistance	Main terminals-chip, per switch, T _C =25 °C (Note3)		-	-	2.0	mΩ
r _g	Internal gate resistance	-		-	2.5	-	Ω

Publication Date: February 2015

HIGH POWER SWITCHING USE INSULATED TYPE

ELECTRICAL CHARACTERISTICS (cont.; T_j =25 °C, unless otherwise specified)

DIODE PART

Curalaal	lt	Conditions		Limits			Link
Symbol	Item	Conditions		Min.	Тур.	Max.	Unit
I _{RRM}	Reverse current	V _R =V _{RRM}		-	-	1.0	mA
	I _F =200 A,	T _j =25 °C	-	4.1	5.3		
V _F		Refer to the figure of test circuit.	T _j =125 °C	-	2.9	-	V
(Terminal)	′	(Note5)	T _j =150 °C	-	2.7	-	
.,	Emitter-collector voltage	I _F =200 A,	T _j =25 °C	-	4.0	5.2	
V _F			T _j =125 °C	-	2.8	-	V
(Chip)		(Note5)	T _j =150 °C	-	2.6	-	
t _{rr}	Reverse recovery time	V _{CC} =1000 V, I _F =200 A, V _{GE} =±15 V,		-	-	300	ns
Q _{rr}	Reverse recovery charge	R _G =0 Ω, Inductive load		-	8.0	-	μC
E _{rr}	Reverse recovery energy per pulse	V_{CC} =1000 V, I_F =200 A, V_{GE} =±15 V, R_G =0 Ω , T_j =150 °C, Inductive load		-	42	-	mJ

NTC THERMISTOR PART

Symbol	Item	Conditions	Limits			Unit
Syllibol	item	Conditions	Min.	Тур.	Max.	Ullit
R ₂₅	Zero-power resistance	T _C =25 °C (Note3)	4.85	5.00	5.15	kΩ
ΔR/R	Deviation of resistance	R ₁₀₀ =493 Ω, T _C =100 °C (Note3)	-7.3	-	+7.8	%
B _(25/50)	B-constant	Approximate by equation (Note5)	-	3375	-	K
P ₂₅	Power dissipation	T _C =25 °C (Note3)	-	-	10	mW

THERMAL RESISTANCE CHARACTERISTICS

Symbol	Itom	Conditions	Limits		Limits	Unit
Symbol	ltem	Conditions	Min.	Тур.	Max.	Offit
$R_{th(j-c)Q}$	Thermal registance	Junction to case, per IGBT (Note3)	-	-	0.075	K/W
R _{th(j-c)D}	Thermal resistance	Junction to case, per DIODE (Note3)	-	-	0.12	r\/vv
R _{th(c-s)}	Contact thermal resistance	Case to heat sink, per 1 module, Thermal grease applied (Note3, 6)	-	25	-	K/kW

MECHANICAL CHARACTERISTICS

Symbol	Item	Conditions			Limits		Unit N·m mm
Syllibol	Item	Conditions		Min.	Тур.	Max.	Ullit
M _t	Mounting torque	Main terminals	M 5 screw	2.5	3.0	3.5	Nm
Ms	Mounting torque	Mounting to heat sink	M 5 screw	2.5	3.0	3.5	IN∙M
d	Creepage distance	Terminal to terminal		20.6	-	-	mm
d _s	Creepage distance	Terminal to base plate		17	-	-	
4	Classenes distance	Terminal to terminal		12	-	-	mm
da	Clearance distance	Terminal to base plate		10.6	-	-	111111
m	mass	-		-	210	-	g
ec	Flatness of base plate	On the centerline X, Y (Note7)		-100	-	+100	μm

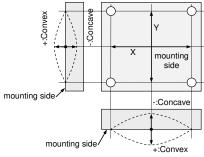
Publication Date: February 2015

HIGH POWER SWITCHING USE

INSULATED TYPE

This product is compliant with the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) directive 2011/65/EU.

Note1. Junction temperature (T_j) should not increase beyond T_{jmax} rating.


- 2. Pulse width and repetition rate should be such that the device junction temperature (T_i) dose not exceed T_{imax} rating.
- 3. Case temperature (T_C) and heat sink temperature (T_s) are defined on the each surface (mounting side) of base plate and heat sink just under the chips. Refer to the figure of chip location.
- 4. Pulse width and repetition rate should be such as to cause negligible temperature rise.

5.
$$B_{(25/50)} = ln(\frac{R_{25}}{R_{50}})/(\frac{1}{T_{25}} - \frac{1}{T_{50}})$$

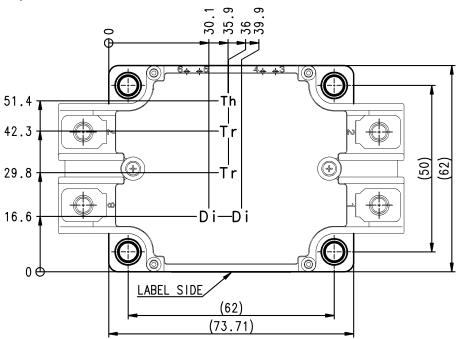
 R_{25} : resistance at absolute temperature T_{25} [K]; T_{25} =25 [°C]+273.15=298.15 [K]

 R_{50} : resistance at absolute temperature T_{50} [K]; T_{50} =50 [°C]+273.15=323.15 [K]

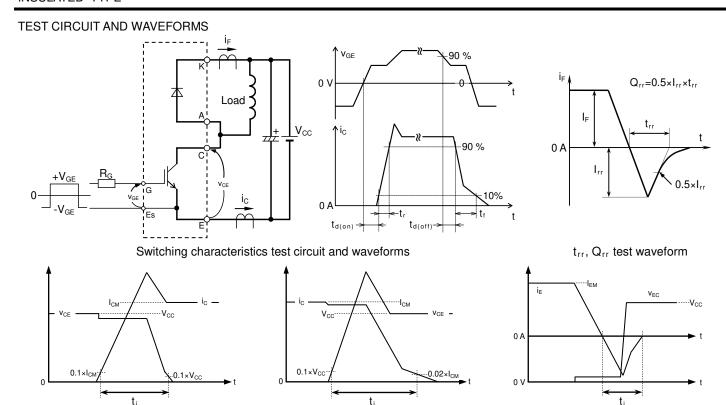
- 6. Typical value is measured by using thermally conductive grease of λ =0.9 W/(m·K).
- 7. The base plate (mounting side) flatness measurement points (X, Y) are as follows of the following figure.

8. Use the following screws when mounting the printed circuit board (PCB) on the standoffs.

"φ2.6×10 or φ2.6×12, B1 tapping screw"

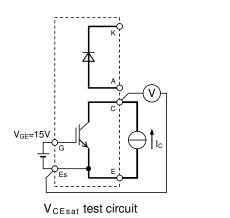

The length of the screw depends on the thickness (t1.6~t2.0) of the PCB.

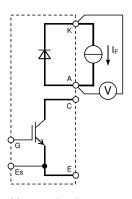
RECOMMENDED OPERATING CONDITIONS


Symbol	Itam	Conditions			Unit	
Symbol	ltem	Conditions	Min.	Тур.	Max.	Offit
Vcc	(DC) Supply voltage	Applied across C-E/A-K	-	1000	1200	V
V _{GEon}	Gate (-emitter drive) voltage	Applied across G-Es	13.5	15.0	16.5	V
R _G	External gate resistance	-	0	-	38	Ω

CHIP LOCATION (Top view)

Dimension in mm, tolerance: ±1 mm


Tr: IGBT, Di: DIODE, Th: NTC thermistor


IGBT Turn-off switching energy Turn-on / Turn-off switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing)

TEST CIRCUIT

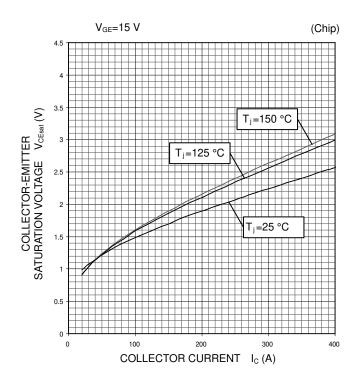
IGBT Turn-on switching energy

Ver.1.3

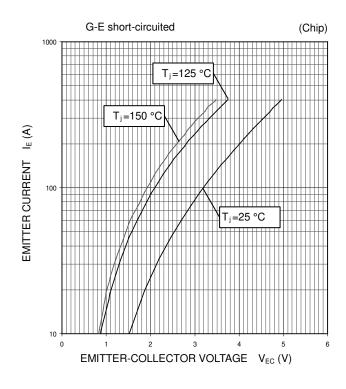
DIODE Reverse recovery energy


V_F test circuit

HIGH POWER SWITCHING USE INSULATED TYPE


PERFORMANCE CURVES

IGBT / DIODE PART

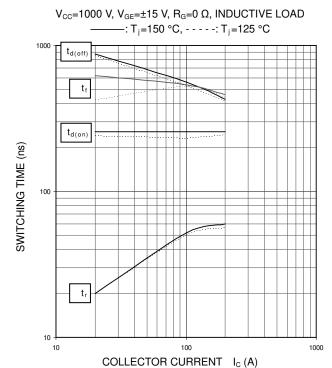

OUTPUT CHARACTERISTICS (TYPICAL)

COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

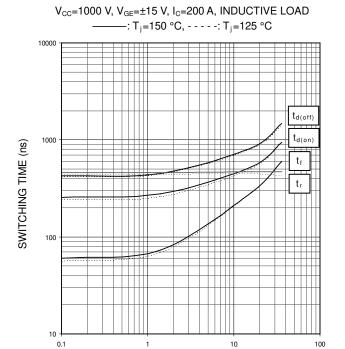
DIODE FORWARD CHARACTERISTICS (TYPICAL)

Publication Date: February 2015

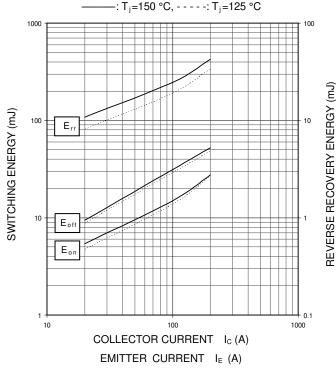
Ver.1.3


6

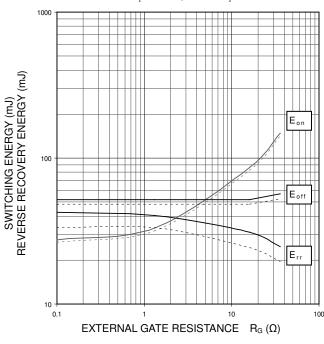
HIGH POWER SWITCHING USE INSULATED TYPE


PERFORMANCE CURVES

IGBT / DIODE PART


HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

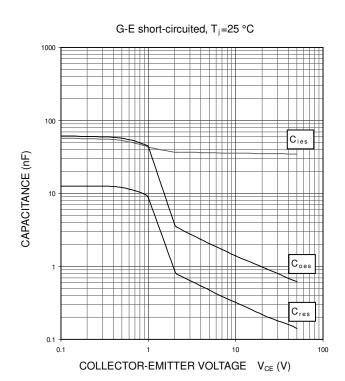
HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)



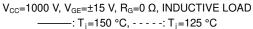
HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) V_{CC}=1000 V, V_{GE}=±15 V, R_G=0 Ω, INDUCTIVE LOAD, PER PULSE

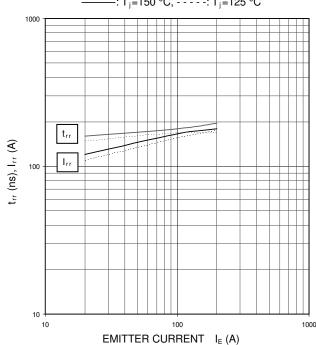
HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) $V_{CC}=1000 \text{ V}, V_{GE}=\pm15 \text{ V}, I_{C}=200 \text{ A},$ INDUCTIVE LOAD, PER PULSE ———: $T_1=150 \text{ °C}, ----: T_1=125 \text{ °C}$

EXTERNAL GATE RESISTANCE $R_{G}(\Omega)$

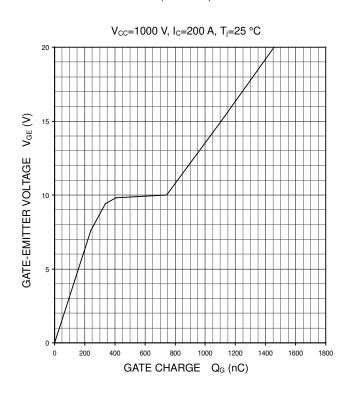

7

HIGH POWER SWITCHING USE INSULATED TYPE

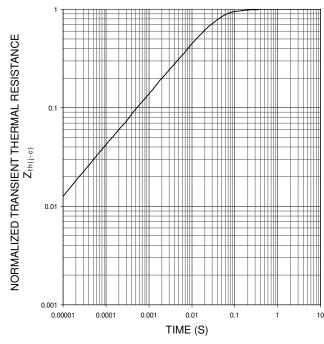

PERFORMANCE CURVES


IGBT / DIODE PART

CAPACITANCE CHARACTERISTICS (TYPICAL)



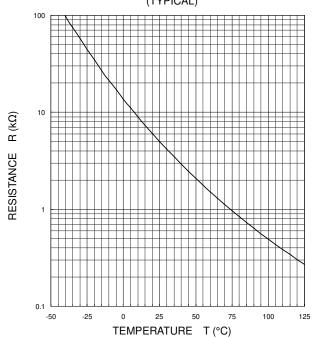
DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL)


GATE CHARGE CHARACTERISTICS (TYPICAL)

Ver.1.3

TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM)

Single pulse, $T_{C}{=}25~^{\circ}C$ $R_{th(j\text{-}c)Q}{=}0.075$ K/W, $R_{th(j\text{-}c)D}{=}0.12$ K/W



HIGH POWER SWITCHING USE INSULATED TYPE

PERFORMANCE CURVES

NTC thermistor part

TEMPERATURE CHARACTERISTICS (TYPICAL)

Publication Date : February 2015

HIGH POWER SWITCHING USE INSULATED TYPE

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- •Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (www.MitsubishiElectric.com/semiconductors/).

- •When using any or all of the information contained in these materials, including product data, diagrams. charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- •Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- •If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

© 2013-2015 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED.

Publication Date: February 2015 10 Ver.1.3