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Introduct ion 

General Description 
Microsemi CoreCIC IP is a highly configurable RTL generator for the decimation or interpolation cascaded 

integrator-comb (CIC) filters. The CIC filters are widely used in multi-rate signal processing, particularly in up-

converters and down-converters, modulators and demodulators, sigma-delta analog to digital converters, and so on. 

These filters are popular in decimation and interpolation filters where substantial rate change factor is required. The 

CIC filters provide a linear phase response.  
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Introduction 

Figure 1 shows a few application examples of the CIC filter.  

Σ-∆ 

Modulator

1 bit @ 6.4 MHz
Decimating 

CIC Filter

16 bits @ 400 kHz

Σ−∆ ADC

900

00

Complex 

I/Q Data

CIC Low-pass 

Decimating Filter

CIC Low-pass 

Decimating Filter

Shape Improving 

FIR Filter 

Shape Improving 

FIR Filter 

I

Q

Digital Down Converter

900

00

Digital Up Converter

CIC Interpolating 

Filter

CIC Interpolating 

Filter

Preconditioning

FIR Filter

Preconditioning

FIR Filter

Baseband 

I Data

Baseband 

Q Data

+ Complex 

I/Q Data

Analog signal

 

Figure 1  CIC Filter Application Examples 
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Key Features 
CoreCIC supports decimation and interpolation filter types. Following are the key features of CoreCIC filter: 

• Fixed or programmable rate change from 2 to 1024 

• One to eight integrator-comb stages 

• Comb differential delay of one or two 

• Signed 2's complement input data  

• Input data width from 1 to 32 bits 

• Output data width up to 100 bits 

• Choice of output data truncation and two rounding types 

• Optional Hogenauer pruning 

• Support for up to 64 channels 

Supported Families 
CoreCIC supports the following families: 

• SmartFusion2 

• IGLOO2 

• RTG4™  

Core Version 
This handbook applies to CoreCIC v2.0. 

Utilization and Performance 
The resource utilization and core performance are shown on Table 1 and Table 2 for SmartFusion2 M2S050 device, 

speed grade -1. 

Table 1 CIC Decimator Resource Utilization and Performance 
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RAM blocks are not used; Differential Delay = 1 

16 16 4 3 1 1 751 730 0 0 385 

16 16 4 3 4 1 1,905 1,902 0 0 345 

16 16 4 3 1 5 1,452 1,706 0 0 314 

16 16 40 3 1 1 1,063 1,022 0 0 341 

16 16 40 3 4 1 2,713 2,702 0 0 331 

16 16 40 3 1 5 2,030 2,388 0 0 313 

16 16 4 2 1 1 511 495 0 0 386 

16 16 4 2 4 1 1,241 1,224 0 0 366 
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Table 1 CIC Decimator Resource Utilization and Performance 
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16 16 4 2 1 5 956 1,023 0 0 358 

RAM blocks are not used; Differential Delay = 2 

16 16 4 3 1 5 1,989 2,217 0 0 317 

16 16 4 5 1 1 1,849 1,959 0 0 336 

16 16 4 5 4 1 4,749 4,803 0 0 306 

16 16 4 5 1 5 3,880 4,506 0 0 304 

Use RAM blocks is On; Maximum MicroRAM Depth=64; Differential Delay = 1 

12 16 4 3 4 14 2,232 2,090 15 0 250 

30 18 4 3 4 14 4,238 4,008 30 0 250 

Use RAM blocks is On; Maximum MicroRAM Depth=0; Differential Delay = 1 

12 16 4 3 4 16 2,244 2,096 0 15 287 

30 18 4 3 4 16 3,712 3,476 0 15 286 

12 16 4 2 4 16 1,466 1,355 0 10 317 

30 18 4 2 4 16 2,479 2,299 0 10 317 

Use RAM blocks is On; Maximum MicroRAM Depth=0; Differential Delay = 2 

12 16 4 2 4 16 1,558 1,433 0 10 315 

30 18 4 2 4 16 2,575 2,376 0 10 308 

 

Table 2 CIC Interpolator Resource Utilization and Performance 

Configuration Resource Utilization Maximum 
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RAM blocks are not used; Differential Delay = 1 

16 16 4 3 1 1 639 604 0 0 383 

16 16 4 3 4 1 1,756 1,756 0 0 345 

16 16 4 3 1 5 1,335 1,554 0 0 330 

16 16 40 3 1 1 716 667 0 0 333 

16 16 40 3 4 1 1,905 1,886 0 0 327 

16 16 40 3 1 5 1,447 1,703 0 0 320 

16 16 4 2 1 1 441 410 0 0 375 

16 16 4 2 4 1 1,179 1,168 0 0 329 
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Utilization and Performance 

Table 2 CIC Interpolator Resource Utilization and Performance 

Configuration Resource Utilization Maximum 
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MHz 
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16 16 4 2 1 5 891 1,002 0 0 324 

RAM blocks are not used; Differential Delay = 2 

16 16 4 3 1 5 1,622 1,870 0 0 316 

16 16 4 5 1 1 1,335 1,377 0 0 334 

16 16 4 5 4 1 3,703 3,731 0 0 325 

16 16 4 5 1 5 2,927 3,478 0 0 301 

Use RAM blocks is On; Max MicroRAM Depth=64; Differential Delay = 1 

11 16 4 3 4 14 2,246 2,118 15 0 250 

29 18 4 3 4 14 4,157 3,996 30 0 250 

Use RAM blocks is On; Max MicroRAM Depth=0; Differential Delay = 1 

11 16 4 3 4 16 2,257 2,124 0 15 327 

29 18 4 3 4 16 3,627 3,462 0 15 307 

11 16 4 2 4 16 1,500 1,392 0 10 340 

29 18 4 2 4 16 2,441 2,310 0 10 320 

Use RAM blocks is On; Max MicroRAM Depth=0; Differential Delay = 2 

12 16 4 2 4 16 1,554 1,445 0 10 332 

30 18 4 2 4 16 2,489 2,351 0 10 312 

The results shown on Table 1 and Table 2 were achieved at the Operating Conditions COM. The following tools were 

used: 

• Libero v11.4. Required Frequency = 400 MHz 

• SynplifyPro H-2013.03M-SP1-1. Frequency = 300 MHz 

The other core parameters were set as follows: 

• Enable Variable Rate = No 

• Apply Hogenauer Pruning = No 

• Rounding Mode = Truncation 
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Introduction 

Theory of Operations 

Moving Average 
The moving average is one of the most common filters in digital signal processing (DSP) and also called a boxcar 

filter. As the name implies, it averages a number of L input samples to generate each output sample: 𝑦(𝑘) =  
1𝐿�𝑋 (𝑘 + 𝑗)𝐿−1
𝑗=0  

EQ1 

The filter calculates a time domain convolution between an input signal and a boxcar function. A frequency domain 

counterpart for the boxcar is sin(X)/X, which describes the frequency response of the filter. Hence, sinc filter is 

another name for moving average and CIC filters. 

Figure 2 shows block diagram of the moving average filter except dividing the output by L. 
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z-1 z-1 z-1
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y
 

Figure 2  Moving Average Block Diagram 

The same result can be obtained by using a recursive form of the boxcar filter as shown in Figure 3. An integrator 

accumulates input samples, while a comb adds a new accumulated sum and subtracts a delayed by L version of the 

sum.  
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Figure 3  Recursive Moving Average 

A recursive boxcar decimation filter adds a down-sampler by R where R is the decimation ratio. Figure 4 shows a 

non-optimized decimation filter assuming the delay L = M * R, where, M is a constant coefficient called differential 

delay. M = 1 or 2. The down-sampler by R ↓R discards R-1 output samples from every R samples.  
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Figure 4  Non-optimized Boxcar Decimator Filter 
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Theory of Operations 

Figure 5 shows a non-optimized interpolation filter structure. 
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Figure 5  Boxcar Interpolation Filter (Non-optimized) 

CIC Filter Structures 
A CIC decimation filter is based on an optimized structure obtained from the non-optimized boxcar decimator block 

diagram as shown in Figure 4 (see References, 1 and 2). Figure 6 shows a one-stage CIC filter block diagram after 

placing the downsampler between the integrator and comb filter. 
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Figure 6  One-Stage CIC Decimation Filter 

Figure 7 shows a cascaded N-stage decimation CIC filter where the integrators and combs are denoted as I and C, 

respectively. The filter contains N integrators and N combs. The frequency response is same as N cascaded boxcar 

filters. 
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Figure 7  N-Stage Decimation CIC filter 

An interpolation CIC filter optimizes the structure, refer to Figure 5.  
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Introduction 

Figure 8 shows a one-stage interpolation CIC filter.  
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Figure 8  One-Stage CIC Interpolation Filter 

Figure 9 shows an N-stage interpolation CIC filter. 
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Figure 9  N-Stage Interpolation CIC Filter 

The CIC filter implementations are preferred over other rate changing filters because they only use adders and delays 

but not multipliers. 

If the impulse response of a one- stage boxcar filter has a width of M * R, the N cascades of identical boxcar filters 

have the overall Impulse Response Width of (M*R-1)*N+1.   

EQ3 describes the system response of the CIC filter (see Reference 3): 𝐻(𝑧) = [ � 𝑧−𝑘𝑀∗𝑅−1

𝑘=0

]
𝑁 

EQ2 

Multiple Channel Support 

Multiple Interfaces 

CIC filters of same configuration can share adders, subtractors, and other resources to process more channels, if the 

required data processing rate is relatively slow. This rate is always low for the CIC filter comb section where comb 

processing rate is R times lower than the processing rate of the integrator section, refer to Figure 7 and Figure 9. 

Thus a single comb can support up to R integrator sections. To fully utilize the comb section throughput, a CIC filter 

needs R integrator sections, each processing data at high sampling rate. In this handbook, such resource sharing is 

called comb sharing. 

Figure 10 shows a 3-channel filter with a decimation factor, R_RATE = 3. The CIC filter has three integrator sections, 

and is capable of filtering three input samples per clock. The data samples from the channels are fed at each clock 

interval.  

The downsampled data from integrator are multiplexed so that each channel data occupies a separate time slot of 

one clock cycle. The comb section utilizes the three clock intervals (obtained due to reduction in the rate by a factor 

of 3) to process the integrated data samples. 
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Theory of Operations 

Figure 10 shows a structure that has three interfaces namely, DIN_IF0, DIN_IF1, DIN_IF2 and one output for the 

time-multiplexed output samples. For the core to generate the structure of three interfaces, one channel per interface 

CIC decimator, set the parameters as follows: 

• IF_NUM = 3 

• CLK_PER_SAMPLE = 1 

I I
DIN_IF0

ch0
I

I I I

I I I

  3

  3

  3

C C C
DOUT

ch0 - ch2

DIN_IF1

ch1

DIN_IF2

ch2
 

Figure 10  Three Interfaces, One Channel per Interface CIC Decimator 

Similarly, the interpolation CIC filter can apply comb sharing to process more channels. Figure 11 shows an example 

of a 4-channel filter with interpolation rate factor of four. The low rate input channels are time-multiplexed, and the 

structure provides four output interfaces DOUT_IF0 to DOUT_IF3. 

Set the parameter as: 

• CLK_PER_SAMPLE = 1 

• IF_NUM = 4 

C C

I I  4 I

I I  4 I

I I  4 I

I I  4 I

C
DIN

ch0-ch3

DOUT_IF0

ch0

DOUT_IF1

ch1

DOUT_IF2

ch2

DOUT_IF3

ch3
 

Figure 11  Four Interfaces, One Channel per Interface CIC Interpolator 

Comb and Integrator Time Share 

The input samples of each decimation channel can arrive at lower rate than the field programmable gate array 

(FPGA) clock rate, that is, there are idle clock intervals in between the samples of each input channel. Since they 

arrive at a lower rate, the integrator sections can be time shared as well. This handbook refers this as time sharing. 

Figure 12 shows a multi-channel CIC decimation example where input samples of every channel are separated by 

one idle clock cycle. If this instance is created when CLK_PER_SAMPLE = 2, each integrator can use two clock 

intervals, which is adequate to process two channels. The comb section has now six clock intervals, adequate to 

process all six channels. Every interface supports two channels totaling at CLK_PER_SAMPLE*IF_NUM = 6 

channels.   
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Figure 12  Three Interfaces, Two Channels per Interface CIC Decimator 

The time and comb sharing are independent of each other and can be combined as desired in decimation and 

interpolation CIC filter types. Figure 13 shows the CIC structure with four output interfaces and two channels per 

interface, totaling at CLK_PER_SAMPLE*IF_NUM = 8 channels. 

The total number of channels processed by the CIC filter equals the product of the parameters IF_NUM and 

CLK_PER_SAMPLE. If the product is more than the actual number of channels to be processed, use dummy 

channels.  

CoreCIC automatically identifies multiple channel filters, if the product of IF_NUM*CLK_PER_SAMPLE > 1 and 

implements time and/or comb sharing based on the CLK_PER_SAMPLE and IF_NUM parameter values.  
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Figure 13  Four Interfaces, Two Channels per Interface CIC Interpolator 

Bit Growth 
Data path width of the CIC filter needs to grow from input to output to support valid processing. The core 

automatically provides the required bit width for every component of the design. Internally, the processing results are 

calculated with full precision. You can limit the output bit width by entering a desired value in the Output Data Width 

field of the IP user interface and select  truncation or rounding from Rounding Mode drop-down list. The core 

supports truncation, round away from 0 and convergent rounding (rounding to nearest even number). Either type of 

rounding or truncation applies to a full precision internal result. 

CoreCIC in Decimation mode also supports optional Hogenauer pruning, which limits the intermediate stage bit 

widths as described in the article by E.Hogenauer. The core does not calculate full precision results even internally 

but limits their bit width in accordance with the approach by Hogenauer. When the reduced precision internal result 

still exceeds the desirable output bit width, the truncation or rounding applies similar to the full precision results. The 

Hogenauer pruning may reduce resource utilization. 
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Interface Description 

Interface Description 

Parameters and Generics 
Table 3 describes the CoreCIC parameters (Verilog) or generics (VHDL). All the parameters and generics are 

positive integer type numbers. 

Table 3 CoreCIC Parameter and Generic Descriptions 

Parameter Name 
Valid 

Range 
Default Description 

N_STAGES 1-8 3 Number of cascaded stages. There is always equal number of integrator 

and comb stages. Any selected number N_STAGES means the CIC filter 

has N_STAGES of integrators and N_STAGES of combs. 

M_DLY 1, 2 1 
Differential comb delay M. 

CIC_TYPE 0, 1 0 0: Decimation CIC filter. 

1: Interpolation CIC filter. 

DIN_WIDTH 1-32 18 Input data bit width. 

VAR_RATE 0, 1 0 0: Fixed rate change factor. 

1: Variable programmable rate change factor. 

R_RATE 2-1024 4 Rate change factor R. If variable rate change is disabled VAR_RATE = 0, 

the R_RATE defines fixed rate change factor. Otherwise it defines an initial 

value of the variable factor set upon core configuration.   

VAR_R_MIN 2-1023 4 Minimal variable rate change factor. Available only if VAR_RATE is set. 

VAR_R_MAX 3-1024 5 Maximal variable rate change factor. Available only if VAR_RATE is set. 

PRUNE 0-1 0 1: Apply Hogenauer pruning across decimation filter stages. Available for 

decimation filter only, that is when CIC_TYPE = 0. 

0: Do not apply pruning. 

DOUT_WIDTH 2-100  18 Output data bit width. If the width set is less than full output bit width, the 

core truncates or rounds the filtered data to the DOUT_WIDTH. 

QUANTIZATION 0-2 0 Output data quantization mode. Applies when the output data bit width 

selected is less than the automatic full precision processing bit width:  

0: Truncation mode. 

1: Round away from 0. 

2: Convergent rounding. 

IF_NUM 1-32 1 Number of interfaces. For decimation filter, it is a number of input 

interfaces; for interpolation filter it is a number of output interfaces. Each 

interface is capable of accepting or generating one or more data channels. 

In other words, IF_NUM indicates a number of physical integrator 

cascades implemented. 

IF_NUM cannot exceed the rate change factor R_RATE, that is IF_NUM ≤ 
R_RATE. In the case of variable rate (VAR_RATE=1), the IF_NUM cannot 

exceed the value of VAR_R_MIN, that is IF_NUM ≤ VAR_R_MIN. 

Since the channel number of a multichannel filter equals  

IF_NUM * CLK_PER_SAMPLE, and the maximum channel count is 64, 

the IF_NUM must not exceed the value of 64/CLK_PER_SAMPLE. 

CLK_PER_SAMPLE 1-64 1 Number of FPGA clock cycles per sample of any channel.  

Indicates a number of time-multiplexed channels per interface. 

Since the channel number of a multichannel filter equals  

IF_NUM * CLK_PER_SAMPLE, and the maximum channel count is 64, 
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Table 3 CoreCIC Parameter and Generic Descriptions 

Parameter Name 
Valid 

Range 
Default Description 

the CLK_PER_SAMPLE must not exceed the value of 64/IF_NUM. 

USE_RAM 0, 1 0 Use RAM blocks to implement CIC registers.   

0: Use only fabric-based register implementations. 

1: Permission to use RAM blocks when appropriate. 

URAM_MAX_DEPTH 0, 4, 8, 16, 

32, 64, 

128, 256, 

512, 1024 

0 Maximum depth of a RAM to be implemented using micro-RAM (uRAM) 

blocks. If USE_RAM is set, the core uses hard RAM blocks available on a 

selected FPGA device. When the uRAM blocks are available, the core 

uses them if the required memory depth does not exceed the 

URAM_DEPTH. Otherwise it builds the memory out of LSRAM blocks. 

Ports  
Figure 14 shows the CIC filter schematic representation where optional port names are in Italics.    

CoreCIC
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Figure 14  I/O Ports 
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Interface Description 

The pinout is a superset of all possible ports. Table 4 provides the port definitions for the core. 

Table 4 CIC Filter In or Out Signals 

Signal In/Out Port Width Bits Description 

DIN In DIN_WIDTH for 

Interpolation CIC; 

DIN_WIDTH*IF_NUM for 

decimation filter 

Input data to be filtered. In case of interpolation filter or a 

single channel for any CIC type, the data width equals 

DIN_WIDTH. In case of decimation filter with multiple 

Interfaces, the input data width for each interface is 

DIN_WIDTH and the total input data width = 

DIN_WIDTH*IF_NUM. 

DIN_VALID In 1 Input data valid. Active High. When the signal is active, the 

input data sample is loaded into decimation CIC filter. If not 

used, the core assumes that every data sample is valid.  

For the interpolation CIC filter, the signal not only marks the 

valid input sample but also defines a rate for the interpolated 

output samples. For example, if DIN_VALID has a duty cycle 

of three, the output sample rate is three times less than the 

CLK rate. The input sample of the interpolator is valid, if it is 

accompanied by DIN_VALID and CHAN_SYNC_I signals. The 

signal must be one-clock wide.   

RFD Out 1 Ready for input data. In case of interpolation filter, the RFD 

notifies a data source that the CIC filter is ready for a new 

input sample. In case of decimation filter, the signal goes Low 

only when integrator reset process is underway. Input data 

samples are ignored when RFD is Low.   

RFD_PILOT Out 1 Optional pulse the CIC interpolator generates just before the 

RFD signal. The pulse width is one clock period. It can be 

used to let the data source more time to prepare another data 

sample.  

DOUT Out DOUT_WIDTH for 

Decimation CIC; 

DOUT_WIDTH*IF_NUM 

for Interpolation filter 

Output filtered data. In case of decimation filter or a single 

channel for any CIC type, the output data width equals 

DOUT_WIDTH. In case of interpolation filter with multiple 

Interfaces, the output data width for each interface is 

DOUT_WIDTH and the total result data width = 

DOUT_WIDTH*IF_NUM. 

DOUT_VALID Out 1 for Decimation CIC; 

IF_NUM for Interpolation 

filter 

Filtered data valid indicates that a new output data sample is 

present at the DOUT port. For the decimation filter as well as a 

single interface interpolation filter, the signal is one bit wide. In 

case of interpolation filter with multiple interfaces, the output 

data width for each interface is one and the total result signal 

width = IF_NUM. 

RATE In 11 Variable rate value. The port is available when variable rate 

change mode is selected, VAR_RATE = 1. 

RATE_WE In 1 Register a new value of the variable RATE. The RATE_WE 

must be a one-clock wide pulse. The port is available when 

variable rate change mode is selected, VAR_RATE = 1. After 

the RATE value is stored in the core, the effective rate factor 

does not change yet. The new RATE value takes effect after 

the core receives the synchronous reset RST pulse.  

CHAN_SYNC_I In 1 Channel synchronization signal. For a decimation filter, it 

provides an advanced identification for the first data channel 

when CLK_PER_SAMPLE > 1. For an interpolation filter, the 

signal is expected to come even if the filter has only one 

channel. Then the signal marks a time slot when the input 
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Table 4 CIC Filter In or Out Signals 

Signal In/Out Port Width Bits Description 

sample is valid. For a multichannel interpolator,  when 

CLK_PER_SAMPLE > 1 the signal is supposed to mark the 

valid input sample of the first time-share channel. The 

CHAN_SYNC_I must be a one-clock wide pulse.  

CHAN_SYNC_O Out 1 Output channel synchronization signal. This clock-wide pulse 

identifies the first channel data output sample.  

CHAN_OUT Out 6 Output channel numerical ID.  

CLK In 1 The core master clock. 

NGRST In 1 Optional asynchronous reset. Active Low. The signal is 

expected to follow the FPGA power-on. The signal initiates 

reset of all internal registers. If RAM blocks are used to 

implement integrator or comb registers, the actual reset can 

take several clock cycles. Then on the rear edge of the 

NGRST, the core automatically generates an internal reset 

wide enough to reset all the registers. 

RST In 1 Synchronous reset. Active High. The signal initiates reset of all 

internal registers. If RAM blocks are used to implement 

integrator or comb registers, the actual reset can take several 

clock cycles. Then the RST signal initiates an internal reset 

wide enough to reset all the registers. 

Figure 15 and Figure 16 show examples of using the core in fixed and variable rate modes.  
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Figure 15  Fixed Rate Single Channel CIC Filter 
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Figure 16  Variable Rate Single Channel CIC Filter 

Figure 17 depicts the filter connections in multiple channel mode. 
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Figure 17  Fixed Rate Multiple Channel Mode 
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Decimator Interface 

This section describes basics of the CIC decimation functionality. For more information, refer to Implementation 

Details section. 

A decimation filter receives R_RATE input samples to generate an output sample. The input data samples 

sequentially arrive at DIN port of a single channel decimator. Every input sample is accompanied by the DIN _VALID 

pulse of one clock period. The filter accepts arbitrary gaps between the input samples. The data source indicates the 

break by de-asserting the DIN _VALID signal. For maximum throughput, there must not be any gaps in between the 

input samples. If a data source can supply a new sample for every FPGA clock cycle, attach the DIN _VALID to VCC. 

Once the decimator gets R_RATE input samples, it posts an output filtered sample on the DOUT port after it finishes 

the sample processing. It also accompanies the valid output sample by the clock-wide DOUT_VALID signal. The CIC 

filter introduces processing latency that is described below.    

A time share multichannel decimator, where CLK_PER_SAMPLE > 1 expects the data samples to come in the 

natural order. For example, at CLK_PER_SAMPLE = 3 the first channel sample comes first, followed by a sample of 

the second channel and then third channel. Input sample of each channel is accompanied by the DIN_VALID pulse. 

Similarly to the single channel, if there are no gaps in between the input samples the DIN_VALID signal has to be 

permanently high. The data source identifies the first channel by the CHAN_SYNC_I pulse that accompanies the DIN 

sample of the first channel. In other words, the CHAN_SYNC_I pulse is a copy of the DIN_VALID pulse for the first 

data channel. The decimator assigns the channels numerical IDs, from 0 to 2. On receiving R_RATE input samples 

from all channels, the decimator outputs filtered DOUT data, one sample at a time for the channels 0 to 2. The output 

channels are accompanied by the DOUT_VALID pulses. The DOUT output for the channel 0 is accompanied by the 

CHAN_SYNC_O pulse. The CHAN_SYNC_O is a copy of the channel 0 DOUT_VALID signal. CHAN_OUT provides 

the number of channels currently posted on the DOUT output. In this example, CHAN_OUT sends the numbers 0, 1, 

2 synchronized with valid output samples. 

A multiple interface decimator, where IF_NUM > 1 expects input data samples to come to each interface, 

simultaneously. A single DIN_VALID pulse is used for all interfaces. It signifies another set of IF_NUM input samples 

is ready to be received by all interfaces. Similarly to the single channel, if there are no gaps in between the input 

samples, the DIN_VALID signal must be permanently High. If multiple interface decimator does not utilize time share, 

that is the parameter CLK_PER_SAMPLE=1, the CHAN_SYNC_I signal must replicate the DIN_VALID pulse. Once 

the decimator receives R_RATE input samples on all its interfaces, it starts placing output samples on the DOUT port 

one channel at a time: an output sample for the channel coming to the interface 0 and the channel coming to the 

interface 1, and so on. Each output sample is accompanied by the DOUT_VALID pulse. CHAN_SYNC_O marks the 

channel of the interface 0. CHAN_OUT supplies the numerical channel IDs synchronized with the output samples.    

A multichannel decimator can combine time share and comb share when IF_NUM > 1 and CLK_PER_SAMPLE > 1. 

The total number of channels processed by such filter equals IF_NUM*CLK_PER_SAMPLE. Consider an example of 

a decimator processing six channels: IF_NUM = 2 and CLK_PER_SAMPLE = 3.  

The data samples are expected to come to the interface 0 in the following order:  

• Sample 0 of the channel 0 

• Sample 0 of the channel 1 

• Sample 0 of the channel 2 

• Sample 1 of the channel 0 

• Sample 1 of the channel 1, and so on 

Simultaneously the following data is coming to the interface 1:   

• Sample 0 of the channel 3 

• Sample 0 of the channel 4 

• Sample 0 of the channel 5 

• Sample 1 of the channel 3 

• Sample 1 of the channel 4, and so on 
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Every sample of the channel 0 to channel 2 is accompanied by DIN_VALID pulses unless the data is coming without 

gaps. Samples of the channel 0 are accompanied by the CHAN_SYNC_I pulses. Since the data to interfaces 0 and 1 

is coming simultaneously, the CHAN_SYNC_I pulse marks the channel 3 as well. The filter outputs samples of the 

channel 0 to 5 sequentially with every sample accompanied by the DOUT_VALID pulse. The core generates the 

CHAN_SYNC_O pulse when the channel 0 filtered sample shows up at the DOUT output. CHAN_OUT supplies 

channel IDs from 0 to 5 synchronized with valid output samples.  

Upon reset signals, NGRST or RTS, the decimator enters the reset state. During the reset state, the decimator keeps 

the RFD signal Low.  

Note:  The DIN_VALID pulses are expected to be present at this time but the core ignores any input data while the 

RFD signal is Low. In the decimation mode, only during the reset state the RFD signal goes Low. 

Interpolator Interface 

This section describes basics of the CIC interpolation functionality. For more information, refer to Implementation 

Details section. 

An interpolation filter generates R_RATE output samples for every input data sample. The input data samples arrive 

at DIN port of a single channel interpolator spaced by time intervals sufficient for the filter to output R_RATE filtered 

samples. To assist a data source in providing minimal sufficient time intervals, the interpolator generates the 

handshake signals request for data (RFD) and RFD_PILOT. The interpolator raises the RFD when it is ready to 

accept a new input sample. The RFD stays High until the data source provides a valid input sample. 

Note:  The functionality of the DIN_VALID pulse differs from that of decimation CIC: the signal not only accompanies 

the valid input samples but also influences interpolated output sample rate. The DIN_VALID pulse can direct 

the interpolator to output filtered samples at a fraction of clock rate. For example, it is required that the CIC 

interpolator generates output samples at every third clock interval. Then the DIN_VALID duty cycle has to be 

1/3, that is the DIN_VALID pulse comes at every third clock cycle. Since the input sample rate of the 

interpolation filter is R_RATE times lower, the valid input sample period of this example equals 3*R_RATE. It 

is accompanied by the CHAN_SYNC_I pulse. It means, the valid input sample is accompanied by 

CHAN_SYNC_I and DIN_VALID pulses.  

The RFD_PILOT is a clock-wide pulse that precedes the RFD signal. The data source can use either or both 

handshake signals when generating another input data sample.  

Note:  The interpolator only accepts the data samples that are accompanied by the CHAN_SYNC_I signal while the 

RFD signal is High.  

The filter tolerates gaps between the input samples that exceed the minimal time intervals. The filter raises the output 

RFD signal, and waits for the next valid input sample. For maximum throughput, the data source must supply a fresh 

input sample on the clock interval following the RFD_PILOT signal. Then the DIN_VALID signal must be connected to 

VCC. The RFD_PILOT pulse can be used to achieve the highest throughput at any given DIN_VALID rate, refer to 

Figure 18. 

D

clkEn

CoreCIC Interpolator

CHAN_SYNC_I

DIN_VALID

RFD_PILOT

 

Figure 18  Using RFD_PILOT Signal 
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A time share multichannel interpolator where CLK_PER_SAMPLE > 1 expects the data samples to come in the 

natural order. For example, at CLK_PER_SAMPLE = 3, the first channel sample comes first followed by a sample of 

the second channel and the third channel. Samples must be spaced so that the CIC has sufficient time to output 

interpolated samples at the rate of DIN_VALID. It means, an interval between every two consecutive input samples 

must not be less than R_RATE of DIN_VALID time intervals. Every input sample is accompanied by the DIN_VALID 

pulse. The data source identifies the first time share channel by the CHAN_SYNC_I pulse that accompanies the DIN 

sample of the first channel. It means, the CHAN_SYNC_I is a copy of the DIN_VALID pulse for the first data channel. 

The interpolator assigns the channels numerical IDs from 0 to 2. On receiving an input sample from all three 

channels, the CIC outputs 3*R_RATE interpolated DOUT data, one sample at a time: a first interpolated sample for 

the channel 0, a first interpolated sample for the channel 1 and the first interpolated sample for the channel 2. Then it 

outputs the second interpolated sample for 0 to 2 channels, the third one and finally the R_RATE-1 interpolated 

sample for the channels 0 to 2. The output channels are accompanied by the DOUT_VALID pulses.  Their rate 

equals the rate of DIN_VALID pulses. If the DIN_VALID signal is permanently High, the DOUT_VALID signal also 

stays High permanently. The DOUT output for the channel 0 is accompanied by the CHAN_SYNC_O pulse. The 

CHAN_OUT provides the number of a channel currently posted on the DOUT output. In this example, the 

CHAN_OUT would output the numbers 0, 1, 2 synchronized with valid output samples.  

A multiple interface interpolator where IF_NUM > 1 expects all the input data samples to come to a single data input 

DIN sequentially: samples 0 of the channels 0 to IF_NUM-1, then samples 1 of the channels 0 to IF_NUM-1, etc. 

Every input sample is accompanied by the DIN_VALID pulse, and the samples of the channel 0 are additionally 

accompanied by the CHAN_SYNC_I pulses. Only the samples from the same channel have to provide sufficient time 

interval for the filter to generate interpolated samples. It means, samples from channels 0 to IF_NUM-1 are supposed 

to come on every clock or spaced by DIN_VALID period. Figure 19 shows an example of interpolator input signals 

when R_RATE = 4, IF_NUM = 2, and input data are permanently valid, that is DIN_VALID = 1. The samples from 

channel 0 and 1 come without ant interval but the DIN waits for two clock cycles so, the consecutive samples of the 

same channel are spaced by R_RATE-1 clock intervals.      

CLK

DIN_VALID

CHAN_SYNC_I

DIN

Samples from 

channel 0
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Figure 19  Example of Interpolator Input Signals at DIN_VALID Always Active 

Figure 20 shows an example of the same interpolator configuration. The input data is valid on every other clock 

interval.  
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Figure 20  Example of Interpolator Input Signals at DIN_VALID Active Every Other Clock 
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Implementation Details 

In both examples, on receiving an input sample from channels 0 and 1, the CIC outputs 4*R_RATE interpolated 

DOUT data, one sample at a time: a first interpolated sample for the channel 0 and a first interpolated sample for the 

channel 1, refer to Figure 19 and Figure 20. Then it outputs the second interpolated sample for the channels 0 and 1, 

etc and finally the forth interpolated sample for the channels 0 and 1. The output channels are accompanied by the 

DOUT_VALID pulses. Their rate equals the rate of DIN_VALID pulses. If the DIN_VALID signal is permanently High, 

the DOUT_VALID signal also stays High permanently. The DOUT output for the channel 0 is accompanied by the 

CHAN_SYNC_O pulse.   

A multichannel interpolator can combine time share and comb share when IF_NUM > 1 and CLK_PER_SAMPLE > 1. 

The total number of channels processed by such filter equals IF_NUM * CLK_PER_SAMPLE. For example, an 

interpolator processing six channels: IF_NUM = 2, CLK_PER_SAMPLE = 3, and rate changing factor R_RATE = 4. 

Figure 21 shows in/out channel mapping.  

Multi-stage Comb

  4

  4

DOUT_IF0

ch0,ch1,ch2

DOUT_IF1

ch3,ch4,ch5DIN

ch0-ch5

Multi-stage Integrator

Multi-stage Integrator

 

Figure 21  I/O Channel Mapping for an Interpolator Example 

The data samples are expected to come to the interpolator DIN input in the following order: sample 0 of the channel 

0, sample 0 of the channel 1, and sample 0 of the channel 5. The interpolated output samples appear on the interface 

0 for the channels 0 to 2 and on the interface 1 for the channels 3 to 5. 

Implementation Details 

Reset 
The CoreCIC filter must be reset to generate correct results. It gets reset automatically on powering ON an FPGA. 

The core initializes the reset based on positive edge of the NGRST signal that normally follows the power ON. The 

RST signal initiates the core reset. Depending on the core configuration, the reset state can take several clock cycles 

to properly initialize the core. Once initiated by NGRST or RST signals, the core ignores any data while the reset 

state takes place. When the reset state is over, the core raises the RFD signal and the core is ready for normal 

processing. 

Note:  The DIN_VALID pulses are expected to be present during the reset state but the core ignores any input data 

while the RFD signal is Low. 

Latency 
EQ3 describes the core latency expressed in clock CLK cycles when DIN_VALID is not High permanently:  

Latency = N_STAGES*(3*DIN_VALID+4)+2 Clock Cycles 

EQ3 

When DIN_VALID is permanently active, the formula changes to: 

Latency = 7*N_STAGES+2 Clock Cycles 

EQ4 
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Multiple Interface Connections  
Both decimation and interpolation filters can have multiple interfaces (IF_NUM > 1) to provide connections to high 

speed data source or data sink. Multiple interface decimator receives data from multiple channels simultaneously, 

refer to Figure 10 and Figure 12. The data from different channels must be concatenated to form a single DIN word, 

refer Figure 22. The concatenated DIN word width = IF_NUM*DIN_WIDTH bits.  
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IF i

IF 0
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DOUT

 

Figure 22  Data Concatenation for Multiple Interface Decimator 

Similarly, the multiple interface interpolator provides parallel data for multiple channels by generating a concatenated 

DOUT word, refer to Figure 11 and Figure 13. Bits arrangement for the DOUT interpolation word is depicted on 

Figure 23. The concatenated DOUT word width = IF_NUM*DOUT_WIDTH.   

Interpolator

IF i

IF 0

IF 1

DIN

Bits 

[DOUT_WIDTH-1:0]

Bits 

[2*DOUT_WIDTH-1:

DOUT_WIDTH]

Bits 

[(i+1)*DOUT_WIDTH-1:

i*DOUT_WIDTH]

DOUT

channel 0

channel 1

channel i

 

Figure 23  Output Concatenation of a Multiple Interface Interpolator 

Variable Rate  
In addition, to a fixed upsampling or downsampling rate, the core supports programmable rate change factor. To 

enable the programmable rate mode, select Enable Variable Rate check box and enter the initial Rate Change 

Factor, Minimum, and Maximum programmable rate values. On power ON, the core automatically uses the Rate 

Change Factor value. To update the rate change value, you need to provide the desired rate change value on the 

RATE port of the core and issue a clock wide pulse on the RATE_WE pin. Then the desired RATE value gets stored 

inside the core. The core uses the previously entered rate change value or initial Rate Change Factor until the 

synchronous reset pulse on the RST port is provided. When the core completes its internal reset, the new rate 

change value is used.   
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The minimum and maximum programmable rate values are used at the IP generation time to create RTL that can 

handle the indicated values.   

Note:  The wider the variable (programmable) rate range, the more FPGA resources will be utilized and potentially 

lower max clock rate will be achieved.   

RAM Block Use 
The CIC filter components such as, delay line of the comb section and multiple channel accumulators of the 

integrator section can be implemented using hard RAM blocks available on FPGA. Such implementation reduces 

fabric resource utilization and can improve processing speed. The core automatically infers the RAM blocks, if the 

Use RAM Blocks check box is selected. You can decide the RAM blocks to be used, LSRAM or uRAM by providing 

Max MicroRAM Depth value. The core utilizes uRAM blocks whenever the RAM depth required does not exceed the 

value entered. Otherwise it uses the LSRAM blocks.                  

Decimation Filter Timing 
Figure 24 to Figure 27 show a few examples of decimator timing diagrams.  The fixed downsampling rate R_RATE = 

2 for all the examples, that is the decimator outputs one sample for every two input samples. The timing diagrams 

show time intervals immediately after the RFD goes High in response to the NGRST or RST signals issued earlier. 

This is done to illustrate the Latency time. The timing relations between the signals stay the same indefinitely after.    

Figure 24 shows a timing diagram for a single channel decimator where data samples come at every clock cycle. It is 

assumed that the filter has been reset earlier so, that the RFD signal is active. Data samples x(0) and x(1) are coming 

to the DIN input at every clock cycle from when DIN_VALID goes High. CHAN_SYNC_I for the example should be 

indefinitely active, as there is only a single channel.     
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Figure 24  Decimation CIC Timing - Single Channel, Data Permanently Valid 

After the latency time of the filter expires, the decimator raises the DOUT_VALID signal and outputs a decimated 

sample y(0) on the DOUT port. The DOUT_VALID signal stays High for a single clock period and then goes Low for 

R_RATE clock periods, in this case for one clock period. The DOUT port keeps the output sample until the next 

DOUT_VALID pulse starts. Once the DOUT_VALID pulse gest asserted for the first time since filter reset happened, 

the CHAN_SYNC_O goes High and stays in the active state indefinitely. The CHAN_OUT outputs the channel 

number of 0. 

Figure 25 shows a timing diagram for the single channel decimator with data coming every other clock. The input 

samples x(0) and x(1) are accompanied by the DIN_VALID pulses. CHAN_SYNC_I can be a copy of the DIN_VALID 

pulses or just stay High indefinitely. After Latency, the core raises the DOUT_VALID signal for one clock period and 

starts outputting the decimated sample y(0), y(1), etc. The DOUT_VALID pulses are separated by four clock periods. 

The CHAN_SYNC_O signal replicates the DOUT_VALID signal, and the CHAN_OUT equals 0.    

CoreCIC v2.0 Handbook 23 



Introduction 

CLK

RFD

DIN_VALID

DIN x(0)

DOUT

DOUT_VALID

CHAN_SYNC_O

CHAN_SYNC_I

CHAN_OUT

y(0)

0

~~
~ ~

~~
~

x(1) x(2) x(3) x(4)

y(1)

Latency

x(5)

 

Figure 25  Decimation CIC Timing - Single Channel, Data Coming Every Other Clock 

Figure 26 shows an example of a multi-channel decimator timing diagram. In this example, a data source is capable 

of providing a fresh input sample at every clock interval thus, the DIN_VALID signal is High permanently. The data 

comes from three multiplexed time share channels x0, x1 and x2 on the same DIN bus. Multiplexing the three 

channels into a single bus is possible, as for this example the parameter CLK_PER_SAMPLE = 3. CHAN_SYNC_I 

marks every sample of the first channel data x0.  

The CHAN_SYNC_I is supposed to provide advanced warning when the first channel data is coming, that is it must 

come immediately before the first channel data x0. Since the channels normally are cyclically multiplexed, it is 

recommended to raise the CHAN_SYNC_I signal when the last channel data is present on the core DIN input. Figure 

26 shows the CHAN_SYNC_I signal active while the channel x2 data enter the filter.   
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Figure 26  Decimation CIC Timing - Three Time Share Channels, Data Permanently Valid 

Once the decimator is ready to output the filtered samples, it raises the DOUT_VALID signal that lasts for three clock 

intervals. Then the DOUT_VALID signal goes inactive for (R_RATE-1)*CLK_PER_SAMPLE clock periods, that is for 

three periods in this example. CHAN_SYNC_O marks every output sample of the channel y0, and the CHAN_OUT 

counts channels 0 to 2 while the DOUT_VALID signal is active. 

Figure 27 shows a timing diagram for the two-channel decimator that has two interfaces, IF_NUM = 2. Data from the 

channel x0 comes to the lower bits of the DIN input (see section 8.3). It is called IF0 DIN, refer to Figure 27. Data 

from the channel x1 comes to the upper bits of the DIN input named IF1 DIN. For this example, CHAN_SYNC_I stays 

High, as each interface does not utilize time share (CLK_PER_SAMPLE = 1). After Latency interval, the core raises 

DOUT_VALID and starts outputting the decimated samples: y0(0) is calculated based on the two samples x0(0) and 

x0(1), y0(1) is based on the samples x0(2) and x0(3), etc. Similarly, the decimated samples of the interface IF1 are 

calculated. The data from both interfaces appear on the port DOUT. The CHAN_SYNC_O signal marks the output 

samples originated at the interface IF0. The CHAN_OUT signal indicates the channel that is currently being present 

at the DOUT port.      
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Figure 27  Decimation CIC Timing - Two Interfaces, Data Permanently Valid 

Figure 28 shows a six-channel CIC decimator timing diagram. The decimator has two interfaces IF_NUM = 2, with 

each interface processing three multiplexed channels at CLK_PER_SAMPLE = 3. CHAN_SYNC_I provides advance 

warning the first channel for each interface is about to come. The CHAN_SYNC_I signal coincides with the last time 

share channel, that is the channel x2 on the interface IF0 and the channel x5 of the interface IF1. Since the example 

implements the maximum number of interfaces IF_NUM = 2 allowed at R_RATE = 2, the comb section of the filter is 

busy all the time and the valid decimated samples are generated without breaks. This is signified by the 

DOUT_VALID High permanently after initial Latency.  
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Figure 28  6-Channel Decimator Timing - Two Interfaces Three Time Share Channels Each, Data Always Valid 

There is a subtle difference in processing parallel streams of data coming to multiple CIC interfaces. Figure 29 shows 

an example of a CIC decimator with IF_NUM=2, R_RATE=3, and CLK_PER_SAMPLE=1. The processing of the 

DIN_IF1 data is shifted by one sample with regard to the input data of the DIN_IF0. 
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