
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

 December 2005 v6.0 1

© 2005 Actel Corporation

Core8051

Product Summary

Intended Use

• Embedded System Control

• Communication System Control

• I/O Control

Key Features

• 100% ASM51 (8051/80C31/80C51) Compatible
Instruction Set1

• Control Unit

– 8-Bit Instruction Decoder

– Reduced Instruction Time of up to 12 Cycles

• Arithmetic Logic Unit

– 8-Bit Arithmetic and Logical Operations

– Boolean Manipulations

– 8 by 8-Bit Multiplication and 8 by 8-Bit Division

• 32-Bit I/O Ports

– Four 8-Bit I/O Ports

– Alternate Port Functions, such as External
Interrupts, Provide Extra Port Pins when
Compared with the Standard 8051

• Serial Port

– Simultaneous Transmit and Receive

– Synchronous Mode, Fixed Baud Rate

– 8-Bit UART Mode, Variable Baud Rate

– 9-Bit UART Mode, Fixed Baud Rate

– 9-Bit UART Mode, Variable Baud Rate

– Multiprocessor Communication

• Two 16-Bit Timer/Counters

• Interrupt Controller

– Four Priority Levels with 13 Interrupt Sources

• Internal Data Memory Interface

– Can Address up to 256B of Data Memory Space

• External Memory Interface

– Can Address up to 64kB of External Program
Memory

– Can Address up to 64kB of External Data
Memory

– Demultiplexed Address/Data Bus Enables Easy
Connection to Memory

– Variable Length MOVX to Access Fast/Slow
RAM or Peripherals

– Wait Cycles to Access Fast/Slow ROM

– Dual Data Pointer to Fast Data Block Transfer

• Special Function Register (SFR) Interface

– Services up to 101 External SFRs

• Optional On-Chip Instrumentation (OCI) Debug
Logic

• Supports all Major Actel Device Families

• Optional Power-Saving Modes

Supported Families

• Fusion

• ProASIC3/E

• ProASICPLUS

• Axcelerator

• RTAX-S

• SX-A

• RTSX-S

Core Deliverables

• Evaluation Version

– Compiled RTL Simulation Model Fully Supported in
the Actel Libero® Integrated Design Environment
(IDE)

• Netlist Version

– Structural Verilog and VHDL Netlists (with and
without I/O Pads) Compatible with the Actel
Designer Software Place-and-Route Tool

– Compiled RTL Simulation Model Fully
Supported in Actel Libero IDE

• RTL Version

– Verilog and VHDL Core Source Code

– Core Synthesis Scripts

• Testbench (Verilog and VHDL)

Synthesis and Simulation Support
• Synthesis

– Synplicity®

– Synopsys® (Design CompilerTM, FPGA CompilerTM,
FPGA ExpressTM)

– ExemplarTM

• Simulation

– OVI - Compliant Verilog Simulators

– Vital - Compliant VHDL Simulators

1. For more information, see the Core8051 Instruction Set Details User’s Guide

Core8051

2 v6.0

Core Verification

• Comprehensive VHDL and Verilog Testbenches

• Users Can Easily Add Custom Tests by Modifying
the User Testbench Using the Existing Format

Contents

General Description
The Core8051 macro is a high-performance, single-chip, 8-
bit microcontroller. It is a fully functional eight-bit
embedded controller that executes all ASM51 instructions
and has the same instruction set as the 80C31. Core8051
provides software and hardware interrupts, a serial port,
and two timers.

The Core8051 architecture eliminates redundant bus
states and implements parallel execution of fetch and
execution phases. Since a cycle is aligned with memory
fetch when possible, most of the one-byte instructions are
performed in a single cycle. Core8051 uses one clock per
cycle. This leads to an average performance improvement
rate of 8.0 (in terms of MIPS) with respect to the Intel
device working with the same clock frequency.

The original 8051 had a 12-clock architecture. A machine
cycle needed 12 clocks, and most instructions were either
one or two machine cycles. Therefore, the 8051 used
either 12 or 24 clocks for each instruction, except for the

MUL and DIV instructions. Furthermore, each cycle in the
8051 used two memory fetches. In many cases, the second
fetch was a "dummy" fetch and extra clocks were wasted.

Table 1 shows the speed advantage of Core8051 over the
standard 8051. A speed advantage of 12 in the first
column means that Core8051 performs the same
instruction 12 times faster than the standard 8051. The
second column in Table 1 lists the number of types of
instructions that have the given speed advantage. The
third column lists the total number of instructions that
have the given speed advantage. The third column can be
thought of as a subcategory of the second column. For
example, there are two types of instructions that have a
three-time speed advantage over the classic 8051, for
which there are nine explicit instructions.

The average speed advantage is 8.0. However, the real
speed improvement seen in any system will depend on the
instruction mix.

Core8051 consists of the following primary blocks:

• Memory Control Block – Logic that Controls
Program and Data Memory

• Control Processor Block – Main Controller Logic

• RAM and SFR Control Block

• ALU – Arithmetic Logic Unit

• Reset Control Block – Provides Reset Condition
Circuitry

• Clock Control Block

• Timer 0 and 1 Block

• ISR – Interrupt Service Routine Block

• Serial Port Block

• Port Registers Block

• PMU – Power Management Unit Block

• OCI block – On-Chip Instrumentation Logic for
Debug Capabilities

General Description .. 2

Core8051 Device Requirements 4

Core8051 Verification .. 5

I/O Signal Descriptions ... 5

Memory Organization .. 8

Special Function Registers .. 10

Instruction Set ... 11

Instruction Definitions ... 19

Instruction Timing .. 20

Core8051 Engine .. 27

Timers/Counters .. 28

Serial Interface .. 30

Interrupt Service Routine Unit 32

ISR Structure ... 35

Power Management Unit .. 36

Power Management Implementation 36

Interface for On-Chip Instrumentation (Optional) . 37

Ordering Information .. 39

List of Changes ... 40

Datasheet Categories ... 40

Table 1 • Core8051 Speed Advantage Summary

Speed
Advantage

Number of
Instruction

Types

Number of
Instructions
(Opcodes)

24 1 1

12 27 83

9.6 2 2

8 16 38

6 44 89

4.8 1 2

4 18 31

3 2 9

Average: 8.0 Sum: 111 Sum: 255

Core8051

v6.0 3

Figure 1 shows the primary blocks of Core8051.

Figure 1 • Core8051 Block Diagram

Fetch Instr Cycle

Fetch Instr Cycle

Timer_0_1

Interrupt
Service

Ports

Power
Management

Memory

8051 Main Engine

Core8051

Control

Control

Unit

Fetch Instr Cycle

Arithmetic
Logic Unit

Serial
Channel

Clock
Control

S
p

e
ci

a
l

F
u

n
ct

io
n

 R
e

g
is

te
r

B
u

s
RAM_SFR

Control

Core8051

4 v6.0

Core8051 Device Requirements
Core8051 has been implemented in several of the Actel device families. A summary of the implementation data is
listed in Table 2 through Table 4. Table 2 lists implementation data without OCI logic.

Table 3 lists implementation data with OCI logic (no trace memory and no hardware triggers).

Table 4 lists implementation data with OCI logic (256-word trace memory and one hardware trigger).

Table 2 • Core8051 Device Utilization and Performance - No OCI

Family

Cells or Tiles Utilization

PerformanceSequential Combinatorial Total RAM Blocks Device Total

Fusion 528 3629 4157 1 AFS600 30% 36 MHz

ProASIC3/E 528 3629 4157 1 A3PE600-2 30% 36 MHz

ProASICPLUS 528 3909 4437 1 APA150-STD 72% 24 MHz

Axcelerator 619 2344 2963 1 AX250-3 70% 52 MHz

RTAX-S 619 2344 2963 1 RTAX1000S-1 16% 29 MHz

SX-A 646 2780 3426 - A54SX72A-3 57% 33 MHz

RTSX-S 646 2780 3426 - RT54SX72S-1 57% 19 MHz

Note: Data in this table was achieved using typical synthesis and layout settings. Performance was achieved using the Core8051 macro

alone.

Table 3 • Core8051 Device Utilization and Performance - OCI without Trace Memory and Hardware Trigger

Family

Cells or Tiles Utilization

PerformanceSequential Combinatorial Total RAM Blocks Device Total

Fusion 621 3923 4544 1 AFS600 33% 33 MHz

ProASIC3/E 621 3923 4544 1 A3PE600-2 33% 33 MHz

ProASICPLUS 621 4249 4870 1 APA150-STD 79% 20 MHz

Axcelerator 739 2646 3385 1 AX500-3 42% 44 MHz

RTAX-S 739 2646 3385 1 RTAX1000S-1 19% 25 MHz

SX-A 765 2914 3679 - A54SX72A-3 61% 29 MHz

RTSX-S 765 2914 3679 - RT54SX72S-1 61% 19 MHz

Note: Data in this table was achieved using typical synthesis and layout settings. Performance was achieved using the Core8051 macro
alone.

Table 4 • Core8051 Device Utilization and Performance - OCI with 256-Word Trace Memory and One Hardware Trigger

Family

Cells or Tiles Utilization

PerformanceSequential Combinatorial Total RAM Blocks Device Total

Fusion 718 4323 5041 3 AFS600 37% 33 MHz

ProASIC3/E 718 4323 5041 3 A3PE600-2 37% 33 MHz

ProASICPLUS 717 4709 5426 4 APA150-STD 88% 20 MHz

Axcelerator 843 3023 3866 3 AX500-3 48% 40 MHz

RTAX-S 843 3023 3866 3 RTAX1000S-1 21% 24 MHz

Note: Data in this table was achieved using typical synthesis and layout settings. Performance was achieved using the Core8051 macro
alone.

Core8051

v6.0 5

Core8051 Verification
The comprehensive verification simulation testbench
(included with the Netlist and RTL versions of the core)
verifies correct operation of the Core8051 macro. The
verification testbench applies several tests to the
Core8051 macro, including:

• Operation Code Tests

• Peripheral Tests

• Miscellaneous Tests

Using the supplied user testbench as a guide, the user
can easily customize the verification of the core by
adding or removing tests.

I/O Signal Descriptions
The port signals for the Core8051 macro are defined in Table 5 on page 6 and illustrated in Figure 2. Core8051 has 239
I/O signals that are described in Table 5 on page 6.

Figure 2 • Core8051 I/O Signal Diagram

memdatai
memdatao

memaddr
mempsacki

mempsrd
memacki

memwr
memrd

AuxOut

ramdatai
ramdatao
ramaddr

ramoe
ramwe

sfrdatai

sfroe

sfrdatao
sfraddr

sfrwe

nreset

t0
t1

int0
int1
int0a
int1a
int2
int3
int4
int5
int6
int7

rxd0i
rxd0o
txd0

port1i
port2i
port3i

port0o
port1o
port2o
port3o

clk

clkcpu_en
clkper_en

dbgmempswr
membank

BreakIn
BreakOut

Core8051

port0i

movx

nrsto
nrsto_nc

TCK
TMS
TDI
TDO
TRSTB

TraceA
TraceDI
TraceDO
TraceWr TrigOut

clkcpu
clkper

Core8051

6 v6.0

Table 5 • Core8051 Pin Description

Name Type Polarity/Bus Size Description

port0i Input 8 Port 0

port0o Output 8 8-bit bidirectional I/O port with separated inputs and outputs

port1i Input 8 Port 1

port1o Output 8 8-bit bidirectional I/O port with separated inputs and outputs

port2i Input 8 Port 2

port2o Output 8 8-bit bidirectional I/O port with separated inputs and outputs

port3i Input 8 Port 3

port3o Output 8 8-bit bidirectional I/O port with separated inputs and outputs

clk Input Rise Clock input for internal logic

clkcpu Input Rise CPU Clock input for internal controller logic (must either be the same as the clk

input or a gated version of the clk input)

clkper Input Rise Peripheral Clock input for internal peripheral logic (must either be the same as
the clk input or a gated version of the clk input)

clkcpu_en Output High CPU Clock Enable

This output may be used to optionally create a gated version of the clk input
signal for connection to the clkcpu input (see "Power Management

Implementation" section on page 36).

clkper_en Output High Peripheral Clock Enable

This output may be used to optionally create a gated version of the clk input

signal for connection to the clkper input (see "Power Management
Implementation" section on page 36).

nreset Input Low Hardware Reset Input

A logic 0 on this pin for two clock cycles while the oscillator is running resets the
device.

nrsto Output Low Peripheral Reset Output

This globally buffered signal can be connected to logic outside Core8051 to
provide an active-low asynchronous reset to peripherals.

nrsto_nc Bidirectional

(no-connect)

Low Peripheral Reset No-Connect

This signal is connected to nrsto internally and is only used by the SX-A/RTSX-S
implementations, in which case it must be brought up to a top-level package pin
and left unconnected at the board-level. This signal should not be used

(connected) for any other device families.

movx Output High Movx instruction executing

On-Chip Debug Interface (Optional)

TCK Input Rise JTAG test clock. If OCI is not used, connect to logic 1.

TMS Input High JTAG test mode select. If OCI is not used, connect to logic 0.

TDI Input High JTAG test data in. If OCI is not used, connect to logic 0.

TDO Output High JTAG test data out

nTRST Input Low JTAG test reset. If OCI is not used, connect to logic 1.

dbgmempswr Output High Optional debug program storage write

Core8051

v6.0 7

membank Input 4 Optional code memory bank selection. If not used, connect to logic 0 values.

BreakIn Input High Break bus input. When sampled high, a breakpoint is generated. If not used,

connect to logic 0.

BreakOut Output High Break bus output. This will be driven high when Core8051 stops emulation. This

can be connected to an open-drain Break bus that connects to multiple
processors, so that when any CPU stops, all others on the bus are stopped
within a few clock cycles.

TrigOut Output High Trigger output. This signal can be optionally connected to external test
equipment to cross-trigger with internal Core8051 activity.

AuxOut Output High Auxiliary output. This signal is an optional general-purpose output that can be

controlled via the OCI debugger software.

TraceA Output 8 Trace address outputs. This bus should be connected to external RAM address
pins for trace debug memory.

TraceDI Output 20 Trace data to external synchronous RAM data input pins for trace debug
memory.

TraceDO Input 20 Trace data from external synchronous RAM data output pins for trace debug

memory. If OCI is not used, connect to logic 0 values.

TraceWr Output High Trace write signal to external synchronous RAM write enable for trace debug
memory.

External Interrupt Inputs

int0 Input Low/Fall External interrupt 0

int1 Input Low/Fall External interrupt 1

int0a Input High External interrupt 0a

int1a Input High External interrupt 1a

int2 Input High External interrupt 2

int3 Input High External interrupt 3

int4 Input High External interrupt 4

int5 Input High External interrupt 5

int6 Input High External interrupt 6

int7 Input High External interrupt 7

Serial Port Interface

rxdi Input – Serial port receive data

rxdo Output – Serial port transmit data in mode 0

txd Output – Serial port transmit data or data clock in mode 0

Timer Inputs

t0 Input Fall Timer 0 external input

t1 Input Fall Timer 1 external input

External Memory Interface

mempsacki Input High Program memory read acknowledge

Table 5 • Core8051 Pin Description (Continued)

Name Type Polarity/Bus Size Description

Core8051

8 v6.0

Memory Organization
The Core8051 microcontroller utilizes the Harvard
architecture, with separate code and data spaces.

Memory organization in Core8051 is similar to that of
the industry standard 8051. There are three memory
areas, as shown in Figure 3:

• Program Memory (Internal RAM, External RAM, or
External ROM)

• External Data Memory (External RAM)

• Internal Data Memory (Internal RAM)

memacki Input High Data memory acknowledge

memdatai Input 8 Memory data input

memdatao Output 8 Memory data output

memaddr Output 16 Memory address

mempsrd Output High Program store read enable

memwr Output High Data memory write enable

memrd Output High Data memory read enable

Internal Data Memory Interface

ramdatai Input 8 Data bus input

ramdatao Output 8 Data bus output

ramaddr Output 8 Data file address

ramwe Output High Data file write enable

ramoe Output High Data file output enable

External Special Function Registers Interface

sfrdatai Input 8 SFR data bus input

sfrdatao Output 8 SFR data bus output

sfraddr Output 7 SFR address

sfrwe Output High SFR write enable

sfroe Output High SFR output enable

Table 5 • Core8051 Pin Description (Continued)

Name Type Polarity/Bus Size Description

Figure 3 • Core8051 Memory Map

FFFFH

C000H

8000H

4000H

0000H
Program memory

FFFFH

C000H

8000H

4000H

0000H
External data memory

FFH

00H
Internal data memory

Core8051

v6.0 9

Program Memory

Core8051 can address up to 64kB of program memory
space, from 0000H to FFFFH. The External Bus Interface
services program memory when the mempsrd signal is
active. Program memory is read when the CPU performs
fetching instructions or MOVC.

After reset, the CPU starts program execution from
location 0000H. The lower part of the program memory
includes interrupt and reset vectors. The interrupt
vectors are spaced at eight-byte intervals, starting from
0003H.

Program memory can be implemented as Internal RAM,
External RAM, External ROM, or a combination of all
three.

External Data Memory

Core8051 can address up to 64kB of external data
memory space, from 0000H to FFFFH. The External Bus
Interface services data memory when the memrd signal is

active. Writing to external program memory is only
supported in debug mode using the OCI logic block and
external debugger hardware and software. Core8051
writes into external data memory when the CPU
executes MOVX @Ri,A or MOVX @DPTR,A instructions.
The external data memory is read when the CPU
executes MOVX A,@Ri or MOVX A,@DPTR instructions.

There is improved variable length of the MOVX
instructions to access fast or slow external RAM and
external peripherals. The three low-ordered bits of the
ckcon register control stretch memory cycles. Setting
ckcon stretch bits to logic 1 values enables access to very
slow external RAM or external peripherals.

Table 6 shows how the External Memory Interface signals
change when stretch values are set from zero to seven.
The widths of the signals are counted in clk cycles. The
reset state of the ckcon register has a stretch value equal
to one (001), which enables MOVX instructions to be
performed with a single stretch clock cycle inserted.

There are two types of instructions; one provides an 8-bit
address to the external data RAM, the other a 16-bit
indirect address to the external data RAM.

In the first instruction type, the contents of R0 or R1 in
the current register bank provide an 8-bit address. The
eight high ordered bits of address are stuck at zero.
Eight bits are sufficient for external l/O expansion
decoding or a relatively small RAM array. For somewhat
larger arrays, any output port pins can be used to output
higher-order address bits. These pins are controlled by an
output instruction preceding the MOVX.

In the second type of MOVX instructions, the data
pointer generates a 16-bit address. This form is faster
and more efficient when accessing very large data arrays
(up to 64kB), since no additional instructions are needed
to set up the output ports.

In some situations, it is possible to mix the two MOVX
types. A large RAM array, with its high-order address
lines, can be addressed via the data pointer or with code

to output high-order address bits to any port followed
by a MOVX instruction using R0 or R1.

Internal Data Memory

The internal data memory interface services up to 256
bytes of off-core data memory. The internal data
memory address is always one byte wide. The memory
space is 256 bytes large (00H to FFH) and can be accessed
by direct or indirect addressing. The SFRs occupy the
upper 128 bytes. This SFR area is available only by direct
addressing. Indirect addressing accesses the upper 128
bytes of internal RAM.

The lower 128 bytes contain work registers and bit-
addressable memory. The lower 32 bytes form four banks
of eight registers (R0-R7). Two bits on the program
memory status word (PSW) select which bank is in use.
The next 16 bytes form a block of bit-addressable
memory space at bit addressees 00H-7FH. All of the bytes

Table 6 • Stretch Memory Cycle Width

ckcon Register

Stretch Value

Read Signal Width Write Signal Width

ckcon.2 ckcon.1 ckcon.0 memaddr memrd memaddr memwr

0 0 0 0 1 1 2 1

0 0 1 1 2 2 3 1

0 1 0 2 3 3 4 2

0 1 1 3 4 4 5 3

1 0 0 4 5 5 6 4

1 0 1 5 6 6 7 5

1 1 0 6 7 7 8 6

1 1 1 7 8 8 9 7

Core8051

10 v6.0

in the lower 128 bytes are accessible through direct or
indirect addressing.

The internal data memory is not instantiated in Core8051.
The user may use internal memory resources if the
ProASICPLUS or Axcelerator families are used. The SX-A

and RTSXS-S families have no internal memory resources,
thus the user would need to either create and instantiate
a distributed RAM (comprised of FPGA combinatorial and
sequential cells) or use an external memory device.

Special Function Registers

Internal Special Function Registers

A map of the internal Special Function Registers is shown
in Table 7. Only a few addresses are occupied; the others
are not implemented. Read access to unimplemented

addresses will return undefined data, while write access
will have no effect.

The reset value for of each of the predefined special function registers is listed in Table 8.

Table 7 • Internal Special Function Register Memory Map

Hex

Bin

HexX000 X001 X010 X011 X100 X101 X110 X111

F8 – – – – – – – – FF

F0 b – – – – – – – F7

E8 – – – – – – – – EF

E0 acc – – – – – – – E7

D8 – – – – – – – – DF

D0 psw – – – – – – – D7

C8 – – – – – – – – CF

C0 – – – – – – – – C7

B8 ien1 ip1 – – – – – – BF

B0 p3 – – – – – – – B7

A8 ien0 ip0 – – – – – – AF

A0 p2 – – – – – – – A7

98 scon sbuf – – – – – – 9F

90 p1 – dps – – – – – 97

88 tcon tmod tl0 tl1 th0 th1 ckcon – 8F

80 p0 sp dpl dph dpl1 dph1 – pcon 87

Table 8 • Special Function Register Reset Values

Register Location Reset value Description

p0 80h FFh Port 0

sp 81h 07h Stack Pointer

dpl 82h 00h Data Pointer Low 0

dph 83h 00h Data Pointer High 0

dpl1 84h 00h Dual Data Pointer Low 1

Core8051

v6.0 11

External Special Function Registers

The external SFR interface services up to 101 off-core
special function registers. The off-core peripherals can
use all addresses from the SFR address space range 80H
to FFH except for those that are already implemented
inside the core.

When a read instruction occurs with a SFR address that
has been implemented both inside and outside the core,
the read will return the contents of the internal SFR.

When a write instruction occurs with a SFR that has been
implemented both inside and outside the core, the value
of the external SFR is overwritten.

Instruction Set
All Core8051 instructions are binary code compatible and
perform the same functions as they do with the industry
standard 8051. Table 9 on page 12 and Table 10 on
page 12 contain notes for mnemonics used in the various
Instruction Set tables. In Table 11 on page 12 through
Table 15 on page 15, the instructions are ordered in

functional groups. In Table 16 on page 16, the
instructions are ordered in the hexadecimal order of the
operation code. For more detailed information about
the Core8051 instruction set, refer to the Core8051

Instruction Set Details User’s Guide.

dph1 85h 00h Dual Data Pointer High 1

pcon 87h 00h Power Control

tcon 88h 00h Timer/Counter Control

tmod 89h 00h Timer Mode Control

tl0 8Ah 00h Timer 0, low byte

tl1 8Bh 00h Timer 1, high byte

th0 8Ch 00h Timer 0, low byte

th1 8Dh 00h Timer 1, high byte

ckcon 8Eh 01h Clock Control (Stretch=1)

p1 90h FFh Port 1

dps 92h 00h Data Pointer Select Register

scon 98h 00h Serial Port 0, Control Register

sbuf 99h 00h Serial Port 0, Data Buffer

p2 A0h FFh Port 2

ien0 A8h 00h Interrupt Enable Register 0

ien1 B8h 00h Interrupt Enable Register 1

p3 B0h FFh Port 3

ip0 A9h 00h Interrupt Enable Register 0

ip1 B9h 00h Interrupt Enable Register 1

psw D0h 00h Program Status Word

Table 8 • Special Function Register Reset Values (Continued)

Core8051

12 v6.0

Functional Ordered Instructions

Table 11 through Table 15 on page 15 lists the Core8051 instructions, grouped according to function.

Table 9 • Notes on Data Addressing Modules

Rn Working register R0-R7

direct 128 internal RAM locations, any l/O port, control or status register

@Ri Indirect internal or external RAM location addressed by register R0 or R1

#data 8-bit constant included in instruction

#data 16 16-bit constant included as bytes 2 and 3 of instruction

bit 128 software flags, any bit-addressable l/O pin, control or status bit

A Accumulator

Table 10 • Notes on Program Addressing Modes

addr16 Destination address for LCALL and LJMP may be anywhere within the 64kB program memory address space.

addr11 Destination address for ACALL and AJMP will be within the same 2kB page of program memory as the first byte
of the following instruction.

Rel SJMP and all conditional jumps include an 8-bit offset byte. Range is from plus 127 to minus 128 bytes, relative to

the first byte of the following instruction.

Table 11 • Arithmetic Operations

Mnemonic Description Byte Cycle

ADD A,Rn Adds the register to the accumulator 1 1

ADD A,direct Adds the direct byte to the accumulator 2 2

ADD A,@Ri Adds the indirect RAM to the accumulator 1 2

ADD A,#data Adds the immediate data to the accumulator 2 2

ADDC A,Rn Adds the register to the accumulator with a carry flag 1 1

ADDC A,direct Adds the direct byte to A with a carry flag 2 2

ADDC A,@Ri Adds the indirect RAM to A with a carry flag 1 2

ADDC A,#data Adds the immediate data to A with carry a flag 2 2

SUBB A,Rn Subtracts the register from A with a borrow 1 1

SUBB A,direct Subtracts the direct byte from A with a borrow 2 2

SUBB A,@Ri Subtracts the indirect RAM from A with a borrow 1 2

SUBB A,#data Subtracts the immediate data from A with a borrow 2 2

INC A Increments the accumulator 1 1

INC Rn Increments the register 1 2

INC direct Increments the direct byte 2 3

INC @Ri Increments the indirect RAM 1 3

DEC A Decrements the accumulator 1 1

DEC Rn Decrements the register 1 1

DEC direct Decrements the direct byte 1 2

DEC @Ri Decrements the indirect RAM 2 3

Core8051

v6.0 13

INC DPTR Increments the data pointer 1 3

MUL A,B Multiplies A and B 1 5

DIV A,B Divides A by B 1 5

DA A Decimal adjust accumulator 1 1

Table 12 • Logic Operations

Mnemonic Description Byte Cycle

ANL A,Rn AND register to accumulator 1 1

ANL A,direct AND direct byte to accumulator 2 2

ANL A,@Ri AND indirect RAM to accumulator 1 2

ANL A,#data AND immediate data to accumulator 2 2

ANL direct,A AND accumulator to direct byte 2 3

ANL direct,#data AND immediate data to direct byte 3 4

ORL A,Rn OR register to accumulator 1 1

ORL A,direct OR direct byte to accumulator 2 2

ORL A,@Ri OR indirect RAM to accumulator 1 2

ORL A,#data OR immediate data to accumulator 2 2

ORL direct,A OR accumulator to direct byte 2 3

ORL direct,#data OR immediate data to direct byte 3 4

XRL A,Rn Exclusive OR register to accumulator 1 1

XRL A,direct Exclusive OR direct byte to accumulator 2 2

XRL A,@Ri Exclusive OR indirect RAM to accumulator 1 2

XRL A,#data Exclusive OR immediate data to accumulator 2 2

XRL direct,A Exclusive OR accumulator to direct byte 2 3

XRL direct,#data Exclusive OR immediate data to direct byte 3 4

CLR A Clears the accumulator 1 1

CPL A Complements the accumulator 1 1

RL A Rotates the accumulator left 1 1

RLC A Rotates the accumulator left through carry 1 1

RR A Rotates the accumulator right 1 1

RRC A Rotates the accumulator right through carry 1 1

SWAP A Swaps nibbles within the accumulator 1 1

Table 11 • Arithmetic Operations (Continued)

Mnemonic Description Byte Cycle

Core8051

14 v6.0

Table 13 • Data Transfer Operations

Mnemonic Description Byte Cycle

MOV A,Rn Moves the register to the accumulator 1 1

MOV A,direct Moves the direct byte to the accumulator 2 2

MOV A,@Ri Moves the indirect RAM to the accumulator 1 2

MOV A,#data Moves the immediate data to the accumulator 2 2

MOV Rn,A Moves the accumulator to the register 1 2

MOV Rn,direct Moves the direct byte to the register 2 4

MOV Rn,#data Moves the immediate data to the register 2 2

MOV direct,A Moves the accumulator to the direct byte 2 3

MOV direct,Rn Moves the register to the direct byte 2 3

MOV direct,direct Moves the direct byte to the direct byte 3 4

MOV direct,@Ri Moves the indirect RAM to the direct byte 2 4

MOV direct,#data Moves the immediate data to the direct byte 3 3

MOV @Ri,A Moves the accumulator to the indirect RAM 1 3

MOV @Ri,direct Moves the direct byte to the indirect RAM 2 5

MOV @Ri,#data Moves the immediate data to the indirect RAM 2 3

MOV DPTR,#data16 Loads the data pointer with a 16-bit constant 3 3

MOVC A,@A + DPTR Moves the code byte relative to the DPTR to the accumulator 1 3

MOVC A,@A + PC Moves the code byte relative to the PC to the accumulator 1 3

MOVX A,@Ri Moves the external RAM (8-bit address) to A 1 3-10

MOVX A,@DPTR Moves the external RAM (16-bit address) to A 1 3-10

MOVX @Ri,A Moves A to the external RAM (8-bit address) 1 4-11

MOVX @DPTR,A Moves A to the external RAM (16-bit address) 1 4-11

PUSH direct Pushes the direct byte onto the stack 2 4

POP direct Pops the direct byte from the stack 2 3

XCH A,Rn Exchanges the register with the accumulator 1 2

XCH A,direct Exchanges the direct byte with the accumulator 2 3

XCH A,@Ri Exchanges the indirect RAM with the accumulator 1 3

XCHD A,@Ri Exchanges the low-order nibble indirect RAM with A 1 3

Table 14 • Boolean Manipulation Operations

Mnemonic Description Byte Cycle

CLR C Clears the carry flag 1 1

CLR bit Clears the direct bit 2 3

SETB C Sets the carry flag 1 1

SETB bit Sets the direct bit 2 3

CPL C Complements the carry flag 1 1

CPL bit Complements the direct bit 2 3

Core8051

v6.0 15

ANL C,bit AND direct bit to the carry flag 2 2

ANL C,bit AND complements of direct bit to the carry 2 2

ORL C,bit OR direct bit to the carry flag 2 2

ORL C,bit OR complements of direct bit to the carry 2 2

MOV C,bit Moves the direct bit to the carry flag 2 2

MOV bit,C Moves the carry flag to the direct bit 2 3

Table 15 • Program Branch Operations

Mnemonic Description Byte Cycle

ACALL addr11 Absolute subroutine call 2 6

LCALL addr16 Long subroutine call 3 6

RET Return Return from subroutine 1 4

RETI Return Return from interrupt 1 4

AJMP addr11 Absolute jump 2 3

LJMP addr16 Long jump 3 4

SJMP rel Short jump (relative address) 2 3

JMP @A + DPTR Jump indirect relative to the DPTR 1 2

JZ rel Jump if accumulator is zero 2 3

JNZ rel Jump if accumulator is not zero 2 3

JC rel Jump if carry flag is set 2 3

JNC rel Jump if carry flag is not set 2 3

JB bit,rel Jump if direct bit is set 3 4

JNB bit,rel Jump if direct bit is not set 3 4

JBC bit,rel Jump if direct bit is set and clears bit 3 4

CJNE A,direct,rel Compares direct byte to A and jumps if not equal 3 4

CJNE A,#data,rel Compares immediate to A and jumps if not equal 3 4

CJNE Rn,#data rel Compares immediate to the register and jumps if not equal 3 4

CJNE @Ri,#data,rel Compares immediate to indirect and jumps if not equal 3 4

DJNZ Rn,rel Decrements register and jumps if not zero 2 3

DJNZ direct,rel Decrements direct byte and jumps if not zero 3 4

NOP No operation 1 1

Table 14 • Boolean Manipulation Operations (Continued)

Core8051

16 v6.0

Hexadecimal Ordered Instructions

The Core8051 instructions are listed in order of hexidecimal opcode (operation code) in Table 16.

Table 16 • Core8051 Instruction Set in Hexadecimal Order

Opcode Mnemonic Opcode Mnemonic

00H NOP 10H JBC bit,rel

01H AJMP addr11 11H ACALL addr11

02H LJMP addr16 12H LCALL addr16

03H RR A 13H RRC A

04H INC A 14H DEC A

05H INC direct 15H DEC direct

06H INC @R0 16H DEC @R0

07H INC @R1 17H DEC @R1

08H INC R0 18H DEC R0

09H INC R1 19H DEC R1

0AH INC R2 1AH DEC R2

0BH INC R3 1BH DEC R3

0CH INC R4 1CH DEC R4

0DH INC R5 1DH DEC R5

0EH INC R6 1EH DEC R6

0FH INC R7 1FH DEC R7

20H JB bit,rel 30H JNB bit,rel

21H AJMP addr11 31H ACALL addr11

22H RET 32H RETI

23H RL A 33H RLC A

24H ADD A,#data 34H ADDC A,#data

25H ADD A,direct 35H ADDC A,direct

26H ADD A,@R0 36H ADDC A,@R0

27H ADD A,@R1 37H ADDC A,@R1

28H ADD A,R0 38H ADDC A,R0

29H ADD A,R1 39H ADDC A,R1

2AH ADD A,R2 3AH ADDC A,R2

2BH ADD A,R3 3BH ADDC A,R3

2CH ADD A,R4 3CH ADDC A,R4

2DH ADD A,R5 3DH ADDC A,R5

2EH ADD A,R6 3EH ADDC A,R6

2FH ADD A,R7 3FH ADDC A,R7

40H JC rel 50H JNC rel

41H AJMP addr11 51H ACALL addr11

Core8051

v6.0 17

42H ORL direct,A 52H ANL direct,A

43H ORL direct,#data 53H ANL direct,#data

44H ORL A,#data 54H ANL A,#data

45H ORL A,direct 55H ANL A,direct

46H ORL A,@R0 56H ANL A,@R0

47H ORL A,@R1 57H ANL A,@R1

48H ORL A,R0 58H ANL A,R0

49H ORL A,R1 59H ANL A,R1

4AH ORL A,R2 5AH ANL A,R2

4BH ORL A,R3 5BH ANL A,R3

4CH ORL A,R4 5CH ANL A,R4

4DH ORL A,R5 5DH ANL A,R5

4EH ORL A,R6 5EH ANL A,R6

4FH ORL A,R7 5FH ANL A,R7

60H JZ rel 70H JNZ rel

61H AJMP addr11 71H ACALL addr11

62H XRL direct,A 72H ORL C,bit

63H XRL direct,#data 73H JMP @A+DPTR

64H XRL A,#data 74H MOV A,#data

65H XRL A,direct 75H MOV direct,#data

66H XRL A,@R0 76H MOV @R0,#data

67H XRL A,@R1 77H MOV @R1,#data

68H XRL A,R0 78H MOV R0,#data

69H XRL A,R1 79H MOV R1,#data

6AH XRL A,R2 7AH MOV R2,#data

6BH XRL A,R3 7BH MOV R3,#data

6CH XRL A,R4 7CH MOV R4,#data

6DH XRL A,R5 7DH MOV R5,#data

6EH XRL A,R6 7EH MOV R6,#data

6FH XRL A,R7 7FH MOV R7,#data

80H SJMP rel 90H MOV DPTR,#data16

81H AJMP addr11 91H ACALL addr11

82H ANL C,bit 92H MOV bit,C

83H MOVC A,@A+PC 93H MOVC A,@A+DPTR

84H DIV AB 94H SUBB A,#data

85H MOV direct,direct 95H SUBB A,direct

Table 16 • Core8051 Instruction Set in Hexadecimal Order (Continued)

Opcode Mnemonic Opcode Mnemonic

Core8051

18 v6.0

86H MOV direct,@R0 96H SUBB A,@R0

87H MOV direct,@R1 97H SUBB A,@R1

88H MOV direct,R0 98H SUBB A,R0

89H MOV direct,R1 99H SUBB A,R1

8AH MOV direct,R2 9AH SUBB A,R2

8BH MOV direct,R3 9BH SUBB A,R3

8CH MOV direct,R4 9CH SUBB A,R4

8DH MOV direct,R5 9DH SUBB A,R5

8EH MOV direct,R6 9EH SUBB A,R6

8FH MOV direct,R7 9FH SUBB A,R7

A0H ORL C,~bit B0H ANL C,~bit

A1H AJMP addr11 B1H ACALL addr11

A2H MOV C,bit B2H CPL bit

A3H INC DPTR B3H CPL C

A4H MUL AB B4H CJNE A,#data,rel

A5H1 – B5H CJNE A,direct,rel

A6H MOV @R0,direct B6H CJNE @R0,#data,rel

A7H MOV @R1,direct B7H CJNE @R1,#data,rel

A8H MOV R0,direct B8H CJNE R0,#data,rel

A9H MOV R1,direct B9H CJNE R1,#data,rel

AAH MOV R2,direct BAH CJNE R2,#data,rel

ABH MOV R3,direct BBH CJNE R3,#data,rel

ACH MOV R4,direct BCH CJNE R4,#data,rel

ADH MOV R5,direct BDH CJNE R5,#data,rel

AEH MOV R6,direct BEH CJNE R6,#data,rel

AFH MOV R7,direct BFH CJNE R7,#data,rel

C0H PUSH direct D0H POP direct

C1H AJMP addr11 D1H ACALL addr11

C2H CLR bit D2H SETB bit

C3H CLR C D3H SETB C

C4H SWAP A D4H DA A

C5H XCH A,direct D5H DJNZ direct,rel

C6H XCH A,@R0 D6H XCHD A,@R0

C7H XCH A,@R1 D7H XCHD A,@R1

C8H XCH A,R0 D8H DJNZ R0,rel

C9H XCH A,R1 D9H DJNZ R1,rel

Table 16 • Core8051 Instruction Set in Hexadecimal Order (Continued)

Opcode Mnemonic Opcode Mnemonic

Core8051

v6.0 19

Instruction Definitions
All Core8051 core instructions can be condensed to 53 basic operations, alphabetically ordered according to the
operation mnemonic section, as shown in Table 17.

CAH XCH A,R2 DAH DJNZ R2,rel

CBH XCH A,R3 DBH DJNZ R3,rel

CCH XCH A,R4 DCH DJNZ R4,rel

CDH XCH A,R5 DDH DJNZ R5,rel

CEH XCH A,R6 DEH DJNZ R6,rel

CFH XCH A,R7 DFH DJNZ R7,rel

E0H MOVX A,@DPTR F0H MOVX @DPTR,A

E1H AJMP addr11 F1H ACALL addr11

E2H MOVX A,@R0 F2H MOVX @R0,A

E3H MOVX A,@R1 F3H MOVX @R1,A

E4H CLR A F4H CPL A

E5H MOV A,direct F5H MOV direct,A

E6H MOV A,@R0 F6H MOV @R0,A

E7H MOV A,@R1 F7H MOV @R1,A

E8H MOV A,R0 F8H MOV R0,A

E9H MOV A,R1 F9H MOV R1,A

EAH MOV A,R2 FAH MOV R2,A

EBH MOV A,R3 FBH MOV R3,A

ECH MOV A,R4 FCH MOV R4,A

EDH MOV A,R5 FDH MOV R5,A

EEH MOV A,R6 FEH MOV R6,A

EFH MOV A,R7 FFH MOV R7,A

1. The A5H opcode is not used by the original set of ASM51 instructions. In Core8051, this opcode is used to implement a trap instruction
for the OCI debugger logic.

Table 16 • Core8051 Instruction Set in Hexadecimal Order (Continued)

Opcode Mnemonic Opcode Mnemonic

Table 17 • PSW Flag Modification (CY, OV, AC)

Instruction

Flag

Instruction

Flag

CY OV AC CY OV AC

ADD X X X SETB C 1 – –

ADDC X X X CLR C 0 – –

SUBB X X X CPL C X – –

MUL 0 X – ANL C,bit X – –

Note: In this table, 'X' denotes that the indicated flag is affected by the instruction and can be a logic 1 or logic 0, depending upon
specific calculations. If a particular box is blank, that flag is unaffected by the listed instruction.

Core8051

20 v6.0

Instruction Timing

Program Memory Bus Cycle

The execution for instruction N is performed during the
fetch of instruction N+1. A program memory fetch cycle
without wait states is shown in Figure 4. A program
memory fetch cycle with wait states is shown in Figure 5
on page 21. A program memory read cycle without wait
states is shown in Figure 6 on page 21. A program

memory read cycle with wait states is shown in Figure 7
on page 22.

The following conventions are used in Figure 4 to
Figure 19 on page 27:

DIV 0 X – ANL C,~bit X – –

DA X – – ORL C,bit X – –

RRC X – – ORL C,~bit X – –

RLC X – – MOV C,bit X – –

CJNE X – –

Table 17 • PSW Flag Modification (CY, OV, AC) (Continued)

Instruction

Flag

Instruction

Flag

CY OV AC CY OV AC

Note: In this table, 'X' denotes that the indicated flag is affected by the instruction and can be a logic 1 or logic 0, depending upon

specific calculations. If a particular box is blank, that flag is unaffected by the listed instruction.

Table 18 • Conventions used in Figure 4 to Figure 19

Convention Description

Tclk Time period of clk signal

N Address of actually executed instruction

(N) Instruction fetched from address N

N+1 Address of next instruction

Addr Address of memory cell

Data Data read from address Addrl

read sample Point of reading the data from the bus into the internal register

write sample Point of writing the data from the bus into memory

ramcs Off-core signal is made on the base ramwe and clk signals

Core8051

v6.0 21

Figure 4 • Program Memory Fetch Cycle without Wait States

Figure 5 • Program Memory Fetch with Wait States

Figure 6 • Program Memory Read Cycle without Wait States

0ns 50ns 100ns 150ns 200ns 250ns 300ns

clk

memaddr

memrd

memwr

mempsrd

mempswr

mempsack

memdatao

memdatai

N N+1 N+2

(N) (N+1) (N+2)

read sample read sample read sample

sample sample sample

0ns 50ns 100ns 150ns 200ns 250ns 300ns

clk

memaddr

memrd

memwr

mempsrd

mempswr

mempsack

memdatao

memdatai

N N+1 N+2

(N) (N+1)

read sampleread sample read sample

sample sample sample sample sample

0ns 50ns 100ns 150ns 200ns 250ns 300ns

clk

memaddr

memrd

memwr

mempsrd

mempswr

mempsack

memdatao

memdatai

N N+1 Addr N+1

(N) Data (N+1)

read
sample

read
sample

read
sample

sample sample sample

350ns

Core8051

22 v6.0

External Data Memory Bus Cycle

Example bus cycles for external data memory access are shown in Figure 8 through Figure 15 on page 25. Figure 8
shows an external data memory read cycle without stretch cycles.

Figure 7 • Program Memory Read Cycle with Wait States

0ns 50ns 100ns 150ns 200ns 250ns 300ns

clk

memaddr

memrd

memwr

mempsrd

mempswr

mempsack

memdatao

memdatai

N N+1 Addr N+1

(N) Data (N+1)

read
sample

sample sample sample sample sample sample

350ns

read
sample

read
sample

Figure 8 • External Data Memory Read Cycle without Stretch Cycles

0ns 50ns 100ns 150ns 200ns 250ns

clk

memaddr

memrd

memwr

mempsrd

memdatao

memdatai

N N+1 Addr N+1

(N) Data (N+1)

read sample

max. 1*Tclk

read sampleread sample

Core8051

v6.0 23

Figure 9 shows an external data memory read cycle with one stretch cycle.

Figure 10 shows an external data memory read cycle with two stretch cycles.

Figure 11 shows an external data memory read cycle with seven stretch cycles.

Figure 9 • External Data Memory Read Cycle with One Stretch Cycle

Figure 10 • External Data Memory Read Cycle with Two Stretch Cycles

Figure 11 • External Data Memory Read Cycle with Seven Stretch Cycles

0ns 50ns 100ns 150ns 200ns 250ns 300ns

clk

memaddr

memrd

memwr

mempsrd

mempswr

mempsack

memdatao

memdatai

N N+1 Addr N+1

(N) Data (N+1)

read sample read sampleread sample

sample sample sample sample sample sample

350ns

0ns 50ns 100ns 150ns 200ns 250ns

clk

memaddr

memrd

memwr

mempsrd

memdatao

memdatai

N N+1 Addr N+1

(N) Data (N+1)

max. 3*Tclk

read sample read
sample

300ns

read
sample

0ns 50ns 100ns 150ns 200ns 250ns 300ns 350ns 400ns 450ns

clk

memaddr

memrd

memwr

mempsrd

memdatao

memdatai

N N+1 Addr N+1

(N) Data (N+1)

max. 8*Tclk

read
sample

read sample read
sample

500ns

Core8051

24 v6.0

Figure 12 shows an external data memory write cycle without stretch cycles.

Figure 13 shows an external data memory write cycle with one stretch cycle.

Figure 14 shows an external data memory write cycle with two stretch cycles.

Figure 12 • External Data Memory Write Cycle without Stretch Cycles

Figure 13 • External Data Memory Write Cycle with One Stretch Cycle

Figure 14 • External Data Memory Write Cycle with Two Stretch Cycles

0ns 50ns 100ns 150ns 200ns 250ns

clk

memaddr

memrd

memwr

mempsrd

memdatao

memdatai

N N+1 Addr N+1

Data

(N) (N+1)

read sampleread sample

write sample

300ns

0ns 50ns 100ns 150ns 200ns 250ns

clk

memaddr

memrd

memwr

mempsrd

memdatao

memdatai

N N+1 Addr N+1

Data

(N) (N+1)

read sample

write sample

read
sample

300ns

0ns 50ns 100ns 150ns 200ns 250ns 300ns 350ns

clk

memaddr

memrd

memwr

mempsrd

memdatao

memdatai

N+1 Addr N+1

Data

(N) (N+1)

read sampleread sample

write sample

400ns

Core8051

v6.0 25

Figure 15 shows an external data memory write cycle with seven stretch cycles.

Figure 15 • External Data Memory Write Cycle with Seven Stretch Cycles

0ns 100ns 200ns 300ns 400ns 500ns

clk

memaddr

memrd

memwr

mempsrd

memdatao

memdatai

Addr N+1

Data

(N+1)

read sample

write sample

read
sample

(N)

	Contact us
	Core8051
	Product Summary
	Intended Use
	Key Features
	Supported Families
	Core Deliverables
	Synthesis and Simulation Support
	Core Verification

	Contents
	General Description
	Table 1 . Core8051 Speed Advantage Summary
	Figure 1 . Core8051 Block Diagram

	Core8051 Device Requirements
	Table 2 . Core8051 Device Utilization and Performance - No OCI
	Table 3 . Core8051 Device Utilization and Performance - OCI without Trace Memory and Hardware Trigger
	Table 4 . Core8051 Device Utilization and Performance - OCI with 256-Word Trace Memory and One Hardware Trigger

	Core8051 Verification
	I/O Signal Descriptions
	Figure 2 . Core8051 I/O Signal Diagram
	Table 5 . Core8051 Pin Description

	Memory Organization
	Figure 3 . Core8051 Memory Map
	Program Memory
	External Data Memory
	Table 6 . Stretch Memory Cycle Width

	Internal Data Memory

	Special Function Registers
	Internal Special Function Registers
	Table 7 . Internal Special Function Register Memory Map
	Table 8 . Special Function Register Reset Values

	External Special Function Registers

	Instruction Set
	Table 9 . Notes on Data Addressing Modules
	Table 10 . Notes on Program Addressing Modes
	Functional Ordered Instructions
	Table 11 . Arithmetic Operations
	Table 12 . Logic Operations
	Table 13 . Data Transfer Operations
	Table 14 . Boolean Manipulation Operations
	Table 15 . Program Branch Operations

	Hexadecimal Ordered Instructions
	Table 16 . Core8051 Instruction Set in Hexadecimal Order

	Instruction Definitions
	Table 17 . PSW Flag Modification (CY, OV, AC)

	Instruction Timing
	Program Memory Bus Cycle
	Table 18 . Conventions used in Figure 4 to Figure 19
	Figure 4 . Program Memory Fetch Cycle without Wait States
	Figure 5 . Program Memory Fetch with Wait States
	Figure 6 . Program Memory Read Cycle without Wait States
	Figure 7 . Program Memory Read Cycle with Wait States

	External Data Memory Bus Cycle
	Figure 8 . External Data Memory Read Cycle without Stretch Cycles
	Figure 9 . External Data Memory Read Cycle with One Stretch Cycle
	Figure 10 . External Data Memory Read Cycle with Two Stretch Cycles
	Figure 11 . External Data Memory Read Cycle with Seven Stretch Cycles
	Figure 12 . External Data Memory Write Cycle without Stretch Cycles
	Figure 13 . External Data Memory Write Cycle with One Stretch Cycle
	Figure 14 . External Data Memory Write Cycle with Two Stretch Cycles

