imall

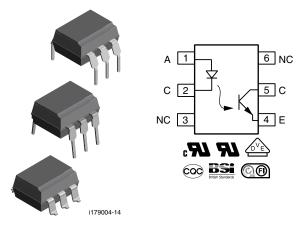
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



CNY117F

Vishay Semiconductors

Optocoupler, Phototransistor Output, no Base Connection, 110 °C Rated

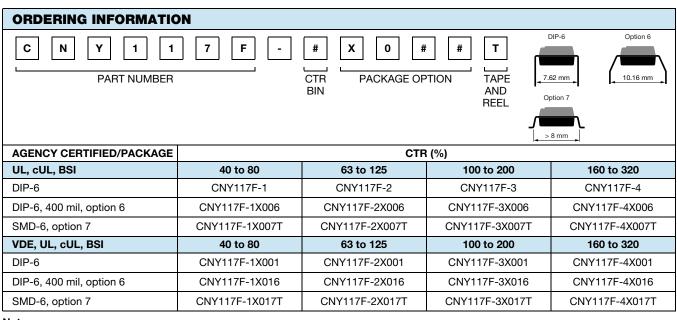
DESCRIPTION

The CNY117F is a 110 °C rated optocoupler consisting of a gallium arsenide infrared emitting diode optically coupled to a silicon planar phototransistor detector in a plastic plug-in DIP-6 package.

The coupling device is suitable for signal transmission between two electrically separated circuits. The potential difference between the circuits to be coupled is not allowed to exceed the maximum permissible reference voltages.

In contrast to the CNY117 series, the base terminal of the F type is not connected, resulting in a substantially improved common-mode interference immunity.

FEATURES


- Operating temperature from -55 °C to +110 °C
- · No base terminal connection for improved common mode interface immunity
- · Long term stability
- Industry standard dual-in-line package
- COMPLIANT • Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- AC adapter
- SMPS
- PLC
- Factory automation
- · Game consoles

AGENCY APPROVALS

- UL file no. E52744
- cUL tested to CSA 22.2 bulletin 5A
- DIN EN 60747-5-5 (VDE 0884-5), available with option 1
- BSI: EN 60065, EN 60950-1
- FIMKO EN60950
- CQC GB8898-2011

Note

Additional options may be possible, please contact sales office.

1

www.vishay.com

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified)									
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT					
INPUT									
Reverse voltage		V _R	6.0	V					
DC forward current		I _F	60	mA					
Surge forward current	t ≤ 10 µs	I _{FSM}	2.5	A					
Power dissipation		P _{diss}	100	mW					
OUTPUT									
Collector emitter breakdown voltage		BV _{CEO}	70	V					
Collector current		Ι _C	50	mA					
Collector peak current	$t_p/T = 0.5, t_p \le 10 \text{ ms}$	I _{CM}	100	mA					
Output power dissipation		P _{diss}	150	mW					
COUPLER									
Isolation test voltage between emitter and detector	t = 1 min	V _{ISO}	5000	V _{RMS}					
Storage temperature range		T _{stg}	-55 to +150	°C					
Ambient temperature range		T _{amb}	-55 to +110	°C					
Soldering temperature ⁽¹⁾	2 mm from case, \leq 10 s	T _{sld}	260	°C					
Total power dissipation		P _{diss}	250	mW					

Notes

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
maximum ratings for extended periods of the time can adversely affect reliability.

⁽¹⁾ Refer to reflow profile for soldering conditions for surface mounted devices (SMD). Refer to wave profile for soldering conditions for through hole devices (DIP).

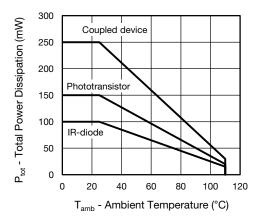


Fig. 1 - Total Power Dissipation vs. Ambient Temperature

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT	
INPUT								
Forward voltage	$I_F = 60 \text{ mA}$		V _F		1.39	1.65	V	
Breakdown voltage	I _R = 10 μA		V _{BR}	6.0			V	
Reverse current	V _R = 6.0 V		I _R		0.01	10	μA	
Capacitance	V _R = 0 V, f = 1.0 MHz		Co		25		pF	
OUTPUT								
Collector emitter capacitance	V _{CE} = 5.0 V, f = 1.0 MHz		C _{CE}		5.2		pF	
Base collector capacitance	V _{CE} = 5.0 V, f = 1.0 MHz		C _{BC}		6.5		pF	
Emitter base capacitance	V _{CE} = 5.0 V, f = 1.0 MHz		C _{EB}		7.5		pF	

Rev. 1.8, 08-Jan-14

2

Document Number: 83598

www.vishay.com

Vishay Semiconductors

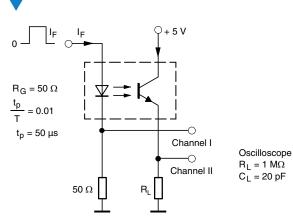
ELECTRICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT	
COUPLER								
Collector emitter, saturation voltage	$I_F = 10 \text{ mA}, I_C = 2.5 \text{ mA}$		V _{CEsat}		0.25	0.4	V	
Coupling capacitance			CC		0.6		pF	
Collector emitter, leakage current	V _{CE} = 10 V	CNY117F-1	I _{CEO}		2.0	50	nA	
		CNY117F-2	I _{CEO}		2.0	50	nA	
		CNY117F-3	I _{CEO}		5.0	100	nA	
		CNY117F-4	I _{CEO}		5.0	100	nA	

Note

 Minimum and maximum values were tested requierements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements.

CURRENT TRANSFER RATIO (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Current transfer ratio	I _F = 10 mA I _F = 1.0 mA	CNY117F-1	CTR	40		80	%	
		CNY117F-2	CTR	63		125	%	
		CNY117F-3	CTR	100		200	%	
		CNY117F-4	CTR	160		320	%	
		CNY117F-1	CTR	13	30		%	
		CNY117F-2	CTR	22	45		%	
		CNY117F-3	CTR	34	70		%	
		CNY117F-4	CTR	56	90		%	

Note

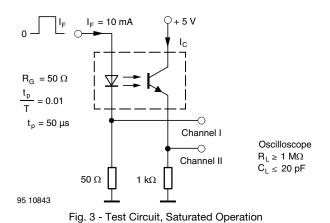

• Current transfer ratio I_C/I_F at V_{CE} = 5.0 V, 25 °C and collector emitter leakage current by dash number.

SWITCHING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT	
LINEAR OPERATION (with	out saturation)	<u>.</u>						
Turn-on time	$I_{F} = 10 \text{ mA}, \text{ V}_{CC} = 5.0 \text{ V}, \\ \text{R}_{L} = 75 \ \Omega$		t _{on}		3.0		μs	
Rise time	$I_{F} = 10 \text{ mA}, \text{ V}_{CC} = 5.0 \text{ V}, \\ R_{L} = 75 \Omega$		t _r		2.0		μs	
Turn-off time	$I_{F} = 10 \text{ mA}, \text{ V}_{CC} = 5.0 \text{ V}, \\ \text{R}_{L} = 75 \ \Omega$		t _{off}		2.3		μs	
Fall time	$I_{F} = 10 \text{ mA}, \text{ V}_{CC} = 5.0 \text{ V}, \\ \text{R}_{L} = 75 \ \Omega$		t _f		2.0		μs	
Cut-off frequency	$I_{F} = 10 \text{ mA}, \text{ V}_{CC} = 5.0 \text{ V}, \\ \text{R}_{L} = 75 \ \Omega$		f _{CO}		110		kHz	
SWITCHING OPERATION	(with saturation)	<u>.</u>						
	I _F = 20 mA	CNY117F-1	t _{on}		3.0		μs	
Turn-on time	I _F = 10 mA	CNY117F-2	t _{on}		4.2		μs	
	$I_F = 10 \text{ mA}$	CNY117F-3	t _{on}		4.2		μs	
	I _F = 5.0 mA	CNY117F-4	t _{on}		6.0		μs	
	I _F = 20 mA	CNY117F-1	t _r		2.0		μs	
Rise time	I _F = 10 mA	CNY117F-2	t _r		3.0		μs	
	IF = 10 IIIA	CNY117F-3	t _r		3.0		μs	
	I _F = 5.0 mA	CNY117F-4	t _r		4.6		μs	
	I _F = 20 mA	CNY117F-1	t _{off}		18		μs	
Turn-off time	I _F = 10 mA	CNY117F-2	t _{off}		23		μs	
rum-on ume	IF = 10 IIIA	CNY117F-3	t _{off}		23		μs	
	I _F = 5.0 mA	CNY117F-4	t _{off}		25		μs	
Fall time	I _F = 20 mA	CNY117F-1	t _f		11		μs	
	I _F = 10 mA	CNY117F-2	t _f		14		μs	
		CNY117F-3	t _f		14		μs	
	I _F = 5.0 mA	CNY117F-4	t _f		15		μs	

Rev. 1.8, 08-Jan-14

3

Document Number: 83598



www.vishay.com

95 10804-3

ISHA

Fig. 2 - Test Circuit, Non-Saturated Operation

 \mathbf{I}_{F} 0 t_p t $I_{\rm C}$ 100 % 90 % 10 % 0 t tf t. t_{on} $egin{aligned} t_p \ t_d \ t_r \ t_{on} \ (= t_d + t_r) \end{aligned}$ Pulse duration Storage time t_s Delay time Fall time tf Turn-off time Rise time $= t_s + t_f$ L^{off} Turn-on time 96 11698

Fig. 4 - Switching Times

SAFETY AND INSULATI	ON RATINGS			
PARAMETER		SYMBOL	VALUE	UNIT
MAXIMUM SAFETY RATINGS				
Output safety power		P _{SO}	700	mW
Input safety current		I _{SI}	400	mA
Safety temperature		T _{SI}	175	°C
Comparative tracking index		CTI	175	
INSULATION RATED PARAMET	ERS			
Maximum withstanding isolation	voltage	V _{ISO}	5000	V _{RMS}
Maximum transient isolation voltage		V _{IOTM}	8000	V _{peak}
Maximum repetitive peak isolation	n voltage	V _{IORM}	890	V _{peak}
Insulation resistance	$T_{amb} = 25 \ ^{\circ}C, \ V_{DC} = 500 \ V$	R _{IO}	≥ 10 ¹²	Ω
Isolation resistance	$T_{amb} = 100 \text{ °C}, V_{DC} = 500 \text{ V}$	R _{IO}	≥ 10 ¹¹	Ω
Climatic classification (according	to IEC 68 part 1)		55/115/21	
Environment (pollution degree in a	accordance to DIN VDE 0109)		2	
Croopaga distance	Standard DIP-4		≥7	mm
Creepage distance	SMD		≥7	mm
Clearance distance	Standard DIP-4		≥8	mm
Clearance distance	SMD		≥8	mm
Insulation thickness		DTI	≥0.4	mm

Note

• As per DIN EN 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits.

Rev. 1.8, 08-Jan-14

4

TYPICAL CHARACTERISTICS ($T_{amb} = 25$ °C, unless otherwise specified)

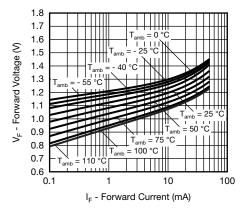


Fig. 5 - Forward Voltage vs. Forward Current

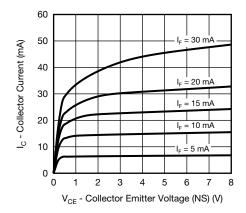


Fig. 6 - Collector Current vs. Collector Emitter Voltage (NS)

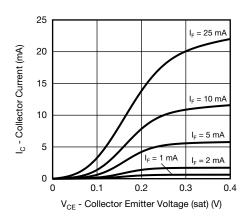


Fig. 7 - Collector Current vs. Collector Emitter Voltage (sat)

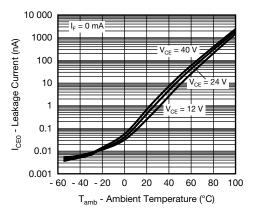


Fig. 8 - Leakage Current vs. Ambient Temperature

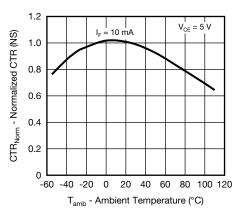


Fig. 9 - Normalized CTR (NS) vs. Ambient Temperature

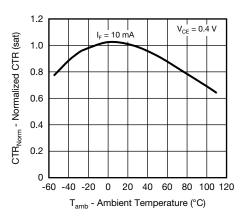


Fig. 10 - Normalized CTR (sat) vs. Ambient Temperature

Rev. 1.8, 08-Jan-14

5 questions, contact: optocoupleranswers@ Document Number: 83598

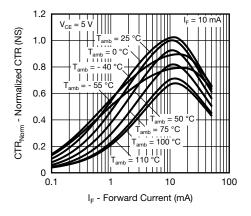


Fig. 11 - Normalized CTR (NS) vs. Forward Current

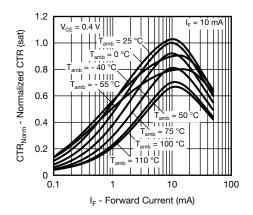


Fig. 12 - Normalized CTR (sat) vs. Forward Current

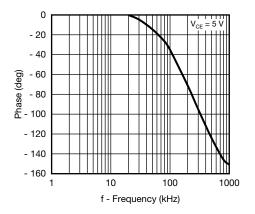


Fig. 13 - CTR Frequency vs. Phase Angle

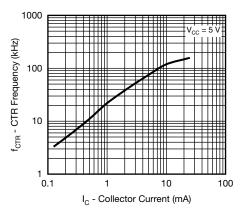


Fig. 14 - CTR -3 dB Frequency vs. Collector Current

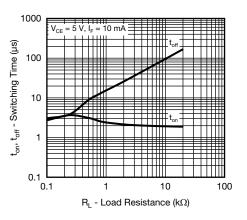
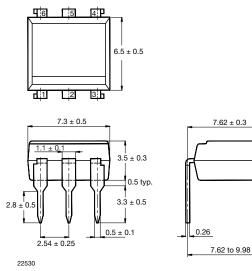
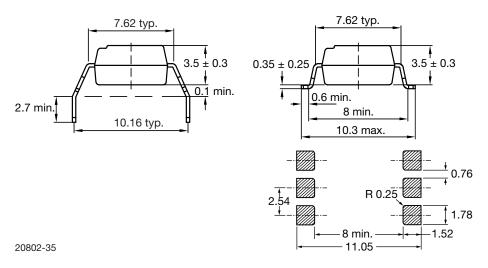



Fig. 15 - Switching Time vs. Load Resistance

6

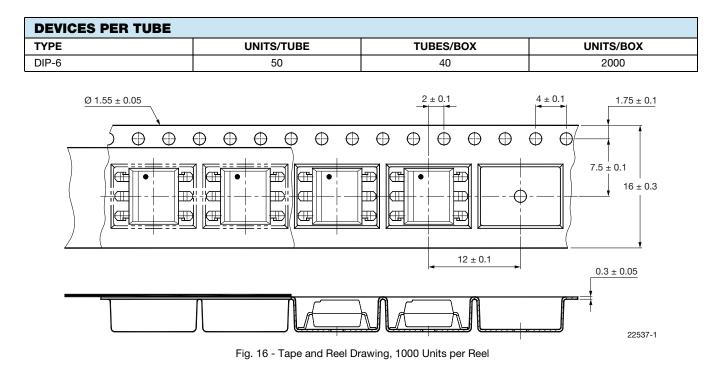


PACKAGE DIMENSIONS in millimeters

Option 6

Option 7

PACKAGE MARKING (Example of CNY117F-2X017T)



Notes

- VDE logo is only marked on option 1 parts. Option information is not marked on the part.
- Tape and reel suffix (T) is not part of the package marking.

TUBE AND TAPE INFORMATION

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.