
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

CoreCIC v2.0

Handbook

Core V2.0 Handbook

Table of Contents

Introduction .. 3

General Description ... 3

Key Features ... 5

Supported Families .. 5

Core Version .. 5

Utilization and Performance .. 5

Theory of Operations ... 8

Interface Description .. 13

Implementation Details .. 21

Decimation Filter Timing .. 23

Interpolation Filter Timing .. 26

References .. 29

List of Changes .. 31

Product Support ... 33

Customer Service .. 33

Customer Technical Support Center ... 33

Technical Support .. 33

Website .. 33

Contacting the Customer Technical Support Center ... 33

ITAR Technical Support .. 34

CoreCIC v2.0 Handbook 2

Introduct ion

General Description
Microsemi CoreCIC IP is a highly configurable RTL generator for the decimation or interpolation cascaded

integrator-comb (CIC) filters. The CIC filters are widely used in multi-rate signal processing, particularly in up-

converters and down-converters, modulators and demodulators, sigma-delta analog to digital converters, and so on.

These filters are popular in decimation and interpolation filters where substantial rate change factor is required. The

CIC filters provide a linear phase response.

CoreCIC v2.0 Handbook 3

Introduction

Figure 1 shows a few application examples of the CIC filter.

Σ-∆

Modulator

1 bit @ 6.4 MHz
Decimating

CIC Filter

16 bits @ 400 kHz

Σ−∆ ADC

900

00

Complex

I/Q Data

CIC Low-pass

Decimating Filter

CIC Low-pass

Decimating Filter

Shape Improving

FIR Filter

Shape Improving

FIR Filter

I

Q

Digital Down Converter

900

00

Digital Up Converter

CIC Interpolating

Filter

CIC Interpolating

Filter

Preconditioning

FIR Filter

Preconditioning

FIR Filter

Baseband

I Data

Baseband

Q Data

+ Complex

I/Q Data

Analog signal

Figure 1 CIC Filter Application Examples

4 CoreCIC v2.0 Handbook

Key Features

Key Features
CoreCIC supports decimation and interpolation filter types. Following are the key features of CoreCIC filter:

• Fixed or programmable rate change from 2 to 1024

• One to eight integrator-comb stages

• Comb differential delay of one or two

• Signed 2's complement input data

• Input data width from 1 to 32 bits

• Output data width up to 100 bits

• Choice of output data truncation and two rounding types

• Optional Hogenauer pruning

• Support for up to 64 channels

Supported Families
CoreCIC supports the following families:

• SmartFusion2

• IGLOO2

• RTG4™

Core Version
This handbook applies to CoreCIC v2.0.

Utilization and Performance
The resource utilization and core performance are shown on Table 1 and Table 2 for SmartFusion2 M2S050 device,

speed grade -1.

Table 1 CIC Decimator Resource Utilization and Performance

Configuration Resource Utilization Maximum

Clock

Rate,

MHz

In
p

u
t

D
a
ta

W
id

th

O
u

tp
u

t
D

a
ta

W
id

th

R
a
te

 C
h

a
n

g
e

F
a
c
to

r

N
u

m
b

e
r

o
f

S
ta

g
e
s

N
u

m
b

e
r

o
f

IF

C
h

a
n

n
e
ls

 p
e
r

IF

4
L

U
T

D
F

F

R
A

M
 6

4
x
1
8

R
A

M
 1

K
1

8

RAM blocks are not used; Differential Delay = 1

16 16 4 3 1 1 751 730 0 0 385

16 16 4 3 4 1 1,905 1,902 0 0 345

16 16 4 3 1 5 1,452 1,706 0 0 314

16 16 40 3 1 1 1,063 1,022 0 0 341

16 16 40 3 4 1 2,713 2,702 0 0 331

16 16 40 3 1 5 2,030 2,388 0 0 313

16 16 4 2 1 1 511 495 0 0 386

16 16 4 2 4 1 1,241 1,224 0 0 366

CoreCIC v2.0 Handbook 5

Introduction

Table 1 CIC Decimator Resource Utilization and Performance

Configuration Resource Utilization Maximum

Clock

Rate,

MHz

In
p

u
t

D
a
ta

W
id

th

O
u

tp
u

t
D

a
ta

W
id

th

R
a
te

 C
h

a
n

g
e

F
a
c
to

r

N
u

m
b

e
r

o
f

S
ta

g
e
s

N
u

m
b

e
r

o
f

IF

C
h

a
n

n
e
ls

 p
e
r

IF

4
L

U
T

D
F

F

R
A

M
 6

4
x
1
8

R
A

M
 1

K
1

8

16 16 4 2 1 5 956 1,023 0 0 358

RAM blocks are not used; Differential Delay = 2

16 16 4 3 1 5 1,989 2,217 0 0 317

16 16 4 5 1 1 1,849 1,959 0 0 336

16 16 4 5 4 1 4,749 4,803 0 0 306

16 16 4 5 1 5 3,880 4,506 0 0 304

Use RAM blocks is On; Maximum MicroRAM Depth=64; Differential Delay = 1

12 16 4 3 4 14 2,232 2,090 15 0 250

30 18 4 3 4 14 4,238 4,008 30 0 250

Use RAM blocks is On; Maximum MicroRAM Depth=0; Differential Delay = 1

12 16 4 3 4 16 2,244 2,096 0 15 287

30 18 4 3 4 16 3,712 3,476 0 15 286

12 16 4 2 4 16 1,466 1,355 0 10 317

30 18 4 2 4 16 2,479 2,299 0 10 317

Use RAM blocks is On; Maximum MicroRAM Depth=0; Differential Delay = 2

12 16 4 2 4 16 1,558 1,433 0 10 315

30 18 4 2 4 16 2,575 2,376 0 10 308

Table 2 CIC Interpolator Resource Utilization and Performance

Configuration Resource Utilization Maximum

Clock

Rate,

MHz

In
p

u
t

D
a
ta

W
id

th

O
u

tp
u

t
D

a
ta

W
id

th

R
a
te

 C
h

a
n

g
e

F
a
c
to

r

N
u

m
b

e
r

o
f

S
ta

g
e
s

N
u

m
b

e
r

o
f

IF

C
h

a
n

n
e
ls

 p
e
r

IF

4
L

U
T

D
F

F

R
A

M
 6

4
x
1
8

R
A

M
 1

K
1

8

RAM blocks are not used; Differential Delay = 1

16 16 4 3 1 1 639 604 0 0 383

16 16 4 3 4 1 1,756 1,756 0 0 345

16 16 4 3 1 5 1,335 1,554 0 0 330

16 16 40 3 1 1 716 667 0 0 333

16 16 40 3 4 1 1,905 1,886 0 0 327

16 16 40 3 1 5 1,447 1,703 0 0 320

16 16 4 2 1 1 441 410 0 0 375

16 16 4 2 4 1 1,179 1,168 0 0 329

6 CoreCIC v2.0 Handbook

Utilization and Performance

Table 2 CIC Interpolator Resource Utilization and Performance

Configuration Resource Utilization Maximum

Clock

Rate,

MHz

In
p

u
t

D
a
ta

W
id

th

O
u

tp
u

t
D

a
ta

W
id

th

R
a
te

 C
h

a
n

g
e

F
a
c
to

r

N
u

m
b

e
r

o
f

S
ta

g
e
s

N
u

m
b

e
r

o
f

IF

C
h

a
n

n
e
ls

 p
e
r

IF

4
L

U
T

D
F

F

R
A

M
 6

4
x
1
8

R
A

M
 1

K
1

8

16 16 4 2 1 5 891 1,002 0 0 324

RAM blocks are not used; Differential Delay = 2

16 16 4 3 1 5 1,622 1,870 0 0 316

16 16 4 5 1 1 1,335 1,377 0 0 334

16 16 4 5 4 1 3,703 3,731 0 0 325

16 16 4 5 1 5 2,927 3,478 0 0 301

Use RAM blocks is On; Max MicroRAM Depth=64; Differential Delay = 1

11 16 4 3 4 14 2,246 2,118 15 0 250

29 18 4 3 4 14 4,157 3,996 30 0 250

Use RAM blocks is On; Max MicroRAM Depth=0; Differential Delay = 1

11 16 4 3 4 16 2,257 2,124 0 15 327

29 18 4 3 4 16 3,627 3,462 0 15 307

11 16 4 2 4 16 1,500 1,392 0 10 340

29 18 4 2 4 16 2,441 2,310 0 10 320

Use RAM blocks is On; Max MicroRAM Depth=0; Differential Delay = 2

12 16 4 2 4 16 1,554 1,445 0 10 332

30 18 4 2 4 16 2,489 2,351 0 10 312

The results shown on Table 1 and Table 2 were achieved at the Operating Conditions COM. The following tools were

used:

• Libero v11.4. Required Frequency = 400 MHz

• SynplifyPro H-2013.03M-SP1-1. Frequency = 300 MHz

The other core parameters were set as follows:

• Enable Variable Rate = No

• Apply Hogenauer Pruning = No

• Rounding Mode = Truncation

CoreCIC v2.0 Handbook 7

Introduction

Theory of Operations

Moving Average
The moving average is one of the most common filters in digital signal processing (DSP) and also called a boxcar

filter. As the name implies, it averages a number of L input samples to generate each output sample: 𝑦(𝑘) =
1𝐿�𝑋 (𝑘 + 𝑗)𝐿−1
𝑗=0

EQ1

The filter calculates a time domain convolution between an input signal and a boxcar function. A frequency domain

counterpart for the boxcar is sin(X)/X, which describes the frequency response of the filter. Hence, sinc filter is

another name for moving average and CIC filters.

Figure 2 shows block diagram of the moving average filter except dividing the output by L.

z-1

i

z-1 z-1 z-1

+

i-1 i-3 i-(L-1)i-2

x

y

Figure 2 Moving Average Block Diagram

The same result can be obtained by using a recursive form of the boxcar filter as shown in Figure 3. An integrator

accumulates input samples, while a comb adds a new accumulated sum and subtracts a delayed by L version of the

sum.

x
+

z-1

-
z-L

y

Integrator Comb

Figure 3 Recursive Moving Average

A recursive boxcar decimation filter adds a down-sampler by R where R is the decimation ratio. Figure 4 shows a

non-optimized decimation filter assuming the delay L = M * R, where, M is a constant coefficient called differential

delay. M = 1 or 2. The down-sampler by R ↓R discards R-1 output samples from every R samples.

x
+

z-1

-
z-R*M

y

Integrator Comb

 R

High

sample

rate Low

sample

rate

Figure 4 Non-optimized Boxcar Decimator Filter

8 CoreCIC v2.0 Handbook

Theory of Operations

Figure 5 shows a non-optimized interpolation filter structure.

x

+

z-1

-
z-M

Integrator

Comb

 R
y

High

sample

rate

Low

sample

rate

Figure 5 Boxcar Interpolation Filter (Non-optimized)

CIC Filter Structures
A CIC decimation filter is based on an optimized structure obtained from the non-optimized boxcar decimator block

diagram as shown in Figure 4 (see References, 1 and 2). Figure 6 shows a one-stage CIC filter block diagram after

placing the downsampler between the integrator and comb filter.

x
+

z-1

-
z-M

Integrator Comb

 R

y
Low

sample

rate

High

sample

rate

Figure 6 One-Stage CIC Decimation Filter

Figure 7 shows a cascaded N-stage decimation CIC filter where the integrators and combs are denoted as I and C,

respectively. The filter contains N integrators and N combs. The frequency response is same as N cascaded boxcar

filters.

I I I R C C Cx

High

sample

rate

Low

sample

rate
y

N N

Figure 7 N-Stage Decimation CIC filter

An interpolation CIC filter optimizes the structure, refer to Figure 5.

CoreCIC v2.0 Handbook 9

Introduction

Figure 8 shows a one-stage interpolation CIC filter.

x

+

z-1

-
z-M

Integrator

Comb

 R
y

Low

sample

rate High

sample

rate

Figure 8 One-Stage CIC Interpolation Filter

Figure 9 shows an N-stage interpolation CIC filter.

I I I
N

C C C
N

 Rx

Low

sample

rate
y

High

sample

rate

Figure 9 N-Stage Interpolation CIC Filter

The CIC filter implementations are preferred over other rate changing filters because they only use adders and delays

but not multipliers.

If the impulse response of a one- stage boxcar filter has a width of M * R, the N cascades of identical boxcar filters

have the overall Impulse Response Width of (M*R-1)*N+1.

EQ3 describes the system response of the CIC filter (see Reference 3): 𝐻(𝑧) = [� 𝑧−𝑘𝑀∗𝑅−1

𝑘=0

]
𝑁

EQ2

Multiple Channel Support

Multiple Interfaces

CIC filters of same configuration can share adders, subtractors, and other resources to process more channels, if the

required data processing rate is relatively slow. This rate is always low for the CIC filter comb section where comb

processing rate is R times lower than the processing rate of the integrator section, refer to Figure 7 and Figure 9.

Thus a single comb can support up to R integrator sections. To fully utilize the comb section throughput, a CIC filter

needs R integrator sections, each processing data at high sampling rate. In this handbook, such resource sharing is

called comb sharing.

Figure 10 shows a 3-channel filter with a decimation factor, R_RATE = 3. The CIC filter has three integrator sections,

and is capable of filtering three input samples per clock. The data samples from the channels are fed at each clock

interval.

The downsampled data from integrator are multiplexed so that each channel data occupies a separate time slot of

one clock cycle. The comb section utilizes the three clock intervals (obtained due to reduction in the rate by a factor

of 3) to process the integrated data samples.

10 CoreCIC v2.0 Handbook

Theory of Operations

Figure 10 shows a structure that has three interfaces namely, DIN_IF0, DIN_IF1, DIN_IF2 and one output for the

time-multiplexed output samples. For the core to generate the structure of three interfaces, one channel per interface

CIC decimator, set the parameters as follows:

• IF_NUM = 3

• CLK_PER_SAMPLE = 1

I I
DIN_IF0

ch0
I

I I I

I I I

 3

 3

 3

C C C
DOUT

ch0 - ch2

DIN_IF1

ch1

DIN_IF2

ch2

Figure 10 Three Interfaces, One Channel per Interface CIC Decimator

Similarly, the interpolation CIC filter can apply comb sharing to process more channels. Figure 11 shows an example

of a 4-channel filter with interpolation rate factor of four. The low rate input channels are time-multiplexed, and the

structure provides four output interfaces DOUT_IF0 to DOUT_IF3.

Set the parameter as:

• CLK_PER_SAMPLE = 1

• IF_NUM = 4

C C

I I 4 I

I I 4 I

I I 4 I

I I 4 I

C
DIN

ch0-ch3

DOUT_IF0

ch0

DOUT_IF1

ch1

DOUT_IF2

ch2

DOUT_IF3

ch3

Figure 11 Four Interfaces, One Channel per Interface CIC Interpolator

Comb and Integrator Time Share

The input samples of each decimation channel can arrive at lower rate than the field programmable gate array

(FPGA) clock rate, that is, there are idle clock intervals in between the samples of each input channel. Since they

arrive at a lower rate, the integrator sections can be time shared as well. This handbook refers this as time sharing.

Figure 12 shows a multi-channel CIC decimation example where input samples of every channel are separated by

one idle clock cycle. If this instance is created when CLK_PER_SAMPLE = 2, each integrator can use two clock

intervals, which is adequate to process two channels. The comb section has now six clock intervals, adequate to

process all six channels. Every interface supports two channels totaling at CLK_PER_SAMPLE*IF_NUM = 6

channels.

CoreCIC v2.0 Handbook 11

Introduction

I I I

I I I

I I I

 3

 3

 3

C C C

DIN_IF0

ch0, ch1

DIN_IF1

ch2, ch3

DIN_IF2

ch4, ch5

DOUT

ch0-ch5

Figure 12 Three Interfaces, Two Channels per Interface CIC Decimator

The time and comb sharing are independent of each other and can be combined as desired in decimation and

interpolation CIC filter types. Figure 13 shows the CIC structure with four output interfaces and two channels per

interface, totaling at CLK_PER_SAMPLE*IF_NUM = 8 channels.

The total number of channels processed by the CIC filter equals the product of the parameters IF_NUM and

CLK_PER_SAMPLE. If the product is more than the actual number of channels to be processed, use dummy

channels.

CoreCIC automatically identifies multiple channel filters, if the product of IF_NUM*CLK_PER_SAMPLE > 1 and

implements time and/or comb sharing based on the CLK_PER_SAMPLE and IF_NUM parameter values.

C C

I I 4 I

I I 4 I

I I 4 I

I I 4 I

C

DOUT_IF0

ch0, ch1

DOUT_IF2

ch4, ch5

DOUT_IF3

ch6, ch7

DOUT_IF1

ch2, ch3DIN

ch0-ch7

Figure 13 Four Interfaces, Two Channels per Interface CIC Interpolator

Bit Growth
Data path width of the CIC filter needs to grow from input to output to support valid processing. The core

automatically provides the required bit width for every component of the design. Internally, the processing results are

calculated with full precision. You can limit the output bit width by entering a desired value in the Output Data Width

field of the IP user interface and select truncation or rounding from Rounding Mode drop-down list. The core

supports truncation, round away from 0 and convergent rounding (rounding to nearest even number). Either type of

rounding or truncation applies to a full precision internal result.

CoreCIC in Decimation mode also supports optional Hogenauer pruning, which limits the intermediate stage bit

widths as described in the article by E.Hogenauer. The core does not calculate full precision results even internally

but limits their bit width in accordance with the approach by Hogenauer. When the reduced precision internal result

still exceeds the desirable output bit width, the truncation or rounding applies similar to the full precision results. The

Hogenauer pruning may reduce resource utilization.

12 CoreCIC v2.0 Handbook

Interface Description

Interface Description

Parameters and Generics
Table 3 describes the CoreCIC parameters (Verilog) or generics (VHDL). All the parameters and generics are

positive integer type numbers.

Table 3 CoreCIC Parameter and Generic Descriptions

Parameter Name
Valid

Range
Default Description

N_STAGES 1-8 3 Number of cascaded stages. There is always equal number of integrator

and comb stages. Any selected number N_STAGES means the CIC filter

has N_STAGES of integrators and N_STAGES of combs.

M_DLY 1, 2 1
Differential comb delay M.

CIC_TYPE 0, 1 0 0: Decimation CIC filter.

1: Interpolation CIC filter.

DIN_WIDTH 1-32 18 Input data bit width.

VAR_RATE 0, 1 0 0: Fixed rate change factor.

1: Variable programmable rate change factor.

R_RATE 2-1024 4 Rate change factor R. If variable rate change is disabled VAR_RATE = 0,

the R_RATE defines fixed rate change factor. Otherwise it defines an initial

value of the variable factor set upon core configuration.

VAR_R_MIN 2-1023 4 Minimal variable rate change factor. Available only if VAR_RATE is set.

VAR_R_MAX 3-1024 5 Maximal variable rate change factor. Available only if VAR_RATE is set.

PRUNE 0-1 0 1: Apply Hogenauer pruning across decimation filter stages. Available for

decimation filter only, that is when CIC_TYPE = 0.

0: Do not apply pruning.

DOUT_WIDTH 2-100 18 Output data bit width. If the width set is less than full output bit width, the

core truncates or rounds the filtered data to the DOUT_WIDTH.

QUANTIZATION 0-2 0 Output data quantization mode. Applies when the output data bit width

selected is less than the automatic full precision processing bit width:

0: Truncation mode.

1: Round away from 0.

2: Convergent rounding.

IF_NUM 1-32 1 Number of interfaces. For decimation filter, it is a number of input

interfaces; for interpolation filter it is a number of output interfaces. Each

interface is capable of accepting or generating one or more data channels.

In other words, IF_NUM indicates a number of physical integrator

cascades implemented.

IF_NUM cannot exceed the rate change factor R_RATE, that is IF_NUM ≤
R_RATE. In the case of variable rate (VAR_RATE=1), the IF_NUM cannot

exceed the value of VAR_R_MIN, that is IF_NUM ≤ VAR_R_MIN.

Since the channel number of a multichannel filter equals

IF_NUM * CLK_PER_SAMPLE, and the maximum channel count is 64,

the IF_NUM must not exceed the value of 64/CLK_PER_SAMPLE.

CLK_PER_SAMPLE 1-64 1 Number of FPGA clock cycles per sample of any channel.

Indicates a number of time-multiplexed channels per interface.

Since the channel number of a multichannel filter equals

IF_NUM * CLK_PER_SAMPLE, and the maximum channel count is 64,

CoreCIC v2.0 Handbook 13

Introduction

Table 3 CoreCIC Parameter and Generic Descriptions

Parameter Name
Valid

Range
Default Description

the CLK_PER_SAMPLE must not exceed the value of 64/IF_NUM.

USE_RAM 0, 1 0 Use RAM blocks to implement CIC registers.

0: Use only fabric-based register implementations.

1: Permission to use RAM blocks when appropriate.

URAM_MAX_DEPTH 0, 4, 8, 16,

32, 64,

128, 256,

512, 1024

0 Maximum depth of a RAM to be implemented using micro-RAM (uRAM)

blocks. If USE_RAM is set, the core uses hard RAM blocks available on a

selected FPGA device. When the uRAM blocks are available, the core

uses them if the required memory depth does not exceed the

URAM_DEPTH. Otherwise it builds the memory out of LSRAM blocks.

Ports
Figure 14 shows the CIC filter schematic representation where optional port names are in Italics.

CoreCIC

DIN

DIN_VALID

RFD

DOUT

DOUT_VALID

RATE

RATE_WE

CHAN_SYNC_I CHAN_SYNC_O

CHAN_OUT
CLK

NGRST

RST

RFD_PILOT

Figure 14 I/O Ports

14 CoreCIC v2.0 Handbook

Interface Description

The pinout is a superset of all possible ports. Table 4 provides the port definitions for the core.

Table 4 CIC Filter In or Out Signals

Signal In/Out Port Width Bits Description

DIN In DIN_WIDTH for

Interpolation CIC;

DIN_WIDTH*IF_NUM for

decimation filter

Input data to be filtered. In case of interpolation filter or a

single channel for any CIC type, the data width equals

DIN_WIDTH. In case of decimation filter with multiple

Interfaces, the input data width for each interface is

DIN_WIDTH and the total input data width =

DIN_WIDTH*IF_NUM.

DIN_VALID In 1 Input data valid. Active High. When the signal is active, the

input data sample is loaded into decimation CIC filter. If not

used, the core assumes that every data sample is valid.

For the interpolation CIC filter, the signal not only marks the

valid input sample but also defines a rate for the interpolated

output samples. For example, if DIN_VALID has a duty cycle

of three, the output sample rate is three times less than the

CLK rate. The input sample of the interpolator is valid, if it is

accompanied by DIN_VALID and CHAN_SYNC_I signals. The

signal must be one-clock wide.

RFD Out 1 Ready for input data. In case of interpolation filter, the RFD

notifies a data source that the CIC filter is ready for a new

input sample. In case of decimation filter, the signal goes Low

only when integrator reset process is underway. Input data

samples are ignored when RFD is Low.

RFD_PILOT Out 1 Optional pulse the CIC interpolator generates just before the

RFD signal. The pulse width is one clock period. It can be

used to let the data source more time to prepare another data

sample.

DOUT Out DOUT_WIDTH for

Decimation CIC;

DOUT_WIDTH*IF_NUM

for Interpolation filter

Output filtered data. In case of decimation filter or a single

channel for any CIC type, the output data width equals

DOUT_WIDTH. In case of interpolation filter with multiple

Interfaces, the output data width for each interface is

DOUT_WIDTH and the total result data width =

DOUT_WIDTH*IF_NUM.

DOUT_VALID Out 1 for Decimation CIC;

IF_NUM for Interpolation

filter

Filtered data valid indicates that a new output data sample is

present at the DOUT port. For the decimation filter as well as a

single interface interpolation filter, the signal is one bit wide. In

case of interpolation filter with multiple interfaces, the output

data width for each interface is one and the total result signal

width = IF_NUM.

RATE In 11 Variable rate value. The port is available when variable rate

change mode is selected, VAR_RATE = 1.

RATE_WE In 1 Register a new value of the variable RATE. The RATE_WE

must be a one-clock wide pulse. The port is available when

variable rate change mode is selected, VAR_RATE = 1. After

the RATE value is stored in the core, the effective rate factor

does not change yet. The new RATE value takes effect after

the core receives the synchronous reset RST pulse.

CHAN_SYNC_I In 1 Channel synchronization signal. For a decimation filter, it

provides an advanced identification for the first data channel

when CLK_PER_SAMPLE > 1. For an interpolation filter, the

signal is expected to come even if the filter has only one

channel. Then the signal marks a time slot when the input

CoreCIC v2.0 Handbook 15

Introduction

Table 4 CIC Filter In or Out Signals

Signal In/Out Port Width Bits Description

sample is valid. For a multichannel interpolator, when

CLK_PER_SAMPLE > 1 the signal is supposed to mark the

valid input sample of the first time-share channel. The

CHAN_SYNC_I must be a one-clock wide pulse.

CHAN_SYNC_O Out 1 Output channel synchronization signal. This clock-wide pulse

identifies the first channel data output sample.

CHAN_OUT Out 6 Output channel numerical ID.

CLK In 1 The core master clock.

NGRST In 1 Optional asynchronous reset. Active Low. The signal is

expected to follow the FPGA power-on. The signal initiates

reset of all internal registers. If RAM blocks are used to

implement integrator or comb registers, the actual reset can

take several clock cycles. Then on the rear edge of the

NGRST, the core automatically generates an internal reset

wide enough to reset all the registers.

RST In 1 Synchronous reset. Active High. The signal initiates reset of all

internal registers. If RAM blocks are used to implement

integrator or comb registers, the actual reset can take several

clock cycles. Then the RST signal initiates an internal reset

wide enough to reset all the registers.

Figure 15 and Figure 16 show examples of using the core in fixed and variable rate modes.

CoreCIC
DIN

DIN_VALID

RATE

RATE_WE

CHAN_SYNC_I CHAN_SYNC_O

CHAN_OUT
CLK

NGRST

RSTN

DOUT

DOUT_VALID

RFD

RFD_PILOT

Figure 15 Fixed Rate Single Channel CIC Filter

16 CoreCIC v2.0 Handbook

Interface Description

CoreCIC
DIN

DIN_VALID

RATE

RATE_WE

CHAN_SYNC_I CHAN_SYNC_O

CHAN_OUT
CLK

NGRST

RSTN

DOUT

DOUT_VALID

RFD

RFD_PILOT

Figure 16 Variable Rate Single Channel CIC Filter

Figure 17 depicts the filter connections in multiple channel mode.

CoreCIC
DIN

DIN_VALID

RATE

RATE_WE

CLK

NGRST

RSTN

DOUT

DOUT_VALID

RFD

RFD_PILOT

CHAN_SYNC_I CHAN_SYNC_O

CHAN_OUT

Figure 17 Fixed Rate Multiple Channel Mode

CoreCIC v2.0 Handbook 17

Introduction

Decimator Interface

This section describes basics of the CIC decimation functionality. For more information, refer to Implementation

Details section.

A decimation filter receives R_RATE input samples to generate an output sample. The input data samples

sequentially arrive at DIN port of a single channel decimator. Every input sample is accompanied by the DIN _VALID

pulse of one clock period. The filter accepts arbitrary gaps between the input samples. The data source indicates the

break by de-asserting the DIN _VALID signal. For maximum throughput, there must not be any gaps in between the

input samples. If a data source can supply a new sample for every FPGA clock cycle, attach the DIN _VALID to VCC.

Once the decimator gets R_RATE input samples, it posts an output filtered sample on the DOUT port after it finishes

the sample processing. It also accompanies the valid output sample by the clock-wide DOUT_VALID signal. The CIC

filter introduces processing latency that is described below.

A time share multichannel decimator, where CLK_PER_SAMPLE > 1 expects the data samples to come in the

natural order. For example, at CLK_PER_SAMPLE = 3 the first channel sample comes first, followed by a sample of

the second channel and then third channel. Input sample of each channel is accompanied by the DIN_VALID pulse.

Similarly to the single channel, if there are no gaps in between the input samples the DIN_VALID signal has to be

permanently high. The data source identifies the first channel by the CHAN_SYNC_I pulse that accompanies the DIN

sample of the first channel. In other words, the CHAN_SYNC_I pulse is a copy of the DIN_VALID pulse for the first

data channel. The decimator assigns the channels numerical IDs, from 0 to 2. On receiving R_RATE input samples

from all channels, the decimator outputs filtered DOUT data, one sample at a time for the channels 0 to 2. The output

channels are accompanied by the DOUT_VALID pulses. The DOUT output for the channel 0 is accompanied by the

CHAN_SYNC_O pulse. The CHAN_SYNC_O is a copy of the channel 0 DOUT_VALID signal. CHAN_OUT provides

the number of channels currently posted on the DOUT output. In this example, CHAN_OUT sends the numbers 0, 1,

2 synchronized with valid output samples.

A multiple interface decimator, where IF_NUM > 1 expects input data samples to come to each interface,

simultaneously. A single DIN_VALID pulse is used for all interfaces. It signifies another set of IF_NUM input samples

is ready to be received by all interfaces. Similarly to the single channel, if there are no gaps in between the input

samples, the DIN_VALID signal must be permanently High. If multiple interface decimator does not utilize time share,

that is the parameter CLK_PER_SAMPLE=1, the CHAN_SYNC_I signal must replicate the DIN_VALID pulse. Once

the decimator receives R_RATE input samples on all its interfaces, it starts placing output samples on the DOUT port

one channel at a time: an output sample for the channel coming to the interface 0 and the channel coming to the

interface 1, and so on. Each output sample is accompanied by the DOUT_VALID pulse. CHAN_SYNC_O marks the

channel of the interface 0. CHAN_OUT supplies the numerical channel IDs synchronized with the output samples.

A multichannel decimator can combine time share and comb share when IF_NUM > 1 and CLK_PER_SAMPLE > 1.

The total number of channels processed by such filter equals IF_NUM*CLK_PER_SAMPLE. Consider an example of

a decimator processing six channels: IF_NUM = 2 and CLK_PER_SAMPLE = 3.

The data samples are expected to come to the interface 0 in the following order:

• Sample 0 of the channel 0

• Sample 0 of the channel 1

• Sample 0 of the channel 2

• Sample 1 of the channel 0

• Sample 1 of the channel 1, and so on

Simultaneously the following data is coming to the interface 1:

• Sample 0 of the channel 3

• Sample 0 of the channel 4

• Sample 0 of the channel 5

• Sample 1 of the channel 3

• Sample 1 of the channel 4, and so on

18 CoreCIC v2.0 Handbook

Interface Description

Every sample of the channel 0 to channel 2 is accompanied by DIN_VALID pulses unless the data is coming without

gaps. Samples of the channel 0 are accompanied by the CHAN_SYNC_I pulses. Since the data to interfaces 0 and 1

is coming simultaneously, the CHAN_SYNC_I pulse marks the channel 3 as well. The filter outputs samples of the

channel 0 to 5 sequentially with every sample accompanied by the DOUT_VALID pulse. The core generates the

CHAN_SYNC_O pulse when the channel 0 filtered sample shows up at the DOUT output. CHAN_OUT supplies

channel IDs from 0 to 5 synchronized with valid output samples.

Upon reset signals, NGRST or RTS, the decimator enters the reset state. During the reset state, the decimator keeps

the RFD signal Low.

Note: The DIN_VALID pulses are expected to be present at this time but the core ignores any input data while the

RFD signal is Low. In the decimation mode, only during the reset state the RFD signal goes Low.

Interpolator Interface

This section describes basics of the CIC interpolation functionality. For more information, refer to Implementation

Details section.

An interpolation filter generates R_RATE output samples for every input data sample. The input data samples arrive

at DIN port of a single channel interpolator spaced by time intervals sufficient for the filter to output R_RATE filtered

samples. To assist a data source in providing minimal sufficient time intervals, the interpolator generates the

handshake signals request for data (RFD) and RFD_PILOT. The interpolator raises the RFD when it is ready to

accept a new input sample. The RFD stays High until the data source provides a valid input sample.

Note: The functionality of the DIN_VALID pulse differs from that of decimation CIC: the signal not only accompanies

the valid input samples but also influences interpolated output sample rate. The DIN_VALID pulse can direct

the interpolator to output filtered samples at a fraction of clock rate. For example, it is required that the CIC

interpolator generates output samples at every third clock interval. Then the DIN_VALID duty cycle has to be

1/3, that is the DIN_VALID pulse comes at every third clock cycle. Since the input sample rate of the

interpolation filter is R_RATE times lower, the valid input sample period of this example equals 3*R_RATE. It

is accompanied by the CHAN_SYNC_I pulse. It means, the valid input sample is accompanied by

CHAN_SYNC_I and DIN_VALID pulses.

The RFD_PILOT is a clock-wide pulse that precedes the RFD signal. The data source can use either or both

handshake signals when generating another input data sample.

Note: The interpolator only accepts the data samples that are accompanied by the CHAN_SYNC_I signal while the

RFD signal is High.

The filter tolerates gaps between the input samples that exceed the minimal time intervals. The filter raises the output

RFD signal, and waits for the next valid input sample. For maximum throughput, the data source must supply a fresh

input sample on the clock interval following the RFD_PILOT signal. Then the DIN_VALID signal must be connected to

VCC. The RFD_PILOT pulse can be used to achieve the highest throughput at any given DIN_VALID rate, refer to

Figure 18.

D

clkEn

CoreCIC Interpolator

CHAN_SYNC_I

DIN_VALID

RFD_PILOT

Figure 18 Using RFD_PILOT Signal

CoreCIC v2.0 Handbook 19

Introduction

A time share multichannel interpolator where CLK_PER_SAMPLE > 1 expects the data samples to come in the

natural order. For example, at CLK_PER_SAMPLE = 3, the first channel sample comes first followed by a sample of

the second channel and the third channel. Samples must be spaced so that the CIC has sufficient time to output

interpolated samples at the rate of DIN_VALID. It means, an interval between every two consecutive input samples

must not be less than R_RATE of DIN_VALID time intervals. Every input sample is accompanied by the DIN_VALID

pulse. The data source identifies the first time share channel by the CHAN_SYNC_I pulse that accompanies the DIN

sample of the first channel. It means, the CHAN_SYNC_I is a copy of the DIN_VALID pulse for the first data channel.

The interpolator assigns the channels numerical IDs from 0 to 2. On receiving an input sample from all three

channels, the CIC outputs 3*R_RATE interpolated DOUT data, one sample at a time: a first interpolated sample for

the channel 0, a first interpolated sample for the channel 1 and the first interpolated sample for the channel 2. Then it

outputs the second interpolated sample for 0 to 2 channels, the third one and finally the R_RATE-1 interpolated

sample for the channels 0 to 2. The output channels are accompanied by the DOUT_VALID pulses. Their rate

equals the rate of DIN_VALID pulses. If the DIN_VALID signal is permanently High, the DOUT_VALID signal also

stays High permanently. The DOUT output for the channel 0 is accompanied by the CHAN_SYNC_O pulse. The

CHAN_OUT provides the number of a channel currently posted on the DOUT output. In this example, the

CHAN_OUT would output the numbers 0, 1, 2 synchronized with valid output samples.

A multiple interface interpolator where IF_NUM > 1 expects all the input data samples to come to a single data input

DIN sequentially: samples 0 of the channels 0 to IF_NUM-1, then samples 1 of the channels 0 to IF_NUM-1, etc.

Every input sample is accompanied by the DIN_VALID pulse, and the samples of the channel 0 are additionally

accompanied by the CHAN_SYNC_I pulses. Only the samples from the same channel have to provide sufficient time

interval for the filter to generate interpolated samples. It means, samples from channels 0 to IF_NUM-1 are supposed

to come on every clock or spaced by DIN_VALID period. Figure 19 shows an example of interpolator input signals

when R_RATE = 4, IF_NUM = 2, and input data are permanently valid, that is DIN_VALID = 1. The samples from

channel 0 and 1 come without ant interval but the DIN waits for two clock cycles so, the consecutive samples of the

same channel are spaced by R_RATE-1 clock intervals.

CLK

DIN_VALID

CHAN_SYNC_I

DIN

Samples from

channel 0

Samples from

channel 1

Figure 19 Example of Interpolator Input Signals at DIN_VALID Always Active

Figure 20 shows an example of the same interpolator configuration. The input data is valid on every other clock

interval.

CLK

DIN_VALID

CHAN_SYNC_I

DIN

Samples from

channel 0

Samples from

channel 1

Figure 20 Example of Interpolator Input Signals at DIN_VALID Active Every Other Clock

20 CoreCIC v2.0 Handbook

Implementation Details

In both examples, on receiving an input sample from channels 0 and 1, the CIC outputs 4*R_RATE interpolated

DOUT data, one sample at a time: a first interpolated sample for the channel 0 and a first interpolated sample for the

channel 1, refer to Figure 19 and Figure 20. Then it outputs the second interpolated sample for the channels 0 and 1,

etc and finally the forth interpolated sample for the channels 0 and 1. The output channels are accompanied by the

DOUT_VALID pulses. Their rate equals the rate of DIN_VALID pulses. If the DIN_VALID signal is permanently High,

the DOUT_VALID signal also stays High permanently. The DOUT output for the channel 0 is accompanied by the

CHAN_SYNC_O pulse.

A multichannel interpolator can combine time share and comb share when IF_NUM > 1 and CLK_PER_SAMPLE > 1.

The total number of channels processed by such filter equals IF_NUM * CLK_PER_SAMPLE. For example, an

interpolator processing six channels: IF_NUM = 2, CLK_PER_SAMPLE = 3, and rate changing factor R_RATE = 4.

Figure 21 shows in/out channel mapping.

Multi-stage Comb

 4

 4

DOUT_IF0

ch0,ch1,ch2

DOUT_IF1

ch3,ch4,ch5DIN

ch0-ch5

Multi-stage Integrator

Multi-stage Integrator

Figure 21 I/O Channel Mapping for an Interpolator Example

The data samples are expected to come to the interpolator DIN input in the following order: sample 0 of the channel

0, sample 0 of the channel 1, and sample 0 of the channel 5. The interpolated output samples appear on the interface

0 for the channels 0 to 2 and on the interface 1 for the channels 3 to 5.

Implementation Details

Reset
The CoreCIC filter must be reset to generate correct results. It gets reset automatically on powering ON an FPGA.

The core initializes the reset based on positive edge of the NGRST signal that normally follows the power ON. The

RST signal initiates the core reset. Depending on the core configuration, the reset state can take several clock cycles

to properly initialize the core. Once initiated by NGRST or RST signals, the core ignores any data while the reset

state takes place. When the reset state is over, the core raises the RFD signal and the core is ready for normal

processing.

Note: The DIN_VALID pulses are expected to be present during the reset state but the core ignores any input data

while the RFD signal is Low.

Latency
EQ3 describes the core latency expressed in clock CLK cycles when DIN_VALID is not High permanently:

Latency = N_STAGES*(3*DIN_VALID+4)+2 Clock Cycles

EQ3

When DIN_VALID is permanently active, the formula changes to:

Latency = 7*N_STAGES+2 Clock Cycles

EQ4

CoreCIC v2.0 Handbook 21

Introduction

Multiple Interface Connections
Both decimation and interpolation filters can have multiple interfaces (IF_NUM > 1) to provide connections to high

speed data source or data sink. Multiple interface decimator receives data from multiple channels simultaneously,

refer to Figure 10 and Figure 12. The data from different channels must be concatenated to form a single DIN word,

refer Figure 22. The concatenated DIN word width = IF_NUM*DIN_WIDTH bits.

Bits

[DIN_WIDTH-1:0]

Bits

[2*DIN_WIDTH-1:

DIN_WIDTH]

Bits

[(i+1)*DIN_WIDTH-1:

i*DIN_WIDTH]

channel 0

channel 1

channel i

DIN
Decimator

IF i

IF 0

IF 1

DOUT

Figure 22 Data Concatenation for Multiple Interface Decimator

Similarly, the multiple interface interpolator provides parallel data for multiple channels by generating a concatenated

DOUT word, refer to Figure 11 and Figure 13. Bits arrangement for the DOUT interpolation word is depicted on

Figure 23. The concatenated DOUT word width = IF_NUM*DOUT_WIDTH.

Interpolator

IF i

IF 0

IF 1

DIN

Bits

[DOUT_WIDTH-1:0]

Bits

[2*DOUT_WIDTH-1:

DOUT_WIDTH]

Bits

[(i+1)*DOUT_WIDTH-1:

i*DOUT_WIDTH]

DOUT

channel 0

channel 1

channel i

Figure 23 Output Concatenation of a Multiple Interface Interpolator

Variable Rate
In addition, to a fixed upsampling or downsampling rate, the core supports programmable rate change factor. To

enable the programmable rate mode, select Enable Variable Rate check box and enter the initial Rate Change

Factor, Minimum, and Maximum programmable rate values. On power ON, the core automatically uses the Rate

Change Factor value. To update the rate change value, you need to provide the desired rate change value on the

RATE port of the core and issue a clock wide pulse on the RATE_WE pin. Then the desired RATE value gets stored

inside the core. The core uses the previously entered rate change value or initial Rate Change Factor until the

synchronous reset pulse on the RST port is provided. When the core completes its internal reset, the new rate

change value is used.

22 CoreCIC v2.0 Handbook

Decimation Filter Timing

The minimum and maximum programmable rate values are used at the IP generation time to create RTL that can

handle the indicated values.

Note: The wider the variable (programmable) rate range, the more FPGA resources will be utilized and potentially

lower max clock rate will be achieved.

RAM Block Use
The CIC filter components such as, delay line of the comb section and multiple channel accumulators of the

integrator section can be implemented using hard RAM blocks available on FPGA. Such implementation reduces

fabric resource utilization and can improve processing speed. The core automatically infers the RAM blocks, if the

Use RAM Blocks check box is selected. You can decide the RAM blocks to be used, LSRAM or uRAM by providing

Max MicroRAM Depth value. The core utilizes uRAM blocks whenever the RAM depth required does not exceed the

value entered. Otherwise it uses the LSRAM blocks.

Decimation Filter Timing
Figure 24 to Figure 27 show a few examples of decimator timing diagrams. The fixed downsampling rate R_RATE =

2 for all the examples, that is the decimator outputs one sample for every two input samples. The timing diagrams

show time intervals immediately after the RFD goes High in response to the NGRST or RST signals issued earlier.

This is done to illustrate the Latency time. The timing relations between the signals stay the same indefinitely after.

Figure 24 shows a timing diagram for a single channel decimator where data samples come at every clock cycle. It is

assumed that the filter has been reset earlier so, that the RFD signal is active. Data samples x(0) and x(1) are coming

to the DIN input at every clock cycle from when DIN_VALID goes High. CHAN_SYNC_I for the example should be

indefinitely active, as there is only a single channel.

CLK

RFD

DIN_VALID

DIN x(0) x(1) x(2) x(3) x(4) x(5) x(6)

DOUT

DOUT_VALID

CHAN_SYNC_O

CHAN_SYNC_I

CHAN_OUT

y(0)

x(7)

y(1) y(2) y(3)

0

~~
~ ~

~~
~

Latency

Figure 24 Decimation CIC Timing - Single Channel, Data Permanently Valid

After the latency time of the filter expires, the decimator raises the DOUT_VALID signal and outputs a decimated

sample y(0) on the DOUT port. The DOUT_VALID signal stays High for a single clock period and then goes Low for

R_RATE clock periods, in this case for one clock period. The DOUT port keeps the output sample until the next

DOUT_VALID pulse starts. Once the DOUT_VALID pulse gest asserted for the first time since filter reset happened,

the CHAN_SYNC_O goes High and stays in the active state indefinitely. The CHAN_OUT outputs the channel

number of 0.

Figure 25 shows a timing diagram for the single channel decimator with data coming every other clock. The input

samples x(0) and x(1) are accompanied by the DIN_VALID pulses. CHAN_SYNC_I can be a copy of the DIN_VALID

pulses or just stay High indefinitely. After Latency, the core raises the DOUT_VALID signal for one clock period and

starts outputting the decimated sample y(0), y(1), etc. The DOUT_VALID pulses are separated by four clock periods.

The CHAN_SYNC_O signal replicates the DOUT_VALID signal, and the CHAN_OUT equals 0.

CoreCIC v2.0 Handbook 23

Introduction

CLK

RFD

DIN_VALID

DIN x(0)

DOUT

DOUT_VALID

CHAN_SYNC_O

CHAN_SYNC_I

CHAN_OUT

y(0)

0

~~
~ ~

~~
~

x(1) x(2) x(3) x(4)

y(1)

Latency

x(5)

Figure 25 Decimation CIC Timing - Single Channel, Data Coming Every Other Clock

Figure 26 shows an example of a multi-channel decimator timing diagram. In this example, a data source is capable

of providing a fresh input sample at every clock interval thus, the DIN_VALID signal is High permanently. The data

comes from three multiplexed time share channels x0, x1 and x2 on the same DIN bus. Multiplexing the three

channels into a single bus is possible, as for this example the parameter CLK_PER_SAMPLE = 3. CHAN_SYNC_I

marks every sample of the first channel data x0.

The CHAN_SYNC_I is supposed to provide advanced warning when the first channel data is coming, that is it must

come immediately before the first channel data x0. Since the channels normally are cyclically multiplexed, it is

recommended to raise the CHAN_SYNC_I signal when the last channel data is present on the core DIN input. Figure

26 shows the CHAN_SYNC_I signal active while the channel x2 data enter the filter.

CLK

RFD

DIN_VALID

DIN x0(0)

DOUT

DOUT_VALID

CHAN_SYNC_O

CHAN_SYNC_I

CHAN_OUT

x1(0) x2(0) x0(1) x1(1) x2(1) x0(2) x1(2) x2(2) x0(3) x1(3) x2(3)

y0(0) y1(0) y2(0) y1(1) y2(1)y0(1)

0 1 2 0 1 2

Latency

~~
~ ~

~~
~

Figure 26 Decimation CIC Timing - Three Time Share Channels, Data Permanently Valid

Once the decimator is ready to output the filtered samples, it raises the DOUT_VALID signal that lasts for three clock

intervals. Then the DOUT_VALID signal goes inactive for (R_RATE-1)*CLK_PER_SAMPLE clock periods, that is for

three periods in this example. CHAN_SYNC_O marks every output sample of the channel y0, and the CHAN_OUT

counts channels 0 to 2 while the DOUT_VALID signal is active.

Figure 27 shows a timing diagram for the two-channel decimator that has two interfaces, IF_NUM = 2. Data from the

channel x0 comes to the lower bits of the DIN input (see section 8.3). It is called IF0 DIN, refer to Figure 27. Data

from the channel x1 comes to the upper bits of the DIN input named IF1 DIN. For this example, CHAN_SYNC_I stays

High, as each interface does not utilize time share (CLK_PER_SAMPLE = 1). After Latency interval, the core raises

DOUT_VALID and starts outputting the decimated samples: y0(0) is calculated based on the two samples x0(0) and

x0(1), y0(1) is based on the samples x0(2) and x0(3), etc. Similarly, the decimated samples of the interface IF1 are

calculated. The data from both interfaces appear on the port DOUT. The CHAN_SYNC_O signal marks the output

samples originated at the interface IF0. The CHAN_OUT signal indicates the channel that is currently being present

at the DOUT port.

24 CoreCIC v2.0 Handbook

Decimation Filter Timing

CLK

RFD

DIN_VALID

IF0 DIN

DOUT

DOUT_VALID

CHAN_SYNC_O

CHAN_SYNC_I

CHAN_OUT

IF1 DIN

x0(0) x0(1) x0(2) x0(3) x0(4) x0(5) x0(6) x0(7)

x1(0) x1(1) x1(2) x1(3) x1(4) x1(5) x1(6) x1(7)

y0(0) y1(0) y0(1) y1(1) y0(2) y1(2) y0(3) y1(3)

0 1 0 1 0 1 0 1

Latency

~~
~ ~

~~
~

Figure 27 Decimation CIC Timing - Two Interfaces, Data Permanently Valid

Figure 28 shows a six-channel CIC decimator timing diagram. The decimator has two interfaces IF_NUM = 2, with

each interface processing three multiplexed channels at CLK_PER_SAMPLE = 3. CHAN_SYNC_I provides advance

warning the first channel for each interface is about to come. The CHAN_SYNC_I signal coincides with the last time

share channel, that is the channel x2 on the interface IF0 and the channel x5 of the interface IF1. Since the example

implements the maximum number of interfaces IF_NUM = 2 allowed at R_RATE = 2, the comb section of the filter is

busy all the time and the valid decimated samples are generated without breaks. This is signified by the

DOUT_VALID High permanently after initial Latency.

CLK

RFD

DIN_VALID

IF0 DIN x0(0)

DOUT

DOUT_VALID

CHAN_SYNC_O

CHAN_SYNC_I

CHAN_OUT

x1(0) x2(0) x0(1) x1(1) x2(1) x0(2) x1(2) x2(2) x0(3) x1(3) x2(3)

y0(0) y1(0) y1(1)y0(1)

0 1 2 0 1 2

Latency

~~
~ ~

~~
~

x3(0) x4(0) x5(0) x3(1) x4(1) x5(1) x3(2) x4(2) x5(2) x3(3) x4(3) x5(3)IF1 DIN

y2(0) y3(0) y4(0) y5(0) y2(1)

3 4 5

Figure 28 6-Channel Decimator Timing - Two Interfaces Three Time Share Channels Each, Data Always Valid

There is a subtle difference in processing parallel streams of data coming to multiple CIC interfaces. Figure 29 shows

an example of a CIC decimator with IF_NUM=2, R_RATE=3, and CLK_PER_SAMPLE=1. The processing of the

DIN_IF1 data is shifted by one sample with regard to the input data of the DIN_IF0.

CoreCIC v2.0 Handbook 25

	Contact us
	Introduction
	General Description
	Key Features
	Supported Families
	Core Version
	Utilization and Performance
	Theory of Operations
	Moving Average
	CIC Filter Structures
	Multiple Channel Support
	Multiple Interfaces
	Comb and Integrator Time Share

	Bit Growth

	Interface Description
	Parameters and Generics
	Ports
	Decimator Interface
	Interpolator Interface

	Implementation Details
	Reset
	Latency
	Multiple Interface Connections
	Variable Rate
	RAM Block Use

	Decimation Filter Timing

