

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

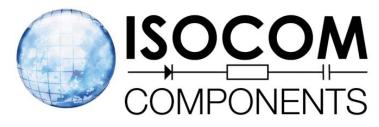
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com


Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CNY17F-1X, CNY17F-2X, CNY17F-3X, CNY17F-4X CNY17F-1, CNY17F-2, CNY17F-3, CNY17F-4

NON-BASE LEAD OPTICALLY COUPLED ISOLATOR PHOTOTRANSISTOR OUTPUT

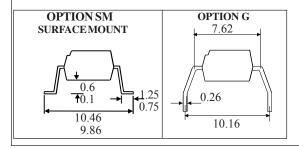
APPROVALS

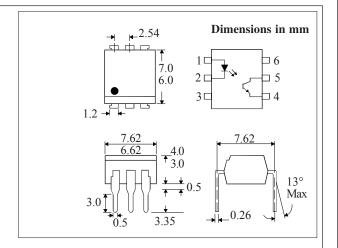
UL recognised, File No. E91231 Package Code GG

'X'SPECIFICATIONAPPROVALS

- VDE 0884 in 3 available lead forms:-
 - -STD
 - -G form
 - SMD approved to CECC 00802
- Certified to EN60950 by Nemko-Certificate No. P01102464

DESCRIPTION


The CNY17F-1, CNY17F-2, CNY17F-3, CNY17F-4 series of optically coupled isolators consist of infrared light emitting diode and NPN silicon photo transistor in a standard 6 pin dual in line plastic package with the base pin unconnected.


FEATURES

- Options:-
 - 10mm lead spread add G after part no. Surface mount - add SM after part no. Tape&reel - add SMT&R after part no.
- $\begin{array}{l} \text{High BV}_{\text{CEO}}(70\text{V min}) \\ \text{High Isolation Voltage } (5.3\text{kV}_{\text{RMS}}, 7.5\text{kV}_{\text{PK}}) \end{array}$
- Base pin unconnected for improved noise immunity in high EMI environment

APPLICATIONS

- DC motor controllers
- Industrial systems controllers
- Signal transmission between systems of different potentials and impedances

ABSOLUTEMAXIMUMRATINGS (25°C unless otherwise specified)

Storage Temperature ___ _ -55°C to +150°C Operating Temperature ___ $-55^{\circ}\text{C to} + 100^{\circ}\text{C}$ Lead Soldering Temperature (1/16 inch (1.6mm) from case for 10 secs) 260°C

INPUTDIODE

Forward Current	60mA
Reverse Voltage	6V
Power Dissipation	105mW

OUTPUTTRANSISTOR

Collector-emitter Voltage BV _{CEO}	70V
Emitter-collector Voltage BV _{ECO}	6V
Collector Current	50mA
Power Dissipation	160mW

POWER DISSIPATION

Total Power Dissipation _ 200mW (derate linearly 2.67mW/°C above 25°C)

ISOCOM COMPONENTS LTD

Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road Hartlepool, TS25 1UD England Tel: (01429)863609 Fax: (01429)863581 e-mail sales@isocom.co.uk http://www.isocom.com

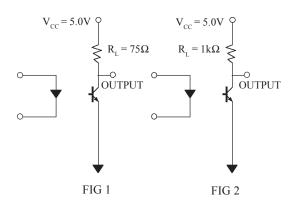
26/11/08 DB92179

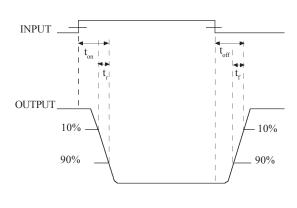
ELECTRICAL CHARACTERISTICS ($\rm T_A = 25^{\circ}C$ Unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V _F)		1.2	1.65	V	$I_F = 60 \text{mA}$
	$Reverse Current (I_R)$			10	μΑ	$V_R = 6V$
Output	Collector-emitter Breakdown (BV _{CEO}) (note 2)	70			V	$I_{c} = 1 \text{mA}$
	$\begin{aligned} & Emitter-collector Breakdown (BV_{ECO}) \\ & Collector-emitter Dark Current (I_{CEO}) \end{aligned}$	6		50	V nA	$I_{E} = 100\mu A$ $V_{CE} = 10V$
Coupled	$\begin{array}{c} \text{Current Transfer Ratio (CTR) (Note 2)} \\ \text{CNY17F-1} \\ \text{CNY17F-2} \\ \text{CNY17F-3} \\ \text{CNY17F-4} \\ \end{array}$ $\begin{array}{c} \text{Collector-emitter Saturation Voltage V}_{\text{CE(SAT)}} \\ \text{Input to Output Isolation Voltage V}_{\text{ISO}} \\ \\ \text{Input-output Isolation Resistance R}_{\text{ISO}} \end{array}$	40 63 100 160 5300 7500 5x10 ¹⁰		80 125 200 320 0.4	% % % % % % % % % % % % % % % % % % %	$10\text{mA I}_{F}, 5\text{V V}_{CE}$ 10mA I_{C} See note 1 See note 1 $V_{IO} = 500\text{V (note 1)}$

Note 1 Measured with input leads shorted together and output leads shorted together.

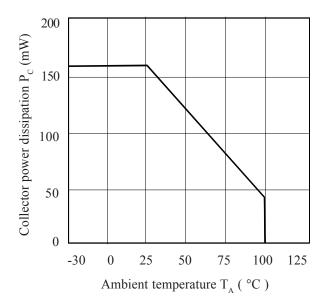
Note 2 Special Selections are available on request. Please consult the factory.

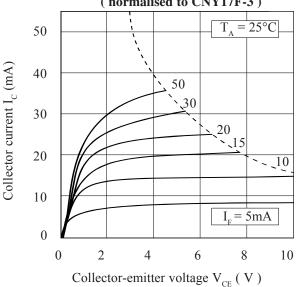

TYPICAL SWITCHING CHARACTERISTICS


1. Linear Operation (without saturation) Fig 1. $I_F = 10 mA, \ V_{CC} = 5 V, \ R_L = 75 \Omega$

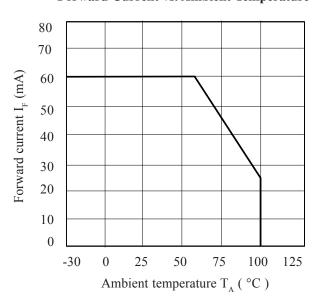
		UNITS
Turn-on Time t _{on}	3.0	μs
Rise Time t _r	2.0	μs
Turn-off Time t_{off}	2.3	μs
Fall Time t _f	2.0	μs
Cut-off Frequency F _{co}	250	kHz

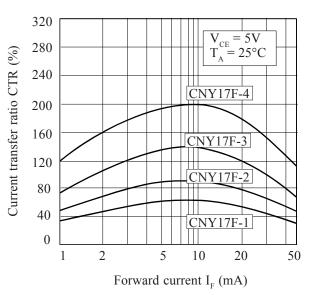
2. Switching Operation (with saturation) Fig 2 $V^{}_{CC}$ = 5V, $R^{}_{L}$ = $1k\Omega$

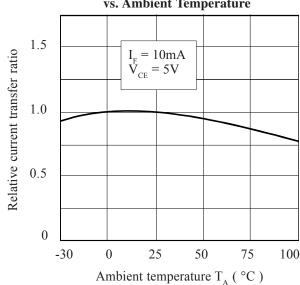

GROUP	-1 (I _F =20mA)	-2 and -3 (I _F =10mA)	- 4 (I _F =5mA)	UNITS
Turn-on Time t _{on}	3.0	4.2	6.0	μs
Rise Time t _r	2.0	3.0	4.6	μs
Turn-off Time t _{off}	18	23	25	μs
Fall Time t _f	11	14	15	μs
V_{CESAT}	≤ 0.4			V

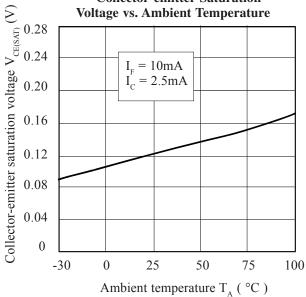


DB92179


Collector Power Dissipation vs. Ambient Temperature


Collector Current vs. Collector-emitter Voltage (normalised to CNY17F-3)


Forward Current vs. Ambient Temperature


Current Transfer Ratio vs. Forward Current

Relative Current Transfer Ratio vs. Ambient Temperature

Collector-emitter Saturation

DB92179