
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

Core429 v3.11

Handbook

Core429 v3.11 Handbook 2

Revision History
Date Revision Change

August 2015 5 Updated the version v3.11 and applied new

template.

Confidentiality Status
This is a non-confidential document.

Table of Contents

Core429 v3.11 Handbook 3

Table of Contents

Preface ...5

About this Document .. 5

Intended Audience .. 5

References... 5

Introduction ..6

Overview .. 6

Key Features ... 8

Core Version .. 8

Supported Families ... 8

Utilization and Performance .. 8

Memory Requirements ... 10

Functional Block Description ..21

Core429 Overview .. 21

Functional Description.. 21

Clock Requirements ... 22

Line Drivers .. 23

Line Receivers ... 23

Development System ... 23

Operation ...25

Default Mode Operation ... 25

Loopback Interface ... 28

Interface Description ..29

Configuration Parameters .. 29

I/O Signal Descriptions .. 30

Timing Diagrams ...32

CPU Interface Timing for Default Mode .. 32

Tool Flows ...34

License Types ... 34

SmartDesign .. 34

Testbench Operation and Modification ...38

Testbench .. 38

User Test-bench ... 39

Ordering Information..40

Ordering Codes ... 40

Table of Contents

Core429 v3.11 Handbook 4

Appendix A: Testbench Support Routines ..41

VHDL Support ... 41

Verilog Support ... 41

List of Changes..42

Product Support ..43

Customer Service ... 43

Customer Technical Support Center.. 43

Technical Support ... 43

Website .. 43

Contacting the Customer Technical Support Center ... 43

ITAR Technical Support ... 44

Table of Contents

Core429 v3.11 Handbook 5

Preface

About this Document
This handbook provides details about the Core429 DirectCore module, and how to use it.

Intended Audience
FPGA designers using Libero

®
 System-on-Chip (SoC).

References

Microsemi Publications
• SmartFusion2 Microcontroller Subsystem User Guide

Third Party Publications
• http://standards.ieee.org/getieee802/download/802.3-2012_section2.pdf

• http://standards.ieee.org/getieee802/download/802.3-2012_section3.pdf

Table of Contents

Core429 v3.11 Handbook 6

Introduct ion

Overview
Core429 provides a complete Transmitter (Tx) and Receiver (Rx). A typical system implementation

using Core429 is shown in Figure 1.

The core consists of three main blocks: Transmit, Receive, and CPU Interface (Figure 1). Core429

requires connection to an external CPU. The CPU interface configures the transmit and receive control

registers and initializes the label memory. The core interfaces to the ARINC 429 bus through an

external ARINC 429 line driver and line receiver. A detailed description of the Rx and Tx interfaces is

provided in Functional Description.

Glue

Logic
CPU

CPU

Interface

Rx I/F

Tx I/F

Core429

Microsemi FPGA

Figure 1 Typical Core429 System—One Tx and One Rx

External Components
There are two external components required for proper operation of Core429:

• Standard ARINC 429 line driver

• Standard ARINC 429 line receiver

ARINC 429 Overview
ARINC 429 is a two-wire, point-to-point data bus that is application-specific for commercial and

transport aircraft. The connection wires are twisted pairs. Words are 32 bits in length and most

messages consist of a single data word. The specification defines the electrical standard and data

characteristics and protocols.

ARINC 429 uses a unidirectional data bus standard (Tx and Rx are on separate ports) known as the

Mark 33 Digital Information Transfer System (DITS). Messages are transmitted at 12.5, 50 (optional),

or 100 kbps to other system elements that are monitoring the bus messages. The transmitter is always

transmitting either 32-bit data words or the Null state.

Table of Contents

Core429 v3.11 Handbook 7

The ARINC standard supports High, Low, and Null states (Figure 2). A minimum of four Null bits should

be transmitted between ARINC words. No more than 20 receivers and no less than one receiver can be

connected to a single bus (wire pair), though there will normally be more.

Figure 2 ARINC Standard

Figure 3 shows the bit positions of ARINC data.

Figure 3 ARINC Data Bit Positions

Each ARINC word contains five fields:

• Parity

• Sign/Status Matrix

• Data

• Source/Destination Identifiers

• Label

The parity bit is bit 32 (the MSB). SSM is the Sign/Status Matrix and is included as bits 30 and 31. Bits

11 to 29 contain the data. Binary-coded decimal (BCD) and binary encoding (BNR) are common

ARINC data formats. Data formats can also be mixed. Bits 9 and 10 are Source/Destination Identifiers

(SDI) and indicate for which receiver the data is intended. Bits 1 to 8 contain a label (label words)

identifying the data type.

Label words are quite specific in ARINC 429. Each aircraft may be equipped with different electronic

equipment and systems needing interconnection. A large amount of equipment may be involved,

depending on the aircraft. The ARINC specification identifies the equipment ID, a series of digital

identification numbers. Examples of equipment are flight management computers, inertial reference

systems, fuel tanks, tire pressure monitoring systems, and GPS sensors.

Transmission Order
The least significant bit of each byte, except the label, is transmitted first, and the label is transmitted

ahead of the data in each case. The order of the bits transmitted on the ARINC bus is as follows:

8, 7, 6, 5, 4, 3, 2, 1, 9, 10, 11, 12, 13 … 32.

Table of Contents

Core429 v3.11 Handbook 8

Key Features
Core429 supports the following features:

• Supports ARINC specification 429-16

• Configurable up to 16 Rx and 16 Tx channels

• Programmable FIFO depth

• Programmable interrupt generation

• Configurable label memory size

• Selectable data rate on each channel

Core Version
This handbook is for Core429 version 3.11.

Supported Families
• SmartFusion

®
2

• IGLOO
®
2

• IGLOO

• IGLOOe

• IGLOO PLUS

• ProASIC
®
3/E

• Fusion
®

• SmartFusion

• Axcelerator
®

• RTAX™-S

• ProASIC
PLUS®

• ProASIC
®
3

• ProASIC3L

Utilization and Performance
Core429 can be implemented in several Microsemi FPGA devices. Table 1 through Table 5 provide

typical utilization data using standard synthesis tools for different Core429 configurations. Table 1

assumes that the label size is set to 64 and FIFO depth is set to 64.

Table 1 Device Utilization for One Tx Module (default mode)

FPGA Family

Cells or Tiles

Memory Blocks

Device

Utilization
Combinatorial Sequential Total

SmartFusion 123 74 197 1 M2S050T 0.5%

SmartFusion 154 162 316 1 A2F500M3G 2%

Fusion 363 147 510 1 AFS600 4%

ProASIC3/E 363 147 510 1 A3PE600 4%

ProASIC
PLUS

 441 146 587 1 APA075 19%

Axcelerator 212 145 357 1 AX125 18%

RTAX-S 258 171 429 1 RTAX250S 10%

IGLOO2 115 77 192 1 M2GL150T 0.13%

Table of Contents

Core429 v3.11 Handbook 9

Table 2 Device Utilization for One Rx Module (default mode)

FPGA Family

Cells or Tiles

Memory Blocks

Devices

Utilization
Combinatorial Sequential Total

SmartFusion2 320 247 567 2 M2S050T 1%

SmartFusion 415 229 644 2 A2F500M3G 6%

Fusion 431 233 664 2 AFS600 5%

ProASIC3/E 431 233 664 2 A3PE600 5%

ProASIC
PLUS

 588 236 824 2 APA075 27%

Axcelerator 307 234 541 2 AX125 27%

RTAX-S 350 259 609 2 RTAX250S 14%

IGLOO2 400 337 737 2 M2GL150T 0.5%

Table 3 Device Utilization for One Rx and One Tx Module (default mode)

FPGA Family

Cells or Tiles

Memory Blocks

Device

Utilization
Combinatorial Sequential Total

SmartFusion2 619 430 1,049 3 M2S050T 2%

SmartFusion 802 384 1,186 3 A2F500M3G 10%

Fusion 848 380 1.228 3 AFS600 10%

ProASIC3/E 848 380 1,228 3 A3PE600 10%

ProASIC
PLUS

 1,084 382 1,466 3 APA075 48%

Axcelerator 518 378 896 3 AX125 44%

RTAX-S 604 429 1,033 3 RTAX250S 24%

IGLOO2 696 556 1,252 3 M2GL150T 0.86%

Table 4 Device Utilization for 16 Rx and 16 Tx Modules (default mode)

FPGA Family

Cells or Tiles

Memory Blocks

Device

Utilization
Combinatorial Sequential Total

SmartFusion2 9,439 6,695 16,134 48 M2S050T 29%

SmartFusion 12,308 6,039 18,347 48 A2F500M3G 159%

Fusion 13,435 6,080 19,515 48 AFS1500 51%

ProASIC3/E 13,435 6,080 19,515 48 A3PE1500 51%

ProASIC
PLUS

 16,835 6,112 22,947 48 APA750 69%

Axcelerator 8,044 5,944 13,988 48 AX2000 43%

RTAX-S 9,594 6,745 16,339 48 RTAX2000S 51%

IGLOO2 10,901 8,831 19,732 48 M2GL150T 13.5%

The Core429 clock rate can be configured to be 1, 10, 16, 20, or 66 MHz. All the Microsemi families listed

above easily meet the required performance.

Core429 I/O requirements depend on the system requirements and external interfaces. If the core and

memory blocks are implemented within the FPGA and the CPU interface has a bidirectional data bus,

approximately 74 I/O pins are required to implement four Rx and four Tx modules. The core will require 62

pins to implement one Rx and one Tx module.

The core has various FIFO flags available for debugging purposes. These flags may not be needed in the

final design, and this will reduce the I/O count.

Memory Requirements

Core429 v3.11 Handbook 10

Memory Requirements
The number of memory blocks required differs depending on whether each channel is configured identically

or differently.

Each Channel Configured Identically
Use EQ 1 to calculate the number of memory blocks required if each channel is configured identically.

where NRx is the number of receive channels, NTx is the number of transmit channels, INT is the function to

round up to the next integer, and X and Y are defined in Table 5.

Each Channel Configured Differently
Use EQ 2 to calculate the number of memory blocks required if each channel is configured differently.

where NRx is the number of receive channels, NTx is the number of transmit channels, INT is the function to

round up to the next integer, and X and Y are defined in Table 5.

Table 5 Memory Parameters

Device Family X Y

Fusion 512 128

ProASIC3/E 512 128

ProASICPLUS 256 64

Axcelerator/RTAX-S 512 128

IGLOO2 512 128

SmartFusion2 512 128

SmartFusion 512 128

Examples for the ProASIC3/E Device Family
If the design has 2 receivers, 1 transmitter, 64 labels for each receiver, and a 32-word-deep FIFO for each

receiver and transmitter, then

Number of memory blocks = 2 * (INT(64 / 512) + INT(32 / 128)) + 1 * INT(32 / 128)

= 2 * (1 + 1) + 1 * (1) = 5.

If the design has 2 receivers, 1 transmitter, 32 labels for receiver #1, 64 labels for receiver #2, a 32-word-

deep FIFO for receiver #1, a 64-word-deep FIFO for receiver #2, and a 64-word-deep FIFO for the

transmitter, then

Number of memory blocks = INT(64 / 128) + (INT(32 / 512) + INT(32 / 128)) + (INT(64 / 512) + INT(64 /

128)) = 1 + (1 + 1) + (1 + 1) = 5.

Core429 Overview

Core429 v3.11 Handbook 21

Functional Block Descript ion

Core429 Overview
Core429 provides a complete and flexible interface to a microprocessor and an ARINC 429 data bus.

Connection to an ARINC 429 data bus requires additional line drivers and line receivers.

Core429 interfaces to a processor through the internal memory of the receiver. Core429 can be easily

interfaced to an 8-, 16-, or 32-bit data bus. Lookup tables loaded into memory enable the Core429

receive circuitry to filter and sort incoming data by label and destination bits. Core429 supports

multiple (configurable) ARINC 429 receiver channels, and each receives data independently. The

receiver data rates (high- or low-speed) can be programmed independently. Core429 can decode and

sort data based on the ARINC 429 Label and SDI bits and stores it in a FIFO. Each receiver uses a

configurable FIFO to buffer received data. Core429 supports multiple (configurable) ARINC 429

transmit channels, and each channel can transmit data independently.

Functional Description
The core has three main blocks: Transmit, Receive, and CPU Interface. The core can be configured to

provide up to 16 transmit and receive channels.

Figure 4 gives a functional description of the Rx block.

Figure 4 Core429 Rx Block Diagram

The Rx block is responsible for recovering the clock from the input serial data and performs serial-to-

parallel conversion and gap/parity checking on the incoming data. It also interfaces with the CPU.

The Rx module contains two 8-bit registers. One is used for control and the other is used for status.

Refer to Table 12 and Table 13 for detailed descriptions of the control and status register bits. The

CPU interface configures the internal RAM with the labels, which are used to compare against

incoming labels from received ARINC data.

If the label-compare bit in the receive control register is enabled, data whose labels match the stored

labels will be stored in the FIFO. If the label-compare bit in the receive control register is disabled, the

incoming data will be stored in the FIFO without comparing against the labels in RAM.

The core supports reloading label memory using bit 7 of the Rx control register. Note that when you

set bit 7 to initialize the label memory, the old label content still exists, but the core keeps track only of

the new label and does not use the old label during label compare.

Clock Requirements

Core429 v3.11 Handbook 22

The FIFO asserts three status signals:

• rx_fifo_empty: FIFO is empty

• rx_fifo_half_full: FIFO is filled up to the configured RX_FIFO_LEVEL

• rx_fifo_full: FIFO is full

Depending on the FIFO status signals, the CPU will either read the FIFO before it overflows or will not

attempt to read the FIFO if it is empty. The interrupt signal int_out_rx is generated when one of the

FIFO status signals (rx_fifo_empty, rx_fifo_half_full, or rx_fifo_full) is High.

Figure 5 gives a functional description of the Tx block.

Figure 5 Core429 Tx Block Diagram

The Tx module converts the 32-bit parallel data from the Tx FIFO to serial data. It also inserts the

parity bit into the ARINC data when parity is enabled. The CPU interface is used to fill the FIFO with

ARINC data. The Tx FIFO can hold up to 512 ARINC words of data. The transmission starts as soon

as one complete ARINC word has been stored in the transmit FIFO.

The Tx module contains two 8-bit registers. One is used for a control function and the other is used for

status. Refer to Table 16 and Table 17 for detailed descriptions. The CPU interface allows the system

CPU to access the control and status registers within the core.

The Tx FIFO asserts three status signals:

• tx_fifo_empty: Tx FIFO is empty

• tx_fifo_half_full: Tx FIFO is filled up to the configured TX_FIFO_LEVEL

• tx_fifo_full: Tx FIFO is full

Depending on the FIFO status signals, the CPU will either write to the FIFO as long as it is not full or

will not attempt to write to the FIFO if it is full. The interrupt signal int_out_tx is generated when one of

the FIFO status signals (tx_fifo_empty, tx_fifo_half_full, or tx_fifo_full) is HIGH.

Clock Requirements
To meet the ARINC 429 transmission bit rate requirements, the Core429 clock input must be 1, 10, 16,

20, or 66 MHz with a tolerance of ±0.01%.

Line Drivers

Core429 v3.11 Handbook 23

Line Drivers
Core429 needs ARINC 429 line drivers to drive the ARINC 429 data bus. Core429 is designed to

interface directly to common ARINC 429 line drivers, such as HOLT HI-8382/HI-8383, DDC DD-03182,

or Device Engineering DEI1070.

Figure 6 shows the connections required from Core429 to the line drivers.

Figure 6 Core429 Line Driver and Line Receiver Interface

Line Receivers
Core429 needs ARINC 429 line receivers to receive the ARINC 429 data bus. Core429 is designed to

interface directly to common ARINC 429 line receivers, such as HOLT HI-8588 or Device Engineering

DEI3283. When using an FPGA from the ProASIC
PLUS

, RTAX-S, or Axcelerator families, level

translators are required to connect the 5 V output levels of the Core429 line receivers to the 3.3 V

input levels of the FPGA.

Development System
A complete ARINC 429 development system is also available, part number Core429-DEV-KIT. The

development system uses an external terminal (PC) with a serial UART link to control Core429 with

four Rx and four Tx channels implemented in a single ProASIC
PLUS

 APA600 FPGA.

Development System

Core429 v3.11 Handbook 24

Figure 7 shows the development system.

Figure 7 Core429 Development System

The loopback interface logic allows the ARINC core to operate in loopback mode. The development kit

includes ARINC line drivers and line receivers. On power-up, Core8051 reads the message from the

ADC, which could be the aircraft fuel level or flap position, for example, and transmits it over the

transmit channel. The message will be transmitted to the receiver through the loopback interface. Then

the message will be retrieved by Core8051 from the receiver and displayed on the LCD.

Another method is to transmit the ADC message over the transmit channel through the line drivers to

another system similar to the one described above. The message will go through the receive channel

of the second system and can be displayed on the LCD.

Default Mode Operation

Core429 v3.11 Handbook 25

Operat ion

Default Mode Operation
In the default mode, the core operates with the following register map:

CPU Address Map
Address bits 0 and 1 are used to create byte indexes.

• For an 8-bit CPU data bus:

- 00 – Byte 0

- 01 – Byte 1

- 10 – Byte 2

- 11 – Byte 3

• For a 16-bit CPU data bus:

- 00 – Lower half word

- 10 – Upper half word

• For a 32-bit CPU data bus:

- 00 – Word

Address bits 2 and 3 select the registers within each Rx or Tx block (see Register Definitions).

Address bit 4 is used to determine Rx/Tx as follows: 0: Rx

1: Tx

Address bits 5, 6, 7, and 8 are used for decoding the 16 channels as follows:

0000: Channel0

0001: Channel1

. .

. .

1110: Channel14

1111: Channel15

Table 6 shows the CPU address bit information.

Table 6 CPU Address Bit Positions

Channel Number Tx/Rx Register Index Byte Index

8 7 6 5 4 3 2 1 0

MSB 9-Bit CPU Address LSB

Default Mode Operation

Core429 v3.11 Handbook 26

Register Definitions

Rx Registers

Following is the detailed definition of cpu_add[3:2] decoding and the explanation of the Data Register,

Control Register, Status Register, and Label Memory Register (Table 7 through Table 10).

Address map:

00 – Data Register

01 – Control Register

10 – Status Register

11 – Label Memory

Table 7 Rx Data Register

Bit Function Reset State Type Description

31:0 Data 0 R Read data

Table 8 Rx Control Register

Bit Function Reset State Type Description

0 Data rate 0 R/W Data rate: 0 = 100 kbps; 1 = 12.5 or 50 kbps

1 Label recognition 0 R/W Label compare: 0 = disable; 1 = enable

2 Enable 32nd bit as parity 0 R/W 0 = 32nd bit is data; 1 = 32nd bit is parity

3 Parity 0 R/W Parity: 0 = odd; 1 = even

4 Decoder 0 R/W 0: SDI bit comparison disabled

1: SDI bit comparison enabled; ARINC bits 9 and 10

must match bits 5 and 6, respectively.

5 Match header bit 9 0 R/W If bit 4 is set, this bit should match ARINC header bit

9 (SDI bit).

6 Match header bit 10 0 R/W If bit 4 is set, this bit should match ARINC header bit

10 (SDI bit).

7 Reload label memory 0 R/W When bit 7 is set to '1', label memory address

pointers are initialized to '000'. Set this bit to change

the contents of the label memory.

Table 9 Rx Status Register

Bit Function Reset State Type Description

0 FIFO empty 1 R 0 = not empty; 1 = empty

1 FIFO half full or

configured level

0 R 0 = less than configured level; 1 = FIFO is filled at

least up to configured level

2 FIFO full 0 R 0 = not full; 1 = full

Table 10 Rx Label Memory Register

Bit Function Reset State Type Description

7:0 Label 0 R/W Read/write labels

Default Mode Operation

Core429 v3.11 Handbook 27

Tx Registers

Following is a detailed definition of cpu_add[3:2] decoding and an explanation of the Data Register,

Pattern RAM, Control Register, and Status Register.

Address map:

00 – Data Register

01 – Control Register

10 – Status Register

11 – Unused

Table 11 Tx Data Register

Bit Function Reset State Type Description

31:0 Data 0 W Write Data

Table 12 Tx Control Register

Bit Function Reset State Type Description

0 Data rate 0 R/W Data rate: 0 = 100 kbps; 1 = 12.5 or 50 kbps

1 Loopback 0 R/W 0 = disable loopback; 1 = enable loopback

2 Enable 32nd bit as parity 0 R/W 0 = 32nd bit is data; 1 = 32nd bit is parity

3 Parity 0 R/W Parity: 0 = odd; 1 = even

Table 13 Tx Status Register

Bit Function Reset State Type Description

0 FIFO empty 1 R 0 = not empty; 1 = empty

1 FIFO half full or

configured level

0 R 0 = less than half full or configured level; 1 = half full

or configured level

2 FIFO full 0 R 0 = not full; 1 = full

Label Memory Operation
The label memory is implemented using an internal memory block. The read and write addresses are

generated by internal counters, which can be reset by setting bit 7 of the receive (Rx) control register

to '1'. The write counter increments each time the label memory register is written. The read counter

increments every time the label memory register is read.

Loopback Interface

Core429 v3.11 Handbook 28

The label memory operation is shown in Figure 8.

Figure 8 Label Memory Diagram

To program labels, the CPU first resets the read and write counters by setting bit 7 of the receive (Rx)

control register to '1'. Then the labels are written to the label memory. The core will compare the

incoming ARINC word label (bits 1–8 of ARINC word) against the labels contained in the label

memory. The contents of the label memory can be read by reading the label memory register. While

writing to or reading from label memory, bit 1 of the receive (Rx) control register should be set to '0'.

To reload the label memory, set bit 7 of the receive (Rx) control register to '1'. The core will then ignore

all previous labels, and new labels can be written to the label memory.

Loopback Interface
If the loopback bit in the transmit control register is enabled, the transmit outputs will be connected to

the receive inputs. If there are equal numbers of transmit and receive channels, each transmit channel

output is connected to the corresponding receive channel input. As an example, the transmit channel 0

output is connected to the receive channel 0 input.

If there are more receive channels than transmit channels, the extra receive channels are connected

to transmit channel 0. As an example, if there are two transmit channels (0 and 1) and four receive

channels (0, 1, 2, and 3), the connections are made as follows:

• Connect transmit channel 0 output to receive channel 0 input

• Connect transmit channel 1 output to receive channel 1 input

• Connect transmit channel 0 output to receive channel 2 input

• Connect transmit channel 0 output to receive channel 3 input

Configuration Parameters

Core429 v3.11 Handbook 29

Interface Descript ion

Configuration Parameters
Core429 has several top-level Verilog parameters (VHDL generics) that are used to select the number

of channels and FIFO sizes of the implemented core. Using these parameters allows the size of the

core to be reduced when all the channels are not required.

For RTL versions, the parameters in Table 6 can be set directly. For netlist versions of the core, a

netlist implementing four Tx and four Rx channels is provided as per the defaults above. Microsemi will

supply netlists with alternative parameter settings on request.

Table 14 FIFO and Label Parameters

Parameter Name Description Allowed Values Default Note

FAMILY Must be set to the required FPGA family. 11 to 24 15

CLK_FREQ Clock frequency 0: 1 MHz

1: 10 MHz

2: 16 MHz

3: 20 MHz

0 (2)

CPU_DATA_WIDTH CPU data bus width 8, 16, 32 bits 8

RXN Number of Rx channels 1 to 16 4

TXN Number of Tx channels 1 to 16 4

LABEL_SIZE_i Number of labels for Rx channel i 1 to 256 64 (1) & (2)

RX_FIFO_DEPTH_j Depth of FIFO for Rx channel j ARINC word 32, 64, 128,

256, 512

32 (1)

RX_FIFO_LEVEL_k FIFO level for Rx channel k 1 to 64 16 (1)

TX_FIFO_DEPTH_l Depth of FIFO for Tx channel l ARINC word 32, 64, 128,

256, 512

32 (1)

TX_FIFO_LEVEL_m FIFO level for Tx channel m 1 to 64 16 (1)

TXRXSPEED_n When this parameter is set to '1', a bit rate of 100/50 kbps is

selected. Otherwise, a bit rate of 100/12.5 kbps is selected.

The bit rate can be changed for the Rx/Tx channel pair. Refer

to the Tx and Rx control register bit descriptions in Table 6-3 on

page 26 and Table 6-7 on page 27.

0, 1 0 (1) & (2)

TXRXRESET When this parameter is set to ’1’, soft reset of individual Tx/Rx

channels is possible by setting bit 7 of a desired channel’s

control register to ’1’ temporarily. When this parameter is set to

’0’, only the input RESET_N can reset the core.

0, 1 0

Notes:

1. The parameters i, j, k, l, m, and n can have values from 0 to 15.

2. The parameter/generic TXRXRESET can only be set from the core429_default file.

I/O Signal Descriptions

Core429 v3.11 Handbook 30

I/O Signal Descriptions

ARINC Interface

Table 15 Clock and Reset

Name Type Description

clk In Master clock input (1, 10, 16, or 20 MHz)

reset_n In Active low asynchronous reset

txa[TXN–1:0] Out ARINC transmit output A

txb[TXN–1:0] Out ARINC transmit output B

rxa[RXN–1:0] In ARINC receiver input A

rxb[RXN–1:0] In ARINC receiver input B

Default Mode Signals

Table 16 Core Interface Signals

Name Type Description

int_out_rx[RXN–1:0] Out Interrupt from each receive channel. This interrupt is generated when one of the

following conditions occurs:

• FIFO empty

• FIFO full

• FIFO is full up to the configured RX_FIFO_LEVEL

This is an active high signal.

int_out_tx[TXN–1:0] Out Interrupt from each transmit channel. This interrupt is generated when one of

the following conditions occurs:

• FIFO empty

• FIFO full

• FIFO is full up to the configured TX_FIFO_LEVEL

This is an active high signal.

rx_fifo_full[RXN–1:0] Out Rx FIFO full flag for each receive channel. This is an active high signal.

rx_fifo_half_full[RXN–1:0] Out Rx FIFO configured level flag for each receive channel. By default it is

programmed to half full. This is an active high signal.

rx_fifo_empty[RXN–1:0] Out Rx FIFO empty flag for each receive channel. This is an active high signal.

tx_fifo_full[TXN–1:0] Out Tx FIFO full flag for each transmit channel. This is an active high signal.

tx_fifo_half_full[TXN–1:0] Out Tx FIFO configured level flag for each transmit channel. By default it is

programmed to half full. This is an active high signal.

tx_fifo_empty[TXN–1:0] Out Tx FIFO empty flag for each transmit channel. This is an active high signal.

I/O Signal Descriptions

Core429 v3.11 Handbook 31

CPU Interface

The CPU interface allows access to the Core429 internal registers, FIFO, and internal memory. This interface

is synchronous to the clock.

Table 17 CPU Interface Signals

Name Type Description

cpu_ren In CPU read enable, active low

cpu_wen In CPU write enable, active low

cpu_add[8:0] In CPU address

cpu_din[CPU_DATA_WIDTH–1:0] In CPU data input

cpu_dout[CPU_DATA_WIDTH–1:0] Out CPU data output

int_out Out Interrupt to CPU, active high. int_out is the OR function of int_out_rx and

int_out_tx.

cpu_wait Out Indicates that the CPU should hold cpu_ren or cpu_wen active while the

core completes the read or write operation.

CPU Interface Timing for Default Mode

Core429 v3.11 Handbook 32

Timing Diagrams

CPU Interface Timing for Default Mode
The CPU interface signals are synchronized to the Core429 master clock. Figure 9 through Figure 16 show

the waveforms for the CPU interface.

Figure 9 CPU Interface Control/Status Register Read Cycle

Notes:

1. cpu_ren should be deasserted on the next clock cycle after cpu_wait is deasserted. Read data is

available one cycle after cpu_ren is sampled.

2. The cpu_wait signal will assert for a minimum of six clock cycles during a read cycle.

Figure 10 CPU Interface Control Register Write Cycle

Note: cpu_wen should be deasserted on the next clock cycle after cpu_wait is deasserted. The write is done

two cycles after cpu_wen is sampled.

Figure 11 CPU Interface Data Register Read Cycle

Note: cpu_ren should be deasserted on the next clock cycle after cpu_wait is deasserted. Read data is

available six cycles after cpu_ren is sampled.

CPU Interface Timing for Default Mode

Core429 v3.11 Handbook 33

Figure 12 CPU Interface Data Register Write Cycle

Note: cpu_wen should be deasserted on the next clock cycle after cpu_wait is deasserted. The write is done

two cycles after cpu_wen is sampled.

Figure 13 CPU Interface Label Memory Read Cycle

Note: cpu_ren should be deasserted on the next clock cycle after cpu_wait is deasserted. Read data is

available six cycles after cpu_ren is sampled.

Figure 14 CPU Interface Label Memory Write Cycle

Note: cpu_wen should be deasserted on the next clock cycle after cpu_wait is deasserted. The write is done

two cycles after cpu_wen is sampled.

License Types

Core429 v3.11 Handbook 34

Tool Flow s

Core429 is licensed in two ways.

License Types

Obfuscated
Complete RTL code is provided for the core, enabling the core to be instantiated with SmartDesign.

Simulation, Synthesis, and Layout can be performed with Libero software. The RTL code for the core is

obfuscated, and some of the testbench source files are not provided; they are precompiled into the compiled

simulation library instead.

RTL
Complete RTL source code is provided for the core and testbenches.

SmartDesign
Core429 is available through the Libero SoC IP Catalog. Download it from a remote web-based repository

and install into your local vault to make it ready to use. Once installed in the Libero software, the core can be

instantiated, configured, connected, and generated using the SmartDesign tool.

For more information on using SmartDesign to instantiate and generate cores, refer to the Using DirectCore

in Libero
®
 System-on-Chip (SoC) User Guide or consult the Libero SoC online help.

The core can be configured using the configuration GUI within SmartDesign, as shown in Figure 16 through

Figure 18.

Figure 15 Core429 Full I/O View

SmartDesign

Core429 v3.11 Handbook 35

Figure 16 Core429 SmartDesign Configuration

	Contact us
	Preface
	About this Document
	Intended Audience
	References
	Microsemi Publications
	Third Party Publications

	Introduction
	Overview
	External Components
	ARINC 429 Overview
	Transmission Order

	Key Features
	Core Version
	Supported Families
	Utilization and Performance
	Memory Requirements
	Each Channel Configured Identically
	Each Channel Configured Differently
	Examples for the ProASIC3/E Device Family

	Functional Block Description
	Core429 Overview
	Functional Description
	Clock Requirements
	Line Drivers
	Line Receivers
	Development System
	Operation
	Default Mode Operation
	CPU Address Map
	Register Definitions
	Rx Registers
	Tx Registers

	Label Memory Operation

	Loopback Interface
	Interface Description
	Configuration Parameters
	I/O Signal Descriptions
	ARINC Interface
	Default Mode Signals
	CPU Interface

	Timing Diagrams
	CPU Interface Timing for Default Mode
	Tool Flows
	License Types
	Obfuscated
	

	SmartDesign

