ghipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution
of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business
relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components
to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business
mainly focus on the distribution of electronic components. Line cards we deal with include
Microchip,ALPS,ROHM, Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise
IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,
and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service
and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email & Skype: info@chipsmall.com Web: www.chipsmall.com
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

iy [0

Core429 v3.11

Handbook

& Microsemi

Revision History

& Microsemi

Date Revision Change
August 2015 5 Updated the version v3.11 and applied new
template.

Confidentiality Status

This is a non-confidential document.

Core429 v3.11 Handbook

& Microsemi

Table of Contents

Table of Contents

PREIACE ...ueceeectitetntctenctiinennnnensennessessnssessessisissississsssssesssssssssssssssesssssestssessssssssessansans]
ADOUL TS DOCUMENT ...ttt ettt sttt b ettt b bt ne bt enen 5
[0 (=T qle [=To I Y UL [=Tq Tt = TN USSR 5
REFEIBICES. ...ttt et bbbttt b et b et bbbttt b ettt b e es 5
INTFOAUCTION .aneninereiiietciciciniinennennissesneiesissessissssessesssssssessssssssssssssssssssssssssssansansssanssnens 6
OVEBIVIBW ...ttt ettt ettt ettt ettt st et te e b e st ete e b e st et e sb e st et e sb e st et e e s est et e ebeseeseebestesesbe st es e beseebe s eseebeseseebesseseesesseseesessens 6
Y FRATUIES ...ttt bbbt b ettt b et b et bbbttt b et aebene 8
0T VBISION....evietiete ettt ekt b ekt b bbbttt b et b ekttt b et e bbb b et e bkt be s ene 8
SUPPOMEA FAMUIIES.......eeieeeeee ettt ettt ettt ettt s et e st e e s es e s ses e e eses e s senennnas 8
Utilization and PerfOrMEanCe.......c.oeiiiiiieic ettt 8
MEMOIY REGQUITEIMENTS ..ottt et b ettt et 10
Functional BIOCK DeSCHPHIONccuieiiinrinrinsensensnnsaisnnssisissnssssanss 21
COrEA29 OVEIVIBW ..ottt sttt b bttt b et bkttt b e bkttt b et b bttt b ettt e st s bene 21
FUNCHONAI DESCHIPTION. ...ttt ettt sttt b ettt b ettt be e ee 21
ClOCK REQUIFEMENTS ..ottt ettt s et e sttt s e e s e s et e s es e e saeseneeseseneesenens 22
LINE DIIVEBIS ...ttt bbbt b et b et b et b et b et b ettt b 23
LINE RECEIVEIS. ...ttt b et b et b et b et b et b et et b et b et ettt sebene 23
DEVEIOPMENT SYSIEM ...ttt ettt b st s et s s e st st et st ene et et s esene e 23
OPEIALION....ccueieieicricicinnnsensansansansanssnssssssssssssssasssssassassasssssssossosssssssssssssssssssssossossossssasssssassassassns 25
Default MOAE OPEIatioN.........cooeiriiiriieiie ettt sttt b et sttt b e ee 25
LOOPDACK INTEITACE ...ttt ettt ettt ettt bens 28
(191 (=1 £= TeZ=30 B T=XT o g o £ o] o 1R 29
ConfiguIation ParamEters.......coociiiiiriiree ettt etttk 29
[/O SigNal DESCHPHIONSecvieiieieiieieeee ettt ettt a s s e e e st s e b e st st ene s esenesaeseneasesenees 30
TIiMING DIQQIamSccoeeiinneinsinsaissanssesssnsssssssssssssassssssssssssssssssssssssssssassssssssssssssasssssssssssssssssssssass 32
CPU Interface Timing for Default MOGE ...ttt 32
TOOI FIOWS....utitctictctitnincniiscnsinssissississsississssssissssssssssssssssssissssssssssasssssssassassssassssns 34
LICENSE TYPES ..ttt b et h et b et b et b et b et b et b et bbb bbbt b e 34
SIMAIDESIGN ...ttt ettt et b bttt et be b e st e s e b e st e st b en s e st b e s bRt b e st eseebe b eseebenseseebe s eneesensens 34
Testbench Operation and ModifiCation............ceeieecreeneereenenenecececsecsessessassassnssascnnes 38
TESIDENCI ...tttk etttk sttt sttt 38
USEI TEST-DENCKI ...ttt et 39
Ordering INfOrMAatioN.........cieivininininininsensnnsansnnsanssissssissassassssons 40
OFAEING COUES ...ttt ettt bbbt b bbb ekttt b et b ekttt b et b bttt b ettt e st eebene 40

Core429 v3.11 Handbook 3

& Microsemi

Table of Contents

Appendix A: Testbench Support ROULINESccceeeeceeceerennenrcnncsncnccncsncssssassassnssnssnnens 41
VHDL SUPPOM ..ottt ettt sttt ettt st et e b e st et ebe s b e st ebesseneesessentesesbeneeb e seneesenseseebeseseesenseneesensens 41
VEIIOG SUPPOIT ...ttt ettt sttt ettt st et ebe st e st ebe e s e st esesbeneebebeneebesseneesesseseebeseneesenseneesensens 41
LiSt Of CRANQES.....cuiiiiiiininennnnninisnisisisssssssssssssssississssssssssssssssssssssssssssossossssssssssssssssassnssnss 42
ProdUCt SUPPOIL......cciiiiieiiinnennannaisnnsnsssssssssssssssssassasssssssssssssossssssssssasssssssssssssossossssasssssassassnss 43
CUSTOMEBT SEIVICE ...tttk et b et bbb b ettt b bene 43
Customer TechniCal SUPPOIT CENEET........c.oii ettt es et nene 43
TECNNICAI SUPPOI ...ttt ekttt b et enen 43
WWEDISIEE ..ottt bbbttt ekttt ettt b et 43
Contacting the Customer Technical SUPPOrt CENLENccov i 43
ITAR TECHNICAI SUPPOIT.......eiiieiiieicee ettt ettt bbbttt sttt be st ee 44

Core429 v3.11 Handbook 4

Table of Contents

Preface

About this Document

This handbook provides details about the Core429 DirectCore module, and how to use it.

Intended Audience
FPGA designers using Libero® System-on-Chip (SoC).

References

Microsemi Publications
e SmartFusion2 Microcontroller Subsystem User Guide

Third Party Publications
e http://standards.ieee.org/getieee802/download/802.3-2012_section2.pdf
e http://standards.ieee.org/getieee802/download/802.3-2012_section3.pdf

Core429 v3.11 Handbook

Table of Contents

Introduction

Overview

Core429 provides a complete Transmitter (Tx) and Receiver (Rx). A typical system implementation
using Core429 is shown in Figure 1.

The core consists of three main blocks: Transmit, Receive, and CPU Interface (Figure 1). Core429
requires connection to an external CPU. The CPU interface configures the transmit and receive control
registers and initializes the label memory. The core interfaces to the ARINC 429 bus through an
external ARINC 429 line driver and line receiver. A detailed description of the Rx and Tx interfaces is
provided in Functional Description.

H -

Interface

Core429

Microsemi FPGA

Figure 1 Typical Core429 System—One Tx and One Rx

External Components
There are two external components required for proper operation of Core429:
e Standard ARINC 429 line driver
o Standard ARINC 429 line receiver

ARINC 429 Overview

ARINC 429 is a two-wire, point-to-point data bus that is application-specific for commercial and
transport aircraft. The connection wires are twisted pairs. Words are 32 bits in length and most
messages consist of a single data word. The specification defines the electrical standard and data
characteristics and protocols.

ARINC 429 uses a unidirectional data bus standard (Tx and Rx are on separate ports) known as the
Mark 33 Digital Information Transfer System (DITS). Messages are transmitted at 12.5, 50 (optional),
or 100 kbps to other system elements that are monitoring the bus messages. The transmitter is always
transmitting either 32-bit data words or the Null state.

Core429 v3.11 Handbook

Table of Contents

The ARINC standard supports High, Low, and Null states (Figure 2). A minimum of four Null bits should
be transmitted between ARINC words. No more than 20 receivers and no less than one receiver can be
connected to a single bus (wire pair), though there will normally be more.

2131 4! 5! 6 910 32 | Bit
iNumber

1

~J
o

ngh +5 i i | i i | oo
A Nu” : : : : : : (11} : I L wpan
Low ol ATLeg
High sel |
B Null *e¢i 1 "B" Leg
Low ! ! ! Ll el | !
1110111110111 0i1:0i0! ! 1!Data
Figure 2 ARINC Standard
Figure 3 shows the bit positions of ARINC data.
32 131] 3029 111101918 1
P SSM DATA > PAD -«——— DISCRETES | SDI LABEL
MSB LSB

Figure 3 ARINC Data Bit Positions

Each ARINC word contains five fields:

e Parity
e Sign/Status Matrix
e Data

e Source/Destination Identifiers
e Label

The parity bit is bit 32 (the MSB). SSM is the Sign/Status Matrix and is included as bits 30 and 31. Bits
11 to 29 contain the data. Binary-coded decimal (BCD) and binary encoding (BNR) are common
ARINC data formats. Data formats can also be mixed. Bits 9 and 10 are Source/Destination Identifiers
(SDI) and indicate for which receiver the data is intended. Bits 1 to 8 contain a label (label words)
identifying the data type.

Label words are quite specific in ARINC 429. Each aircraft may be equipped with different electronic
equipment and systems needing interconnection. A large amount of equipment may be involved,
depending on the aircraft. The ARINC specification identifies the equipment ID, a series of digital
identification numbers. Examples of equipment are flight management computers, inertial reference
systems, fuel tanks, tire pressure monitoring systems, and GPS sensors.

Transmission Order

The least significant bit of each byte, except the label, is transmitted first, and the label is transmitted
ahead of the data in each case. The order of the bits transmitted on the ARINC bus is as follows:

8,7,6,5,4,3,2,1,9,10,11,12,13 ... 32.

Core429 v3.11 Handbook

Table of Contents

Key Features
Core429 supports the following features:
e Supports ARINC specification 429-16
e Configurable up to 16 Rx and 16 Tx channels
e Programmable FIFO depth
e Programmable interrupt generation
e Configurable label memory size
e Selectable data rate on each channel

Core Version

This handbook is for Core429 version 3.11.

Supported Families

e SmartFusion®2

e IGLOO®2
e IGLOO
e IGLOOe

e |GLOO PLUS
e ProASIC®3/E
e Fusion®

e SmartFusion
e Axcelerator®

e RTAX™-S
e ProASICPUS®
e ProASIC®3
e ProASIC3L

Utilization and Performance

Core429 can be implemented in several Microsemi FPGA devices. Table 1 through Table 5 provide
typical utilization data using standard synthesis tools for different Core429 configurations. Table 1
assumes that the label size is set to 64 and FIFO depth is set to 64.

Table 1 Device Utilization for One Tx Module (default mode)

Cells or Tiles
FPGA Family Combinatorial | Sequential | Total | yomory Blocks| Device | Utilization
SmartFusion 123 74 197 1 M2S050T 0.5%
SmartFusion 154 162 316 1 A2F500M3G 2%
Fusion 363 147 510 1 AFS600 4%
ProASIC3/E 363 147 510 1 A3PEG600 4%
ProASICPYS 441 146 587 1 APAQ075 19%
Axcelerator 212 145 357 1 AX125 18%
RTAX-S 258 171 429 1 RTAX250S 10%
IGLOO2 115 77 192 1 M2GL150T 0.13%

Core429 v3.11 Handbook

Table of Contents
Table 2 Device Utilization for One Rx Module (default mode)
Cells or Tiles

FPGA Family Combinatorial Sequential Total Memory Blocks | Devices | Utilization
SmartFusion2 320 247 567 2 M2S050T 1%
SmartFusion 415 229 644 2 A2F500M3G 6%
Fusion 431 233 664 2 AFS600 5%
ProASIC3/E 431 233 664 2 A3PEB00 5%
ProASICPES 588 236 824 2 APAQ75 27%
Axcelerator 307 234 541 2 AX125 27%
RTAX-S 350 259 609 2 RTAX250S 14%
IGLOO2 400 337 737 2 M2GL150T 0.5%

Table 3 Device Utilization for One Rx and One Tx Module (default mode)
Cells or Tiles

FPGA Family Combinatorial | Sequential | Total | o0y Blocks | Device | Utilization
SmartFusion2 619 430 1,049 3 M2S050T 2%
SmartFusion 802 384 1,186 3 A2F500M3G | 10%
Fusion 848 380 1.228 3 AFS600 10%
ProASIC3/E 848 380 1,228 3 A3PE600 10%
ProASICPYS 1,084 382 1,466 3 APA075 48%
Axcelerator 518 378 896 3 AX125 44%
RTAX-S 604 429 1,033 3 RTAX250S 24%
IGLOO2 696 556 1,252 3 M2GL150T | 0.86%
Table 4 Device Utilization for 16 Rx and 16 Tx Modules (default mode)
Cells or Tiles
FPGA Family Combinatorial | Sequential | Total Memory Blocks Device Utilization
SmartFusion2 9,439 6,695 16,134 48 M2S050T 29%
SmartFusion 12,308 6,039 18,347 48 A2F500M3G 159%
Fusion 13,435 6,080 19,515 48 AFS1500 51%
ProASIC3/E 13,435 6,080 19,515 48 A3PE1500 51%
ProASICPYS 16,835 6,112 22,947 48 APA750 69%
Axcelerator 8,044 5,944 13,988 48 AX2000 43%
RTAX-S 9,594 6,745 16,339 48 RTAX2000S 51%
IGLOO2 10,901 8,831 19,732 48 M2GL150T 13.5%

The Core429 clock rate can be configured to be 1, 10, 16, 20, or 66 MHz. All the Microsemi families listed
above easily meet the required performance.

Core429 I/0O requirements depend on the system requirements and external interfaces. If the core and
memory blocks are implemented within the FPGA and the CPU interface has a bidirectional data bus,
approximately 74 1/O pins are required to implement four Rx and four Tx modules. The core will require 62
pins to implement one Rx and one Tx module.

The core has various FIFO flags available for debugging purposes. These flags may not be needed in the
final design, and this will reduce the 1/O count.

Core429 v3.11 Handbook

& Microsemi

Memory Requirements

Memory Requirements

The number of memory blocks required differs depending on whether each channel is configured identically
or differently.

Each Channel Configured Identically

Use EQ 1 to calculate the number of memory blocks required if each channel is configured identically.

Number of memory blocks = NRx * (INT(LABEL_SIZE / X) + INT(RX_FIFO_DEPTH/Y) +
NTx * INT(FIFO_DEPTH /Y),

where NRXx is the number of receive channels, NTx is the number of transmit channels, INT is the function to
round up to the next integer, and X and Y are defined in Table 5.

Each Channel Configured Differently

Use EQ 2 to calculate the number of memory blocks required if each channel is configured differently.

Number of memory blocks =
NTx -1 NRx -1

> INT(FIFO_DEPTH[II/Y + ¥ (INT(LABEL_SIZE[I]/ X) + INT(FIFO_DEPTHII] / Y)),
I=0 /=0

where NRx is the number of receive channels, NTx is the number of transmit channels, INT is the function to
round up to the next integer, and X and Y are defined in Table 5.

Table 5 Memory Parameters

Device Family X Y

Fusion 512 128
ProASIC3/E 512 128
ProASICPLUS 256 64
Axcelerator/RTAX-S 512 128
IGLOO2 512 128
SmartFusion2 512 128
SmartFusion 512 128

Examples for the ProASIC3/E Device Family
If the design has 2 receivers, 1 transmitter, 64 labels for each receiver, and a 32-word-deep FIFO for each
receiver and transmitter, then
Number of memory blocks = 2 * (INT(64 / 512) + INT(32/ 128)) + 1 * INT(32 / 128)
=2*(1+1)+1*(1)=5.
If the design has 2 receivers, 1 transmitter, 32 labels for receiver #1, 64 labels for receiver #2, a 32-word-

deep FIFO for receiver #1, a 64-word-deep FIFO for receiver #2, and a 64-word-deep FIFO for the
transmitter, then

Number of memory blocks = INT(64 / 128) + (INT(32 / 512) + INT(32 / 128)) + (INT(64 / 512) + INT(64 /
128)) =1+ (1+1)+(1+1)=5.

Core429 v3.11 Handbook 10

EQ1

EQ 3

Core429 Overview

Functional Block Description

Core429 Overview

Core429 provides a complete and flexible interface to a microprocessor and an ARINC 429 data bus.
Connection to an ARINC 429 data bus requires additional line drivers and line receivers.

Core429 interfaces to a processor through the internal memory of the receiver. Core429 can be easily
interfaced to an 8-, 16-, or 32-bit data bus. Lookup tables loaded into memory enable the Core429
receive circuitry to filter and sort incoming data by label and destination bits. Core429 supports
multiple (configurable) ARINC 429 receiver channels, and each receives data independently. The
receiver data rates (high- or low-speed) can be programmed independently. Core429 can decode and
sort data based on the ARINC 429 Label and SDI bits and stores it in a FIFO. Each receiver uses a
configurable FIFO to buffer received data. Core429 supports multiple (configurable) ARINC 429
transmit channels, and each channel can transmit data independently.

Functional Description

The core has three main blocks: Transmit, Receive, and CPU Interface. The core can be configured to
provide up to 16 transmit and receive channels.

Figure 4 gives a functional description of the Rx block.

i i

RxHi ——| D@ Syne 32-Bit Shift i

! and Clock Register :

RXLO =] Recovery :

) L Bit Counter | |

i Word Gap i

! Timer Compare < Label !

i) Label Memory :

> i Parity !

o ! Check < !
cpu_add =——> ! y :
! C t I 1

CPU_WER s ! L‘Lr;ir; < :
cpu_ren ———p| CPUIF = > FIFO i
CpU_dlin s— - Control Reg i
cpu_dout - i |
cpu_wait ¢ i Status Reg i

Figure 4 Core429 Rx Block Diagram

The Rx block is responsible for recovering the clock from the input serial data and performs serial-to-
parallel conversion and gap/parity checking on the incoming data. It also interfaces with the CPU.

The Rx module contains two 8-bit registers. One is used for control and the other is used for status.
Refer to Table 12 and Table 13 for detailed descriptions of the control and status register bits. The
CPU interface configures the internal RAM with the labels, which are used to compare against
incoming labels from received ARINC data.

If the label-compare bit in the receive control register is enabled, data whose labels match the stored
labels will be stored in the FIFO. If the label-compare bit in the receive control register is disabled, the
incoming data will be stored in the FIFO without comparing against the labels in RAM.

The core supports reloading label memory using bit 7 of the Rx control register. Note that when you
set bit 7 to initialize the label memory, the old label content still exists, but the core keeps track only of
the new label and does not use the old label during label compare.

Core429 v3.11 Handbook

Clock Requirements

The FIFO asserts three status signals:

o rx_fifo_empty: FIFO is empty

o rx_fifo_half_full: FIFO is filled up to the configured RX_FIFO_LEVEL
o rx_fifo_full: FIFO is full

Depending on the FIFO status signals, the CPU will either read the FIFO before it overflows or will not
attempt to read the FIFO if it is empty. The interrupt signal int_out_rx is generated when one of the
FIFO status signals (rx_fifo_empty, rx_fifo_half_full, or rx_fifo_full) is High.

Figure 5 gives a functional description of the Tx block.

__

32-Bit i TxHi
FIFO [| Parallel-to-Serial Waveform !
Register Shaper ' TxLo
Load Shift Parity
N ——— Generator

CPU_add =
cpu_wen —p—
cpu_ren ————
cpu_din =—p=
cpu_dout ——
cpu_wait =

CPU I/F

[}

I

i

Control T i
Logic i
i

i

i

 J
(@]
o
=
S
A
®
«©

Figure 5 Core429 Tx Block Diagram

The Tx module converts the 32-bit parallel data from the Tx FIFO to serial data. It also inserts the
parity bit into the ARINC data when parity is enabled. The CPU interface is used to fill the FIFO with
ARINC data. The Tx FIFO can hold up to 512 ARINC words of data. The transmission starts as soon
as one complete ARINC word has been stored in the transmit FIFO.

The Tx module contains two 8-bit registers. One is used for a control function and the other is used for
status. Refer to Table 16 and Table 17 for detailed descriptions. The CPU interface allows the system
CPU to access the control and status registers within the core.

The Tx FIFO asserts three status signals:

o tx_fifo_empty: Tx FIFO is empty

o tx_fifo_half_full: Tx FIFO is filled up to the configured TX_FIFO_LEVEL
o tx_fifo_full: Tx FIFO is full

Depending on the FIFO status signals, the CPU will either write to the FIFO as long as it is not full or
will not attempt to write to the FIFO if it is full. The interrupt signal int_out_tx is generated when one of
the FIFO status signals (tx_fifo_empty, tx_fifo_half_full, or tx_fifo_full) is HIGH.

Clock Requirements

To meet the ARINC 429 transmission bit rate requirements, the Core429 clock input must be 1, 10, 16,
20, or 66 MHz with a tolerance of £0.01%.

Core429 v3.11 Handbook

Line Drivers

Line Drivers

Core429 needs ARINC 429 line drivers to drive the ARINC 429 data bus. Core429 is designed to
interface directly to common ARINC 429 line drivers, such as HOLT HI-8382/HI-8383, DDC DD-03182,
or Device Engineering DEI1070.

Figure 6 shows the connections required from Core429 to the line drivers.

Line Driver
Rx I/F - Eiﬂ')
CPU T
Interface
TxHi
Tx I/F TxLo
Cored?29 Line Receiver

Figure 6 Core429 Line Driver and Line Receiver Interface

Line Receivers

Core429 needs ARINC 429 line receivers to receive the ARINC 429 data bus. Core429 is designed to
interface directly to common ARINC 429 line receivers, such as HOLT HI-8588 or Device Engineering
DEI3283. When using an FPGA from the ProASICM, RTAX-S, or Axcelerator families, level
translators are required to connect the 5 V output levels of the Core429 line receivers to the 3.3 V
input levels of the FPGA.

Development System

A complete ARINC 429 development system is also available, part number Core429-DEV-KIT. The
development system uses an external terminal (PC) with a serial UART link to control Core429 with
four Rx and four Tx channels implemented in a single ProASICPYS APA600 FPGA.

Core429 v3.11 Handbook

23

Figure 7 shows the development system.

Development System

TxX1H

Tx1L

<—RX1H
I Rx1L

XTX2H
Tx2L

—Rx2H

I Rx2L
TX3H

Tx3L

—Rx3H

Rx3L
Tx4H

Tx4L

<—RX4H
Rx4L

APAEB00 FPGA
Core8051 |j————— -
Core429 jml LOOpback
4 Rxand 4 Tx I/F
UART
RS232 -
Keypad
Terminal and ADC
LCD

Figure 7 Core429 Development System

The loopback interface logic allows the ARINC core to operate in loopback mode. The development kit
includes ARINC line drivers and line receivers. On power-up, Core8051 reads the message from the
ADC, which could be the aircraft fuel level or flap position, for example, and transmits it over the

transmit channel. The message will be transmitted to the receiver through the loopback interface. Then
the message will be retrieved by Core8051 from the receiver and displayed on the LCD.

Another method is to transmit the ADC message over the transmit channel through the line drivers to
another system similar to the one described above. The message will go through the receive channel

of the second system and can be displayed on the LCD.

Core429 v3.11 Handbook

24

Default Mode Operation

Operation

Default Mode Operation

In the default mode, the core operates with the following register map:

CPU Address Map

Address bits 0 and 1 are used to create byte indexes.
. For an 8-bit CPU data bus:

00 —Byte 0
01 —Byte 1
10 — Byte 2
11 — Byte 3

. For a 16-bit CPU data bus:

00 — Lower half word
10 — Upper half word

. For a 32-bit CPU data bus:

00 -Word

Address bits 2 and 3 select the registers within each Rx or Tx block (see Register Definitions).
Address bit 4 is used to determine Rx/Tx as follows: 0: Rx

1: Tx

Address bits 5, 6, 7, and 8 are used for decoding the 16 channels as follows:
0000: Channel0
0001: Channell

1110: Channel14
1111: Channel15
Table 6 shows the CPU address bit information.

Table 6 CPU Address Bit Positions

Channel Number Tx/Rx Register Index Byte Index
8 7 6 5 4 3 2 1 0
MSB 9-Bit CPU Address LSB

Core429 v3.11 Handbook

25

Register Definitions

Rx Registers

Following is the detailed definition of cpu_add[3:2] decoding and the explanation of the Data Register,

Default Mode Operation

Control Register, Status Register, and Label Memory Register (Table 7 through Table 10).

Address map:

00 — Data Register
01 — Control Register
10 — Status Register
11 — Label Memory

Table 7 Rx Data Register

Bit Function Reset State Type Description
31:0 Data 0 R Read data
Table 8 Rx Control Register

Bit Function Reset State Type Description

0 Data rate 0 R/W Data rate: 0 = 100 kbps; 1 = 12.5 or 50kbps

1 Label recognition 0 R/W |Label compare: 0 = disable; 1 =enable

2 Enable 32" bit as parity 0 RW |0 =32 bit is data; 1 = 32" bit is parity

3 Parity 0 R/W | Parity: 0 = odd; 1 =even

4 Decoder 0 R/W 0: SDI bit comparisondisabled
1: SDI bit comparison enabled; ARINC bits 9 and 10
must match bits 5 and 6, respectively.

5 Match header bit 9 0 R/W If bit 4 is set, this bit should match ARINC header bit
9 (SDI bit).

6 Match header bit 10 0 R/W If bit 4 is set, this bit should match ARINC header bit
10 (SDI bit).

7 Reload label memory 0 R/W When bit 7 is set to '1", label memory address
pointers are initialized to '000'. Set this bit to change
the contents of the label memory.

Table 9 Rx Status Register

Bit Function Reset State Type Description

0 FIFO empty 1 R 0 = not empty; 1 =empty

1 FIFO half full or 0 R 0 = less than configured level; 1 = FIFO is filled at

configured level least up to configured level

2 FIFO full 0 R 0 = not full; 1 =full

Table 10 Rx Label Memory Register
Bit Function Reset State Type Description
7:0 Label 0 R/W Read/write labels

Core429 v3.11 Handbook

26

Default Mode Operation

Tx Registers

Following is a detailed definition of cpu_add[3:2] decoding and an explanation of the Data Register,
Pattern RAM, Control Register, and Status Register.

Address map:
00 — Data Register
01 — Control Register
10 — Status Register
11 — Unused

Table 11 Tx Data Register
Bit Function Reset State Type Description

31:0 Data 0 w Write Data

Table 12 Tx Control Register

Bit Function Reset State Type Description

0 Data rate 0 R/W Data rate: 0 = 100 kbps; 1 = 12.5 or 50kbps
1 Loopback 0 R/W 0 = disable loopback; 1 = enable loopback
2 Enable 32" bit as parity 0 RW |0 =32"9pit is data; 1 = 32" bit is parity

3 Parity 0 R/W Parity: 0 = odd; 1 =even

Table 13 Tx Status Register

Bit Function Reset State Type Description

0 FIFO empty 1 R 0 = not empty; 1 =empty

1 FIFO half full or 0 R 0 = less than half full or configured level; 1 = half full
configured level or configured level

2 FIFO full 0 R 0 = not full; 1 =full

Label Memory Operation

The label memory is implemented using an internal memory block. The read and write addresses are
generated by internal counters, which can be reset by setting bit 7 of the receive (Rx) control register
to "1". The write counter increments each time the label memory register is written. The read counter
increments every time the label memory register is read.

Core429 v3.11 Handbook

Loopback Interface

The label memory operation is shown in Figure 8.

Read Enable
———-

= Number of Active Labels

Read Address Write Data
Counter > RADDR (Rx Label Memory Regis
Reset

1 Label Memary Block Read Data

@_

(Rx Label Memory Regis
RDATA

p-| WADDR

Label Enable
Write Address

Counter T

Write Enable
> Reset Rx Control Register Bit
Rx Control Register Bit

Figure 8 Label Memory Diagram

To program labels, the CPU first resets the read and write counters by setting bit 7 of the receive (Rx)
control register to '1". Then the labels are written to the label memory. The core will compare the
incoming ARINC word label (bits 1-8 of ARINC word) against the labels contained in the label
memory. The contents of the label memory can be read by reading the label memory register. While
writing to or reading from label memory, bit 1 of the receive (Rx) control register should be set to '0'".

To reload the label memory, set bit 7 of the receive (Rx) control register to '1". The core will then ignore
all previous labels, and new labels can be written to the label memory.

Loopback Interface

If the loopback bit in the transmit control register is enabled, the transmit outputs will be connected to
the receive inputs. If there are equal numbers of transmit and receive channels, each transmit channel
output is connected to the corresponding receive channel input. As an example, the transmit channel 0
output is connected to the receive channel 0 input.

If there are more receive channels than transmit channels, the extra receive channels are connected
to transmit channel 0. As an example, if there are two transmit channels (0 and 1) and four receive
channels (0, 1, 2, and 3), the connections are made as follows:

e Connect transmit channel 0 output to receive channel 0 input
e Connect transmit channel 1 output to receive channel 1 input
e Connect transmit channel 0 output to receive channel 2 input
e Connect transmit channel 0 output to receive channel 3 input

Core429 v3.11 Handbook

Configuration Parameters

Interface Description

Configuration Parameters

Core429 has several top-level Verilog parameters (VHDL generics) that are used to select the number
of channels and FIFO sizes of the implemented core. Using these parameters allows the size of the
core to be reduced when all the channels are not required.
For RTL versions, the parameters in Table 6 can be set directly. For netlist versions of the core, a
netlist implementing four Tx and four Rx channels is provided as per the defaults above. Microsemi will
supply netlists with alternative parameter settings on request.

Table 14 FIFO and Label Parameters

Parameter Name Description Allowed Values |Default| Note
FAMILY Must be set to the required FPGA family. 11to 24 15
CLK_FREQ Clock frequency 0:1 MHz 0 2)
1:10 MHz
2: 16 MHz
3: 20 MHz
CPU_DATA_WIDTH |CPU data bus width 8, 16, 32 bits 8
RXN Number of Rx channels 1t0 16 4
TXN Number of Tx channels 1t0 16 4
LABEL_SIZE_i Number of labels for Rx channel i 1 to 256 64 [(1)&(2)
RX_FIFO_DEPTH_]j |Depth of FIFO for Rx channel j ARINC word 32, 64, 128, 32 (1)
256, 512
RX_FIFO_LEVEL_k |FIFO level for Rx channel k 1 to 64 16 (1)
TX_FIFO_DEPTH_I |Depth of FIFO for Tx channel | ARINC word 32, 64, 128, 32 (1)
256, 512
TX_FIFO_LEVEL_m [FIFO level for Tx channel m 1to 64 16 (1)
TXRXSPEED_n When this parameter is set to '1', a bit rate of 100/50 kbps is 0,1 0 |(1)&(2)
selected. Otherwise, a bit rate of 100/12.5 kbps is selected.
The bit rate can be changed for the Rx/Tx channel pair. Refer
to the Tx and Rx control register bit descriptions in Table 6-3 on
page 26 and Table 6-7 on page 27.
TXRXRESET When this parameter is set to ’1’, soft reset of individual Tx/Rx 0,1 0
channels is possible by setting bit 7 of a desired channel’s
control register to '1’ temporarily. When this parameter is set to
'0’, only the input RESET_N can reset the core.
Notes:

1. The parameters i, j, k, |, m, and n can have values from 0 to 15.
2. The parameter/generic TXRXRESET can only be set from the core429_default file.

Core429 v3.11 Handbook

29

I/O Signal Descriptions

/O Signal Descriptions

ARINC Interface

Table 15 Clock and Reset

Name Type Description
clk In Master clock input (1, 10, 16, or 20 MHz)
reset_n In Active low asynchronous reset

txa[TXN-1:0] Out |ARINC transmit output A

txb[TXN-1:0] Out |ARINC transmit output B

rxa[RXN-1:0] In ARINC receiver input A

rxb[RXN-1:0] In ARINC receiver input B

Default Mode Signals

Table 16 Core Interface Signals

Name Type Description
int_out_rx[RXN—1:0] Out |Interrupt from each receive channel. This interrupt is generated when one of the
following conditions occurs:
* FIFO empty
« FIFO full
* FIFO s full up to the configuredRX_FIFO_LEVEL
This is an active high signal.
int_out_tx[TXN—1:0] Out |Interrupt from each transmit channel. This interrupt is generated when one of
the following conditions occurs:
+ FIFO empty
« FIFO full
* FIFO is full up to the configured TX_FIFO_LEVEL
This is an active high signal.
rx_fifo_full[RXN-1:0] Out |Rx FIFO full flag for each receive channel. This is an active high signal.
rx_fifo_half_full[RXN—-1:0] Out |Rx FIFO configured level flag for each receive channel. By default it is
programmed to half full. This is an active high signal.
rx_fifo_empty[RXN-1:0] Out |Rx FIFO empty flag for each receive channel. This is an active high signal.
tx_fifo_full[TXN—1:0] Out |Tx FIFO full flag for each transmit channel. This is an active high signal.
tx_fifo_half_full[TXN—1:0] Out |Tx FIFO configured level flag for each transmit channel. By default it is
programmed to half full. This is an active high signal.
tx_fifo_empty[TXN-1:0] Out |Tx FIFO empty flag for each transmit channel. This is an active high signal.

Core429 v3.11 Handbook

30

& Microsemi
I/O Signal Descriptions

CPU Interface

The CPU interface allows access to the Core429 internal registers, FIFO, and internal memory. This interface
is synchronous to theclock.

Table 17 CPU Interface Signals

Name Type Description
cpu_ren In |CPU read enable, active low

cpu_wen In |CPU write enable, active low
cpu_add[8:0] In |CPU address

cpu_din[CPU_DATA_WIDTH-1:0] | In |CPU data input
cpu_dout{CPU_DATA_WIDTH-1:0] | Out |CPU data output

int_out Out [Interrupt to CPU, active high. int_out is the OR function of int_out_rx and
int_out_tx.
cpu_wait Out [Indicates that the CPU should hold cpu_ren or cpu_wen active while the

core completes the read or write operation.

Core429 v3.11 Handbook 31

& Microsemi
CPU Interface Timing for Default Mode

Timing Diagrams

CPU Interface Timing for Default Mode

The CPU interface signals are synchronized to the Core429 master clock. Figure 9 through Figure 16 show
the waveforms for the CPU interface.

clk \=]: %‘:’ \=l:' _/M \4 \4
cpu_ren l=‘,=‘,=‘,===4
cpu_add[8:0] ! ==;#

cpu_dout[31:0] Data !
cpu_wait | | 1 | j |

Figure 9 CPU Interface Control/Status Register Read Cycle

Notes:

1. cpu_ren should be deasserted on the next clock cycle after cpu_wait is deasserted. Read data is
available one cycle after cpu_ren is sampled.

2. The cpu_wait signal will assert for a minimum of six clock cycles during a readcycle.

! ! ! : Write Done !

R e I e N E N e A e I
cpu_wen _:_\ '

cpu_add[8:0] ' X_ADDR
cpu_din[31:0] L X
cpu_wait :

Data

Figure 10 CPU Interface Control Register Write Cycle

Note: cpu_wen should be deasserted on the next clock cycle after cpu_wait is deasserted. The write is done
two cycles after cpu_wen is sampled.

ek \ T\ [\ [\ T\ [\
cpu_ren \ ! : : : i i i_
cpu_add[8:0] . " ADDR ! ! 1 ‘
cpu_dout[31:0] ‘ ! ! ! ! ! Data__
cpu_wait i | | ! ! !

Figure 11 CPU Interface Data Register Read Cycle

Note: cpu_ren should be deasserted on the next clock cycle after cpu_wait is deasserted. Read data is
available six cycles after cpu_ren is sampled.

Core429 v3.11 Handbook 32

& Microsemi
CPU Interface Timing for Default Mode

| | \Write |
clk | | |

cpu_wen ' I '
cpu_add[8:0] A ADDR ! X
cpu_din[31:0] X : Data : X
cpu_wait ' : \ |

Figure 12 CPU Interface Data Register Write Cycle

Note: cpu_wen should be deasserted on the next clock cycle after cpu_wait is deasserted. The write is done
two cycles after cpu_wen is sampled.

PSS Y e Y s Y e Y s Y s (Y e Y s Y
B) S S S — —
T S S S S ——
opudout L : : : : : : —
cpu_wait _E—‘, i i i i i | 1

Figure 13 CPU Interface Label Memory Read Cycle

Note: cpu_ren should be deasserted on the next clock cycle after cpu_wait is deasserted. Read data is
available six cycles after cpu_ren is sampled.

i i iWrite i
clk

cpu_wen .

cpu_ add[8 0] K ADDR !

Figure 14 CPU Interface Label Memory Write Cycle

Note: cpu_wen should be deasserted on the next clock cycle after cpu_wait is deasserted. The write is done
two cycles after cpu_wen is sampled.

Core429 v3.11 Handbook 33

& Microsemi

License Types

Tool Flows

Core429 is licensed in two ways.

License Types

Obfuscated
Complete RTL code is provided for the core, enabling the core to be instantiated with SmartDesign.
Simulation, Synthesis, and Layout can be performed with Libero software. The RTL code for the core is
obfuscated, and some of the testbench source files are not provided; they are precompiled into the compiled
simulation library instead.

RTL

Complete RTL source code is provided for the core and testbenches.

SmartDesign

Core429 is available through the Libero SoC IP Catalog. Download it from a remote web-based repository
and install into your local vault to make it ready to use. Once installed in the Libero software, the core can be
instantiated, configured, connected, and generated using the SmartDesign tool.

For more information on using SmartDesign to instantiate and generate cores, refer to the Using DirectCore
in Libero® System-on-Chip (SoC) User Guide or consult the Libero SoC online help.

The core can be configured using the configuration GUI within SmartDesign, as shown in Figure 16 through

Figure 18.
CORE429 0

CLK CPU_DOUT[31:0]
CPU_ADDI[8:0] CPU_WAIT
CPU_DIN[31:0] INT_OUT
CPU_REN INT_OUT_RX[15:0]
CPU_WEN INT_OUT_TX[15:0]
RESET N RX_FIFO_EMPTY[15:0]
RXA[15:0] RX_FIFO FULL[15:0]
RXB[15:0] RX_FIFO_HALF_FULL[15:0]

TXA[15:0]

TXB[15:0]

TX_FIFO_EMPTY[15:0]
TX_FIFO_FULL[15:0]
TX_FIFO_HALF_FULL[15:0]

L @Fw

Figure 15 Core429 Full I/O View

Core429 v3.11 Handbook 34

& Microsemi

SmartDesign

"\, Configuring CORE429_ — [
Configuration - -
Core Configuration I
Clock Frequency{MHz): EI
CPU Data Bus Width (8. v |
No., of R Channels EI
No., of TX Channels EI =
LABEL _SIZE
No, of Labels for R¥ channel 0 54 Mo, of Labels for R¥ channel 1 54
Mo, of Labels for RX channel 2 54 Mo, of Labels for RX channel 3 54
No, of Labels for RY channel 4 54 Mo, of Labels for RX channel 5 &4 B
No. of Labels for X channel 6 54 Mo. of Labels for RX channel 7 54
No, of Labels for RX channel 8 &4 Mo, of Labels for RX channel 9 &4
No, of Labels for R¥ channel 10 54 Mo, of Labels for R¥ channel 11 54
Mo, of Labels for RX channel 12 54 Mo, of Labels for RX channel 13 64
No, of Labels for R channel 14 &4 Mo, of Labels for RX channel 15 &4
R¥_FIFO_DEPTH
Depth of FIFQ for RX channel 0 E| Depth of FIFO for RX channel 1 32—v|
Depth of FIFO for RX channel 2 E| Depth of FIFO for RX channel 3 E|
Depth of FIFD for RX channel 4 E| Depth of FIFD for RX channel 5 32—'|
Depth of FIFQ far RX channel & E| Depth of FIFO for RX channel 7 [E|
Depth of FIFQ for RX channel 8 E| Depth of FIFQ for RX channel 9 32—'|
Depth of FIFO for RX charnel 10 (32 = | Depth of FIFO for RX channel 11 32 = |
Depth of FIFQ for RX channel 12 E| Depth of FIFQ for RX channel 13 32—v|
Depth of FIFO for RX charnel 14 (32 = | Depth of FIFO for RX channel 15 32 = |
Help - 0K J | Cancel

Figure 16 Core429 SmartDesign Configuration

Core429 v3.11 Handbook

35

	Contact us
	Preface
	About this Document
	Intended Audience
	References
	Microsemi Publications
	Third Party Publications

	Introduction
	Overview
	External Components
	ARINC 429 Overview
	Transmission Order

	Key Features
	Core Version
	Supported Families
	Utilization and Performance
	Memory Requirements
	Each Channel Configured Identically
	Each Channel Configured Differently
	Examples for the ProASIC3/E Device Family

	Functional Block Description
	Core429 Overview
	Functional Description
	Clock Requirements
	Line Drivers
	Line Receivers
	Development System
	Operation
	Default Mode Operation
	CPU Address Map
	Register Definitions
	Rx Registers
	Tx Registers

	Label Memory Operation

	Loopback Interface
	Interface Description
	Configuration Parameters
	I/O Signal Descriptions
	ARINC Interface
	Default Mode Signals
	CPU Interface

	Timing Diagrams
	CPU Interface Timing for Default Mode
	Tool Flows
	License Types
	Obfuscated
	

	SmartDesign

