ghipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution
of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business
relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components
to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business
mainly focus on the distribution of electronic components. Line cards we deal with include
Microchip,ALPS,ROHM, Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise
IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,
and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service
and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email & Skype: info@chipsmall.com Web: www.chipsmall.com
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

iy [0

HB0087
Handbook
CorePCIF v4.1

& Microsemi

Power Matters.*

& Microsemi
Power Matters.”

Microsemi Corporate Headquarters

One Enterprise, Aliso Viejo,

CA 92656 USA

Within the USA: +1 (800) 713-4113

Outside the USA: +1 (949) 380-6100

Fax: +1 (949) 215-4996

Email: sales.support@microsemi.com

www.microsemi.com

© 2017 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for
aerospace & defense, communications, data center and industrial markets. Products include high-performance and
radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products;
timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and
scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees
globally. Learn more at www.microsemi.com.

50200087. 8.0 11/17

& Microsemi

Power Matters.

Contents

1 Revision History 1
1.1 ReVISION 8.0 e 1
1.2 ReVISION 7.0 . . 1
1.3 ReVISION 6.0 e 1
14 ReVISION 5.0 e e 1
1.5 ReVISION 4.0 e 1
1.6 ReVISION 3.0 e e 1
1.7 ReVISION 2.0 e 1
1.8 ReVISION 1.0 .. . 1

2 IntroducCtion 2
2.1 GO VEISIONS . ..ot e 2
2.2 Supported Families 3
2.3 CorePCIF Device Requirements e e e e e e 3
24 Utilization Statistics 4
25 Performance Statistics e 7
26 /O ReqUIrEMENESo e 8
2.7 Electrical Requirements e 9

3 Functional Description 10
3.1 Target Controller e e 10
3.2 CorePCIF — Master Controller e e e e e 10
3.3 CorePCIF — Datapath 11
3.4 CorePCIF —Internal Data Storage 11
3.5 CorePCIF Target FUNCioN e 11

3.5.1 Supported Target Commands 11

3.5.2 1/0 Read (0010) and Write (0011)ottt e e 12

3.5.3 Memory Read (0110) and Write (0111)ot e e 12

3.54 Memory Read Multiple (1100) and Memory Read Line (1110) 12

3.55 Memory Write and Invalidate (1111) 12

3.5.6 Configuration Read (1010) and Write (1011) 12

3.5.7 Disconnects and Retries e 12

3.6 CorePCIF Master FUNCHiON e 13
3.6.1 Backend Interface 13

3.6.2 Supported Master Commands e 13

3.6.3 DMA Master Registers 13

3.6.4 Master Transfers 14

3.6.5 Master Byte Commands 14

3.7 CardBus SUPPOIt . .. e 14
3.8 CompactPCl Hot-Swap SUpport e e e 14
3.9 CorePCIF Backend Dataflow 15
3.9.1 Burst Transfers 15

3.9.2 Byte-Controlled Transfers i e e e 15

3.9.3 Dataflow Control 15

3.10 FIFO ReCOVEIY LOGIC . . . oo e e e e e e e e 15
3.1 Example System Implementation 16
4 Core StructUre 18

HB0087 Handbook Revision 8.0 iii

& Microsemi

Power Matters.

5 Tool FIows 21
5.1 SMaAM DS gN . . .o e 21

5.2 Synthesis iN LIbero 23

5.3 Place-and-Route in Libero 24

6 Configuring Parameters 26
6.1 General Configuration Parameters 26

6.2 PCI Configuration Space Parameters e 28

6.3 BAR Parameters 28

6.4 Master/DMA Parameters e 30

6.5 Default Core Parameter Settings i 30

7 Corelnterfaces 34
71 PCIBUS SIgnals 34

7.2 Backend System-Level Signals 35

7.3 Backend Target and Master Dataflow Signals 36

7.4 Backend Target Dataflow Signals 38

7.5 Backend Master Dataflow Signals 38

7.6 Backend Master DMA Register Access Signals i 39

7.7 Hot-Swap Interface 40

8 Timing Diagrams 41
8.1 Single-Cycle Read and Write e e 41

8.2 Burst Transfer at Maximum TransferRate i 44

8.3 Burst Transfer with a Slow PCI Master et 46

8.4 Burst Transfer with a Slow Backend 48

8.5 Burst Transfer with FIFO Recovery Enabled 50

8.6 Byte-Controlled Transfers 52

8.7 B4-Bit BUrst Transfer 55
8.7.1 Operating Note e 57

8.8 Slow Read Transfers 57

8.9 Backend-Terminated (BUSY) Cycle at Transfer Start (Target) 58
8.10 Backend-Terminated (ERROR) Cycle at Transfer Start (Target) 60
8.11 Backend-Terminated (BUSY) Cycle during Data Burst (Target) 60
8.12 PCIl Configuration CyCleo 63
8.13 PCl Interrupt Generation e 64
8.14 Simple DMA Transier 65
8.15 DMA Operation witha FIFO Backend i e 68
8.16 STOP_MASTER Assertion during Data Burst 69
8.17 RD_BUSY_MASTER and WR_BUSY_MASTER Operation i, 73
8.18 STALL_MASTER Operationttt 75
8.19 DMA Register Access fromthe Backend 79
8.20 Direct DMA Transfers 81
8.21 Hot-SWap SeqUENCE 83

9 PCIlConfiguration Space 86
9.1 Target Configuration Space 86
9.11 Read-Only Configuration Registers e 88

9.1.2 Read/Write Configuration Registers i 89

10 Testbench Operation 96
HBO0087 Handbook Revision 8.0 iv

& Microsemi

Power Matters.

10.1 Verification Testbench 96
10.1.1 Customizing the Verification Testbench 98

10.1.2 Files Used in the Verification Testbench 98

10.2 User TestbenCh 99
10.2.1 Files Used inthe User Testbenches i, 100

10.2.2 Testbench Operation e e e 101

10.2.3 Customizing the User Testbenches i 103

11 Implementation Hints 104
1.1 CloCKING . o e e 104
11.1.1 Example: Clocking in SmartFusion2 104

11.2 Clock and Reset Networks e e e 106
11.3 Assigning Pin Layout Constraints e 106
11.4 Pin AssSignments 106
1141 SX-Aand RTSX-SFamilies e e e 107

11.4.2 ProASICPLUS Family e 107

11.4.3 Axcelerator and RTAX-S Families i 107

11.4.4 Fusion, IGLOO/e, ProASIC3L, and ProASIC3/E Families 107

11.4.5 SmartFusSion? e 108

114,86 RTGA .. 109

T1.4.7 PolarFire ... e 110

11.4.8 AllFamilies 111

11.4.9 Meeting PCl Hold Requirements e 111

12 PCIPINOUt . .. 112
13 Synthesis Timing Constraints 113
14 Place-and-Route Timing Constraints 114
15 Verification Testbench Tests 115
16 VHDL User Testbench Procedures 117
17 Verilog User Testbench Procedures 119
18 Ordering Information 121
18.1 Ordering Codesot e 121

HB0087 Handbook Revision 8.0 v

Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50
Figure 51
Figure 52
Figure 53
Figure 54

& Microsemi

Power Matters.

CorePCIF System Block Diagram 2
CorePCIF Block Diagram e e e 10
External FIFO Connection (Targetmode) e 16
External FIFO Connection (Mastermode) e 16
Simple Target Implementation 16
Master and Target Implementation 17
CorePCIF StrUCIUrEo e 18
CorePCIF FUll I/O VieW e e 21
CorePCIF Configurator 22
CorePCIF Configurator (Continued) e 23
Backend Read Cycle (RD_SYNC = 0)ottt e 42
Backend Read Cycle (RD_SYNC = 1) ... ot 43
Backend Write CycCle 44
Backend Burst Read Cycle (RD_SYNC =0) e e 45
Backend Burst Read Cycle (RD_SYNC = 1) e 45
Backend Burst Write Cycle 46
Backend Read Cycle with Slow PCI Master (RD_SYNC =0), 47
Backend Burst Read Cycle with Slow PCl Master (RD_SYNC =1) 47
Backend Burst Write Cycle with Slow PClI Master i i .. 48
Backend Burst Read Cycle with Slow Backend (RD_SYNC=0) 49
Backend Burst Read Cycle with Slow Backend (RD_SYNC =1) 49
Backend Burst Write Cycle with Slow Backend 50
Backend Burst Write Cycle with Additional Writes after Ready Removed 50
FIFO Recovery Operation (RD_SYNC =0)t e e 51
FIFO Recovery Operation (RD_SYNC = 1) e e 52
Backend Byte Read Cycle (RD_SYNC =0) e e e 53
Byte Burst Read Cycle (RD_SYNC = 1) ... i e 54
Byte Burst Write CycCle 55
64-Bit Burst Read Cycle (RD_SYNC = 0)o\ttt e 56
64-Bit Burst Read Cycle (RD_SYNC = 1)o e e e 56
64-Bit Burst Write CycCle e 57
Slow Read Transfer (RD_SYNC = 0) e e e e 58
Slow Read Transfer (RD_SYNC = 1) e e 58
Backend-Terminated (BUSY) Cycle at Transfer Start 59
Backend Fails to Assert RD_STB_IN e 59
Backend-Terminated (ERROR) Cycle at Transfer Start 60
Backend Burst Read Cycle Terminated by BUSY (RD_SYNC =0) 61
Backend Burst Read Cycle Terminated by BUSY (RD_SYNC =1) 62
Backend Burst Write Cycle Terminated by BUSY i 62
Configuration Read Cycle 63
Configuration Write CycCle 64
PCI Interrupt Generation and Acknowledge Sequence 64
DMA Burst Read Cycle Including DMA Start Sequence it 65
DMA Burst Read Cycle (RD_SYNC =0) e e e 66
DMA Burst Read Cycle (RD_SYNC = 1) ...t e e 67
DMA Burst Write CyCle 67
DMA Cycle with Grant Removal during Startup e 68
DMA Cycle witha FIFO Backend e e 69
STOP_MASTER Assertion during DMA Burst Read Cycle (RD_SYNC=0) 70
STOP_MASTER Assertion during DMA Burst Read Cycle (RD_SYNC =1) 71
STOP_MASTER Assertion during DMA Burst Write Cycle 72
STOP_MASTER Held Asserted during DMABurstRead 73
RD_BUSY_MASTER Operation e e 74
WR_BUSY_MASTER Operation e e 75

HB0087 Handbook Revision 8.0 Vi

Figure 55
Figure 56
Figure 57
Figure 58
Figure 59
Figure 60
Figure 61
Figure 62
Figure 63
Figure 64
Figure 65
Figure 66
Figure 67
Figure 68
Figure 69
Figure 70
Figure 71
Figure 72
Figure 73
Figure 74
Figure 75
Figure 76
Figure 77
Figure 78

& Microsemi

Power Matters.

STALL_MASTER Assertion DMA Read Cycle (RD_SYNC =0)coiuiinina... 76
STALL_MASTER Assertion DMA Read Cycle (RD_SYNC =1) 77
STALL_MASTER Assertion DMAWrite Cycle 78
STALL_MASTER Assertion and Cycle Aborted dueto Lossof GNTN 79
DMA Register Single Write CycCle 79
DMA Register Single Read Cycle 80
DMA Register Burst Write Cycle 80
DMA Register Burst Read Cycle e 80
DMA Register Access and DMA Startup e 81
Direct DMA Write tothe PCIBUS e e 82
Direct DMA Read fromthe PCIBUS e 83
Hot-Swap Insertion Sequence 84
Hot-Swap Extraction Sequence e 85
The Verification Testbench 96
User Testbench 100
User Testbench Startup Sequence i e 102
Clock Generation 104
Clocking in SmartFusion2 with NO CCC e 105
Clocking in SmartFusion2 with CCC e 105
FCCC Configuration in SmartFusion2 i 106
SmartFusion2 M2S050T DevVICeo ot e 108
RTG4 RT4G150-CG1657 DEVICE oottt 110
PolarFire MPF300-FCG1152 DEVICEttt ittt ittt 111
Recommended PCI Pin Orderingo e e 112

HB0087 Handbook Revision 8.0 vii

Tables

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24
Table 25
Table 26
Table 27
Table 28

Table 29
Table 30
Table 31
Table 32
Table 33
Table 34
Table 35
Table 36
Table 37
Table 38
Table 39
Table 40
Table 41
Table 42
Table 43
Table 44
Table 45
Table 46
Table 47
Table 48
Table 49
Table 50
Table 51
Table 52
Table 53

& Microsemi

Power Matters.

Example Implementations e 3
CorePCIF Utilization 4
32-Bit CorePCIF Device Utilization 5
64-Bit CorePCIF Device Utilization 6
Device Speed Grade Requirements 7
PCIBUS TimMINgGt 8
CorePCIF I/O ReqUIremMENtSo e e e e 8
Supported Electrical Environments. 9
Supported PCl Target Commandst e 11
DMA Register AdAressesot e e 13
CorePCIF Common Source Files e 18
Technology-Specific Source Files 19
CorePCIF Miscellaneous Source Files e 19
Designer Compile Options it 24
General Parameters 26
PCI Configuration Space Parameters 28
BAR Parameters 28
Master/DMA Parameters e 30
Default Bu”d Parameters1 .. 30
PCIBus Interface Signals 34
System-Level Signals 35
Dataflow Interface Signals 36
Target Mode Control Signals 38
Master Mode Signals e 38
Backend DMA Register Access Signals e 39
Hot-Swap Interface Signals 40
Example Waveforms 41
Backend Initial Access Time Limits—

Delay Allowed from DP_START to RD_STB_IN or WR_BE_RDY (clock cycles) 43
PCIl Configuration Space it e 86
PCIl Configuration Space i 86
Capability Structure (Target-only cores with hot-swap) 87
Capability Structure (Master cores with hot-swap) 87
Capability Structure (Target-only cores with hot-swap and FIFO status) 88
Capability Structure (Master cores with hot-swap and FIFO status) 88
Command Register 04 HexX e 89
Status Register 06 HexX e 90
Base Address Registers (memory) 10 Hexto 24 Hex 90
Base Address Registers (I/O) 10 Hexto 24 Hex i i 91
Expansion ROM Address Register 30 Hex e 91
Capabilities Pointer 34 Hex 91
Interrupt Register 3C HeX 91
Hot-Swap Capability Register 40 Hex i e 91
Microsemi Capabilities Register 44,48, or4CHex 92
Interrupt Control Register 48 Hex (MASTER =0)ttt 92
FIFO Status Register e e 93
PCl Address Register 50 Hexo e 93
Backend Address Register 54 Hex (ENABLE_DIRECTDMA =0) ...t 93
Backend Address and Data Register 54 Hex (ENABLE_DIRECTDMA=1) 93
DMA Transfer Count 58 HexX e 94
DMA Control Register 5C HexX e e 94
Verification Testbench Configurations 96
Verification Testbench Source Files 98
User Testbench Source Files e 100

HB0087 Handbook Revision 8.0 viii

Table 54
Table 55
Table 56
Table 57
Table 58
Table 59
Table 60
Table 61

& Microsemi

Power Matters.

User Testbench Test Sequence e e 102
Synthesis Timing Constraints e 113
Place-and-Route Timing Constraints i 114
Verification Testbench Tests 115
Procedure Call Parameters e 117
Global Descriptions 119
Parameter Descriptions 119
Ordering Codesottt 121

HB0087 Handbook Revision 8.0 ix

Revision History O M. Semi

Power Matters.

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 8.0

Updated changes related to CorePCIF v4.1.

1.2 Revision 7.0

Updated changes related to CorePCIF v4.0.

1.3 Revision 6.0

Updated changes related to CorePCIF v3.2.

14 Revision 5.0

Updated changes related to CorePCIF v3.1.

1.5 Revision 4.0

Updated changes related to CorePCIF v3.0.

1.6 Revision 3.0

Updated changes related to CorePCIF v2.1.

1.7 Revision 2.0

Updated changes related to CorePCIF v2.0.

1.8 Revision 1.0

Revision 1.0 was the first publication of this document. Created for CorePCIF v1.0

HB0087 Handbook Revision 8.0 1

Introduction

Figure 1 -

21

& Microsemi

Power Matters.

Introduction

CorePCIF connects memory, FIFO, and processor subsystem resources to the main system via the PCI
bus. CorePCIF is intended for use with a wide variety of peripherals where high-performance data
transactions are required. Figure 1 depicts typical system applications using the core. Though CorePCIF
can handle any transfer rate, most applications will operate with zero wait states. When required, wait
states can be inserted automatically by a slower peripheral.

CorePCIF can implement Target and/or Master functions. The Target function allows the PCI bus to
access memory devices attached to the CorePCIF backend. The Master function allows CorePCIF to
move data between the backend or internal registers and the PCI bus using the internal DMA engine.
The DMA engine can be programmed either from the PCI bus or directly from the backend.

CorePCIF can be customized. A variety of parameters are provided to easily change features such as
memory and |/O sizes along with the PCI vendor and device IDs. A single top-level core has parameters
that enable and disable functions, allowing a minimal-size core to be implemented for the required
functionality. The core consists of four basic units: the Target controller, the Master controller, the DMA
controller, and the backend controller. The backend controller provides the necessary control for the I/O
or memory subsystem, allowing external (to the core) memory and FIFOs to be directly connected to the
core.

CorePCIF System Block Diagram

M]e—FRAMEN

REQ64N _Master Control Signals
“"—“"IRDYN - System CPU

STOPN
DEVSELN
ACKB4AN
TRDYN MEM_ADDRESS BUS
SERRN -
IDSEL
AD
PAR
PARG4
CBE
PERRN
INTAN
REQN CorePCIF

GNTN Target+Master
CLK Controller

RSTN

A A
Yy

Memory Control Signals Memory
Subsystem

Backend
Controller
¥

4
y

\

A

MEM_DATA BUS

A

/
\ i

A
YYVYVYY

L A

A JL1

|

_ _ PClBus |
Jt A
3 Y

Master Bridge Target

Core Versions

This handbook applies to CorePCIF v4.1. The release notes provided with the core list known
discrepancies between this handbook and the core release associated with the release notes.

HB0087 Handbook Revision 8.0 2

Introduction

& Microsemi

Power Matters.

2.2 Supported Families

2.3

PolarFire®
RTG4™
SmartFusion®2
IGLOO®2
SmartFusion
IGLOO®
IGLOO®e
Fusion
ProASIC®3
ProASIC®3E
ProASIC®3L
ProASICELUS®
Axcelerator®
RTAX-S

SX-A

RTSX-S

®

CorePCIF Device Requirements

CorePCIF includes Target and/or Master functions. The core also has an option for a built-in DMA
controller.

There are nine implementations available for the core. The SMALL32 implementation is the smallest
Target core possible but does not support zero-wait-state transfers; TARG32 does support zero-wait-
state transfers. MAST32 is the smallest Master-only core possible. TARGDMA32 implements a typical
Target and Master function. TARGMAST32 implements a fully configured core. The remaining four
implementations are 64-bit versions of the 32-bit implementations. Table 1 describes example
implementations.

Table 1 -

Example Implementations

Implementation

Description

SMALL32

32-bit Target-only core with a single base address register (BAR). The slow read function is
enabled. Interrupts, BAR overflow, and hot-swap features are disabled.

TARG32

32-bit Target-only core with a single 64 kB BAR. The FIFO recovery logic is not implemented. BAR
overflow logic and hot-swap features are disabled.

MAST32

32-bit Master-only core with a single 64 kB BAR. The FIFO recovery logic is not implemented.
Direct DMA is enabled.

TARGDMA32

32-bit Target and Master function with a single 64 kB BAR. DMA registers are accessible from the
PCI side and are memory-mapped in the second BAR. The FIFO recovery logic is not
implemented. BAR overflow logic and hot-swap features are disabled. Backend access to the
DMA registers is not implemented. Direct DMA is disabled.

TARGMAST32

32-bit Target and Master function with five memory BARs that have variable sizes from 64 kB to
1 GB. The DMA registers are memory-mapped to the sixth BAR. All of the memory BARs include
the FIFO recovery logic. The Expansion ROM address registers are also implemented. BAR
overflow logic and hot-swap features are enabled. Backend access to the DMA registers is also
implemented. Direct DMA is enabled.

TARG64

64-bit Target-only core with a single 64 kB BAR. The FIFO recovery logic is not implemented. BAR
overflow logic and hot-swap features are disabled. Direct DMA is disabled.

MASTG64

64-bit Master-only core with a single 64 kB BAR. The FIFO recovery logic is not implemented.
Direct DMA is disabled.

HB0087 Handbook Revision 8.0 3

Introduction Q Microsemi

Power Matters.

Table 1 - Example Implementations

Implementation Description

TARGDMAG4 64-bit Target and Master function with a single 64 kB memory. DMA registers are accessible from
the PCI side and are memory-mapped in the second BAR. The FIFO recovery logic is not
implemented. BAR overflow logic and hot-swap features are disabled. Backend access to the
DMA registers is not implemented. Direct DMA is disabled.

TARGMAST64 64-bit Target and Master function with five memory BARs that have variable sizes from 64 kB to
1 GB. The DMA registers are memory-mapped to the sixth BAR. All of the memory BARs include
the FIFO recovery logic. The Expansion ROM address registers are also implemented. BAR
overflow logic and hot-swap features are enabled. Backend access to the DMA registers is also
implemented. Direct DMA is enabled.

2.4 Utilization Statistics

Table 3 and Table 4 give the CorePCIF device utilization for both 32-bit and 64-bit implementations. The
numbers in these tables are typical and will vary based on the actual core configuration and the synthesis
tools used.

CorePCIF device utilization and performance varies, depending on which features are implemented. The
core has approximately 50 configuration parameters.

Table 2 - CorePCIF Utilization

Combinational Sequential Memory Utilization

Implementation Family (4LUT) (DFF) Total Blocks %

SMALL32 SmartFusion2 384 231 615 0 0.54
TARG32 (M2S050) 7 497 291 788 1 0.70
MAST32 23588350) 947 448 1395 1 1.24
TARGDMA32 1092 459 1551 1 1.37
TARGMAST32 1740 707 2447 1 2.18
TARG64 706 468 174 2 1.04
MAST64 1135 635 1770 2 1.57
TARGDMAG64 1169 642 1811 2 1.60
TARGMAST64 2029 932 2961 2 2.62
SMALL32 RTG4 383 231 614 O 0.20
TARG32 (RTG4150) 559 315 874 1 0.29
MAST32 1052 451 1503 1 0.49
TARGDMA32 1040 467 1507 1 0.50
TARGMAST32 1916 714 2630 1 0.86
TARG64 678 468 1146 2 0.43
MAST64 1191 634 1824 2 0.60
TARGDMAG4 1251 642 1893 2 0.62
TARGMAST64 2148 920 3068 2 1.01

HB0087 Handbook Revision 8.0 4

Introduction Q Microsemi

Power Matters.

Table 2 - CorePCIF Utilization

Combinational Sequential Memory Utilization

Implementation Family (4LUT) (DFF) Total Blocks %

SMALL32 PolarFire 361 231 592 0 0.10
TARG32 (MPF300T_ES) "534 291 827 1 0.14
MAST32 893 449 1342 1 0.22
TARGDMA32 1083 459 1542 1 0.25
TARGMAST32 1722 706 2428 1 0.40
TARG64 735 468 1203 2 0.20
MAST64 1099 636 1735 2 0.29
TARGDMAG64 1198 642 1840 2 0.30
TARGMAST64 1822 919 2741 2 0.46

Note: The data in Table 2 was achieved using Verilog RTL with typical synthesis and layout settings.
Frequency (in MHz) was set to 100 and speed grade was STD. The data given in Table 2 is indicative
only. The overall device utilization and performance of the core is system dependent.

The exact parameter settings are detailed in Table 5.

Table 3 - 32-Bit CorePCIF Device Utilization

Cells or Tiles

Implementation Family Combinatorial Sequential Total glt::::l?sry Device Utilization
SMALL32 Fusion® 544 177 721 0 AFS600 5%
TARG32 ::Ci I(;ggl(ggs IE 661 203 864 2 AGLE600 6%
MAST32 ProASIC3L 1,434 383 1,817 2 AGL600 13%
TARGDMA32 1,594 369 1,963 2 A3PE600 14%
TARGMAST32 2,698 658 3,356 2 A3P600 24%
SMALL32 ProASICELYS® 658 215 873 0 APA150 14%
TARG32 716 208 924 4 APA150 15%
MAST32 1,479 422 1,901 4 APA150 31%
TARGDMA32 1,644 377 2,021 4 APA300 25%
TARGMAST32 3,020 697 3,717 4 APA300 45%
SMALL32 RTAX-S 350 178 528 0 RTAX250S 12%
TARG32 465 244 709 0 RTAX250S 17%
MAST32 799 422 1,221 0 RTAX250S 29%
TARGDMA32 867 414 1,281 0 RTAX250S 30%
TARGMAST32 2,562 2,206 4,768 0 RTAX1000S 26%
SMALL32 Axcelerator® 381 180 561 0 AX500 7%
TARG32 453 210 663 1 AX500 8%
MAST32 830 393 1,223 1 AX500 15%
TARGDMA32 874 380 1,254 1 AX500 16%
TARGMAST32 1,677 653 2,330 1 AX500 29%

HB0087 Handbook Revision 8.0 5

Introduct S Vi]
ntroduction W M:croseml.

Power Matters.

Table 3 - 32-Bit CorePCIF Device Utilization (continued)
Cells or Tiles Memory
Implementation Family Combinatorial Sequential Total Blocks Device Utilization
SMALL32 RTSX-S 387 221 608 0 RT54SX32S 21%
TARG32 491 282 773 0 RT54SX32S 27%
MAST32 1,134 507 1,641 O RT54SX32S 57%
TARGDMAS32 966 465 1431 0 RT54SX72S 24%
TARGMAST32 1,359 834 2,193 0 RT54SX72S 36%
SMALL32 SX-A 385 222 607 0 A54SX32A 21%
TARG32 494 285 779 0 A54SX32A 27%
MAST32 1,111 507 1,618 O AB4SX32A 56%
TARGDMA32 959 460 1419 0 AS54SX72A 24%
TARGMAST32 1,352 834 2,186 0 A54SX72A 36%
Table 4 - 64-Bit CorePCIF Device Utilization
Cells or Tiles Memory

Implementation Family Combinatorial Sequential Total Blocks Device Utilization
TARG64 Fusion 930 315 1,245 4 AFS600 9%
MAST64 %X’Solgs e 1686 498 2184 4 ﬁgtgggo 16%
TARGDMAG4 ProASIC3L 1,852 484 2,336 4 A3PEGO0 17%
TARGMAST64 2,989 772 3761 4 A3P600 27%
TARG64 ProASICPLYS 961 319 1,280 8 APA150 21%
MAST64 1,770 542 2312 8 APA150 38%
TARGDMAG4 1,962 500 2462 8 APA150 40%
TARGMAST64 3,173 814 3,987 8 APA300 49%
TARG64 RTAX-S 634 387 1,021 0O RTAX250S 24%
MAST64 1,002 565 1,567 O RTAX250S 37%
TARGDMAG4 1,087 553 1,640 O RTAX1000S 9%
TARGMAST64 3,524 3,858 7,382 0 RTAX1000S 41%
TARG64 Axcelerator 642 317 959 2 AX500 12%
MAST64 1,021 502 1,523 2 AX500 19%
TARGDMAG64 1,087 493 1,580 2 AX500 20%
TARGMAST64 1,874 765 2639 2 AX500 33%
TARG64 SX-A 693 456 1,149 0 AB54SX32A 40%
MAST64 1,095 682 1,777 0O A54SX72A 29%
TARGDMAG4 1,201 645 1,846 O AS4SX72A 31%
TARGMAST64 1,711 1,200 2911 0 AB4ASXT2A 48%

HB0087 Handbook Revision 8.0

Introduction Q Microsemi

Power Matters.

2.5 Performance Statistics

Table 5 and Table 8 give the device speed grades required to meet either 33 MHz or 66 MHz PCI
operation for the 32-bit and 64-bit cores for the three operating environments supported by Microsemi.
Not all families support 64-bit or 66 MHz operation.

Table 5 - Device Speed Grade Requirements

Family Commercial Industrial Military
33 MHz 32-bit Fusion STD STD N/A
IGLOO/e STD STD N/A
ProASIC3/E/L STD STD N/A
ProASICPLUS STD STD STD
RTAX-S N/A N/A STD
Axcelerator STD STD STD
RTSX-S N/A N/A -1
SX-A STD STD STD
33 MHz 64-bit Fusion STD STD N/A
IGLOO/e STD STD N/A
ProASIC3/E/L STD STD N/A
ProASICELUS STD STD STD
RTAX-S N/A N/A STD
Axcelerator STD STD STD
RTSX-S N/A N/A N/A
SX-A STD STD STD
66 MHz 32-bit Fusion -2 -2 N/A
IGLOO/e N/A N/A N/A
ProASIC3/E -2 -2 N/A
ProASICELUS N/A N/A N/A
RTAX-S (RTAX250S) N/A N/A -1
RTAX-S (RTAX1000S to RTAX4000S) N/A N/A N/A
Axcelerator (AX125 to AX500) -1 -1 -1
Axcelerator (AX1000 to AX2000) -2 -2 -2
RTSX-S N/A N/A N/A
SX-A N/A N/A N/A

HB0087 Handbook Revision 8.0 7

Introduction

& Microsemi

Power Matters.

Table 5 - Device Speed Grade Requirements (continued)
Family Commercial Industrial Military
66 MHz 64-bit Fusion -2 -2 N/A
IGLOO/e N/A N/A N/A
ProASIC3/E -2 -2 N/A
ProASICPLUS N/A N/A N/A
RTAX-S (RTAX250S) N/A N/A -1
RTAX-S (RTAX1000S to RTAX4000S) N/A N/A N/A
Axcelerator (AX125 to AX500) -1 -1 -1
Axcelerator (AX1000 to AX2000) -2 -2 -2
RTSX-S N/A N/A N/A
SX-A N/A N/A N/A
The PCI specification timing requirements are given in Table 6.
Table 6 - PCI Bus Timing
Setup Hold Clock to Out
Signals 33MHz 66MHz 33MHz 66MHz 33MHz 66 MHz
Bussed Signals 7ns 3ns Ons Ons 11 ns 6 ns
Non-Bussed Signals (e.g., GNTN) 10 ns 5ns Ons Ons 11 ns 6 ns

2.6

I/O Requirements

Table 7 gives the 1/O requirements for CorePCIF. The number of device I/O pins required for the PCI
interface varies, depending on the bus width as well as whether the core supports Target and/or Master
functions. The number of backend device 1/O pins that the core requires depends on the core interface.
For instance, a device that implements a PClI-to-serial communication channel may only require a single
device I/O pin, whereas a PCI-to-memory interface may require many 1/O pins. Table 7 shows the
maximum number of 1/O pins, assuming all the core backend pins are connected to device I/O pins.

Table 7 - CorePCIF 1/0O Requirements

/0 Count
Backend Total
Core PCl Min. Max. Min. Max.
32-bit Target 48 1 146 49 194
64-bit Target 88 1 219 89 307
32-bit Master with backend interface 49 1 162 50 21
64-bit Master with backend interface 88 1 235 89 323
32-bit Target and Master 50 1 146 51 196
64-bit Target and Master 89 1 219 90 308
32-bit Target and Master with backend interface 50 1 162 51 212
64-bit Target and Master with backend interface 89 1 235 90 324

HB0087 Handbook Revision 8.0

Introduction Q Microsemi

Power Matters.

2.7 Electrical Requirements

CorePCIF supports both the 3.3 V and 5.0 V PCI specifications when operating at 33 MHz; at 66 MHz,
the PCI bus must operate at 3.3 V. The SX-A and RTSX-S families have 1/O buffers that directly support
5.0 V operation. Other families in 5.0 V PCI environments may require external voltage level translator
devices, or may not be supported. See Table 8 for details.

Table 8 - Supported Electrical Environments

PCI Voltage with PCI Voltage with

Clock Speed Family Direct FPGA Connection Level Translators

33 MHz Fusion 3.3 3.3and 5.0
IGLOO/e 3.3 3.3and 5.0
ProASIC3/E/L 3.3 3.3and 5.0
ProASICELUS 33 3.3and 5.0
RTAX-S 3.3 3.3and 5.0
Axcelerator 3.3 3.3and 5.0
RTSX-S 3.3and 5.0 3.3and 5.0
SX-A 3.3and 5.0 3.3and 5.0
SmartFusion2 3.3and 5.0 3.3and 5.0

66 MHz Fusion 3.3 3.3
IGLOO/e 3.3 3.3
ProASIC3/E 3.3 3.3
ProASICELUS Not supported Not supported
RTAX-S 3.3 3.3
Axcelerator 3.3 3.3
RTSX-S Not supported Not supported
SX-A Not supported Not supported
SmartFusion2 3.3 3.3and 5.0

HB0087 Handbook Revision 8.0

Functional Description Q M. .
~ vlicrosemi

3

Figure 2 -

3.1

3.2

Power Matters.

Functional Description

CorePCIF consists of three major functional blocks, shown in Figure 2. These blocks are the Target
Controller, Master Controller, and Datapath. With both a Target and Master, all three blocks are required.
Otherwise, only the Datapath and either the Target or Master function are required.

CorePCIF Block Diagram

CorePCIF Master Controller
DMA
Registers
Target Controller
FCl Backend
Configuration Access Backend Control
Address
Decoder and DMA
Select Logic Controller
Datapath
Backend
Datapath
Contr%ller and FIFO Data Handshake
Controller
PCI Internal Data
Datapath Sorage
128 Words

Target Controller

The Target controller implements the PCI Target function. It contains two sub-blocks: the PCI
configuration space and the address decoder logic. The configuration block implements a "type 0" PCI
configuration space, supporting up to six base address registers and the Expansion ROM register.

The actual registers implemented are described in Table 29.

The address decoder block monitors the PCI bus for address cycles and compares the address with the
base address registers configured in the configuration space. A match signals the datapath controller to
start a PCI cycle.

CorePCIF — Master Controller

The Master controller implements the PCI Master function. It contains three sub-blocks: the DMA
registers, DMA controller, and backend access logic. The DMA register block implements the four 32-bit
registers that control the DMA controller. These registers can be programmed either from the PCI bus or
from the backend.

The DMA controller implements a PCl-compliant Master function that can burst up to 232 bytes of data

without intervention. The controller will stop a DMA burst automatically if the backend runs out of data,
and restart when data is available.

The backend access block allows a processor connected to the core backend to access the DMA
registers and initiate a DMA transfer.

HB0087 Handbook Revision 8.0 10

Functional Description

3.3

3.4

3.5

3.5.1

& Microsemi

Power Matters.

CorePCIF — Datapath

The datapath block provides the data control and storage path between the backend and the PCI bus. It
contains four sub-blocks: the PCI datapath, the PCI datapath controller, the backend and FIFO controller,
and the internal data storage memory.

The PCI datapath controller is responsible for controlling the PCI control signals and coordinating the
data transfers with the backend controller for both Target and Master operations.

The PCI datapath block selects which data should be routed to the PCI bus. Data may come from the
PCI configuration block, the DMA register block, or the internal data storage. The datapath block also
generates and verifies the PCI parity signals.

The backend controller implements the FIFO control logic. This interfaces to the user’s backend logic
and moves data from the backend interface into the internal storage. It also includes logic that monitors
how much data is actually transferred on the PCI bus. The backend controller can recover data that has
not actually been transferred, such as when a Master transfer is terminated with a disconnect without
data.

CorePCIF - Internal Data Storage

CorePCIF includes a 64-word internal memory block for 32-bit PCI data width or a 128-word internal
memory block for 64-bit PCI data width that is used to store data being moved from the backend to the
PCI bus. Data being transferred from the PCI bus to the backend is not stored internally in the core.

This data storage performs two functions. First, it implements a four-word FIFO that decouples the PCI
data transfers from the backend data transfers, thereby increasing throughput. Second, it provides

storage for the FIFO recovery logic used to prevent data loss when the backend is connected to a
standard FIFO.

Each of the seven supported BARs (six BARs and the Expansion ROM) is allocated eight words of
memory. BAR 0 is allocated locations 0—7, BAR 1 is allocated 8—15, and so on. The Expansion ROM is
allocated locations 48-55, and the remaining eight locations are not used. Each word is 32 bits wide for
32-bit implementations and 64 bits wide for 64-bit implementations.

For the Axcelerator, ProASICPLYS ProASIC3, and ProASIC3E families, the data storage is implemented
using FPGA memory resources. For SX-A and RTSX-S families, the storage is implemented using FPGA
logic resources. For the RTAX-S family, the storage can be implemented using FPGA logic resources or
memory resources. Each BAR will require at least 256 logic modules to implement the storage. Storage
is only required for the enabled BARs.

When the SLOW_READ parameter is set, the internal data storage is not implemented, eliminating the
need for FPGA memory resources. Instead, the data throughput rate is reduced to prevent data loss.

CorePCIF Target Function

The CorePCIF Target function acts as a slave on the PCI bus. The Target controller monitors the bus and
checks for hits to the configuration space or the address space defined in its BARs. When a hit is
detected, the Target controller notifies the backend and then acts to control the flow of data between the
PCI bus and the backend.

Supported Target Commands

Table 9 lists the PCI commands supported in the CorePCIF Target implementation.

Table 9 - Supported PCI Target Commands

CBEN[3:0] Command Type Supported
0000 Interrupt Acknowledge No
0001 Special Cycle No
0010 I/0 Read Yes

HB0087 Handbook Revision 8.0 1"

Functional Description Q M. .
~ IVIICrOSeImi.

Power Matters.

Table 9 - Supported PCI Target Commands

CBEN[3:0] Command Type Supported
0011 I/0 Write Yes
0100 Reserved -
0101 Reserved -
0110 Memory Read Yes
0111 Memory Write Yes
1000 Reserved -
1001 Reserved -
1010 Configuration Read Yes
1011 Configuration Write Yes
1100 Memory Read Multiple Yes
1101 Dual Address Cycle No
1110 Memory Read Line Yes
1111 Memory Write and Invalidate Yes

3.52 1/0 Read (0010) and Write (0011)

The 1/0 Read command is used to read data mapped into I/0O address space. The I/O Write command is
used to write data mapped into I/0 address space. In this case, the write is qualified by the byte enables.

3.5.3 Memory Read (0110) and Write (0111)

The Memory Read command is used to read data in memory-mapped address space. The Memory Write
command is used to write data mapped into memory address space. In this case, the write is qualified by
the byte enables.

3.54 Memory Read Multiple (1100) and Memory Read Line (1110)

The Memory Read Multiple and Memory Read Line commands are treated in the same manner as a
Memory Read command. Typically, the bus master will use these commands when data is prefetchable.

3.5.5 Memory Write and Invalidate (1111)

The Memory Write and Invalidate command is treated in the same manner as a Memory Write command.

3.5.6 Configuration Read (1010) and Write (1011)

The Configuration Read command is used to read the configuration space of each device. The
Configuration Write command is used to write information into the configuration space. The device is
selected if its IDSEL signal is asserted and AD[1:0] are set to '00'. Additional address bits are defined as
follows:

+ AD[7:2] contain one of 64 DWORD addresses for the configuration registers.

« AD[10:8] indicate which device of a multi-function agent is addressed. The core does not support
multi-function devices, and these bits should be '000'.

« AD[31:11] are ignored.

The core supports burst configuration read and write cycles.

3.5.7 Disconnects and Retries

The CorePCIF Target will perform either single-DWORD or burst transactions, depending on the request
from the system Master. If the backend is unable to deliver data quickly enough, the Target will respond
with either a PCI retry or disconnect, with or without data. If the system Master requests a transfer that
the backend is not able to perform, a Target abort can be initiated by the backend.

HB0087 Handbook Revision 8.0 12

Functional Description

3.6

3.6.1

3.6.2

3.6.3

& Microsemi

Power Matters.

CorePCIF Master Function

The Master function in CorePCIF is designed to do the following:

* Arbitrate for the PCl bus

+ Initiate a PClI cycle

+ Pass dataflow control to the Target controller

+ End the transfer when the DMA count has been exhausted
* Allow the backend hardware to stop and start DMA cycles

Master transfers can be initiated directly from the backend interface, or another PCI device may program
the DMA engine to initiate a PCI transfer.

Backend Interface

Through the backend interface (BE_REQ, BE_GNT, BE_ADDRESS, and so on), an external processor
through the backend interface, the AHB interface can access the DMA Master control registers and
initiate a Master transfer. This interface also allows the complete PCI configuration space to be accessed
so the core can be self-configured by a backend processor. This is required when the core is used to
implement the PCI device responsible for configuring the PCI bus. A hardware lock (BE_CFGLOCK) is
provided for safety reasons to prevent the backend from changing the values in the PCI configuration
space.

Supported Master Commands

The CorePCIF Master controller is capable of performing configuration, 1/0, memory, and interrupt
acknowledge cycles. Data transfers can be up to 232 bytes.

The Master controller will attempt to complete the transfer using a maximum-length PCI burst unless the
maximum burst length bits are set in the control register. If the addressed Target is unable to complete
the transfer and performs a retry or disconnect, the Master control will restart the transfer and continue
from the last known good transfer. If a Target does not respond (no DEVSELn asserted) or responds with
a Target abort cycle, the Master controller will abort the current transaction and report it as an error in the
control register.

DMA Master Registers

There are four 32-bit registers used to control the function of the CorePCIF Master. The first register is
the PCI address register. The second register is the RAM or backend address register. These two
registers provide the source/destination addressing for all data transfers. The third register contains the
number of words to be transferred, and the final control register defines the type and status of a Master
transfer. These registers are cleared on reset. They are defined in detail in Table 44 through Table 50.

The DMA registers can be accessed from either the PCI or the backend interface. The address locations
for the DMA registers are listed in Table 10. When these registers are accessible from the PCl bus, they can
be memory-, I/0-, or configuration-mapped. The DMA_REG_LOC, DMA_REG_BAR, and BACKEND
parameters control access to these registers are accessible though BAR 1, a 256-byte memory-mapped
BAR.

The complete configuration space can be read when BAR access to these registers is enabled, but
writing can be done only to the four DMA control registers.

When the BACKEND parameter is set, the four registers and the complete PCI configuration space can
be accessed through the backend (Table 10).

Table 10 - DMA Register Addresses

Register Name Address
PCIl address 50h
RAM address or data register 54h
DMA transfer length 58h
DMA control register 5Ch

HB0087 Handbook Revision 8.0 13

Functional Description Q M. .
~ IVIICrOSeImi.

3.6.4

3.6.5

3.7

3.8

Power Matters.

Master Transfers

The CorePCIF Master function supports full DMA transfers to and from the backend interface and
initiates direct PCI transfers.

When normal DMA transfers are used, CorePCIF writes each data word to or fetches it from memory
through its backend interface. This allows data to be transferred directly from the PCI bus to or from
backend memory blocks. In some circumstances, this is inefficient, especially if a processor connected to
the backend simply wants to carry out a single-word PCI read or write. In this case, the processor writes
the data word to a known location in its memory map. It then programs the DMA controller to perform a
single-word DMA transfer. The DMA controller accesses the memory location to obtain the data value;
this may require the processor to stop operating while the PCI core accesses the memory to complete
the PCI transfer.

When direct DMA transfers are enabled, the processor simply writes the PCI address and data into the
core and starts the transfer by writing to the control register, setting the DMA_BAR value to '111". The
core then fetches the data value or writes it to the internal register during the PCI transfer. Access to the
backend memory is not required to complete the DMA transfer.

Direct DMA transfer supports only 32-bit transfers. When using 64-bit versions of the core, the 64-bit
transfer mode select bit in the DMA control register should not be set if Direct DMA mode is enabled.

Master Byte Commands

CorePCIF can either transfer multiple whole DWORDs (QWORDs for 64-bit transfers) or perform a
single DWORD or QWORD transfer with one or more byte enables active.

When multiple words are to be transferred—the DMA transfer length register is greater than four bytes
(eight bytes for 64-bit)—the byte enable bits in the DMA control register should be programmed to all
ones. All four or eight (64-bit) bytes will be transferred in each data cycle.

If a partial-word read or write is required, the DMA transfer length register should be programmed to four
bytes (or eight for 64-bit) and the correct bits set in the byte enable bits in the DMA control register. The
DMA engine will transfer a single word, setting the appropriate byte enable bits on both the backend and
the PCl interface.

If a non-aligned DMA transfer is required, three separate DMA operations should be performed. The first
DMA transfer should be configured to transfer a single DWORD with just the initial bytes enabled. The
second DMA should transfer the remaining complete DWORDs with all bytes enabled. A third DMA
transfer should transfer the final DWORD with just the remaining bytes enabled. For example, a transfer
starting at address 3 and ending at address 12 would require three operations. The first DMA transfer
would enable byte 3 only, the second transfer would transfer two DWORD addresses to bytes 4 through
11, and the third DMA transfer would enable byte 0 and transfer address 12.

CardBus Support

CorePCIF directly supports CardBus functional requirements. Two top-level parameters, CIS_UPPER
and CIS_LOWER, specify the 32-bit configuration space setting for the CIS pointer. CIS_UPPER sets the
upper 16 bits, and CIS_LOWER sets the lower 16 bits.

The CIS address space must be mapped to one of the BARs or the Expansion ROM. It may not be
mapped to configuration space, which means the lower three bits of the CIS pointer (that is, the lower
three bits of CIS_LOWER) must not be set to '000'. This allows the user to implement the CIS address
space as one of the external backend BAR memory spaces.

When CardBus support is enabled, the IDSEL core input is disabled. CardBus does not require IDSEL to
be active for configuration cycles.

CompactPCl Hot-Swap Support

CorePCIF supports the CompactPCl Hot-Swap PICMG 2.1 R2.0 standard; additional inputs and outputs
are provided to support this standard. When enabled, the core includes the hot-swap capabilities register
in the configuration space and a state machine that implements the hardware connection process

HB0087 Handbook Revision 8.0 14

Functional Description Q M. .
~ IVIICrOSeImi.

3.9

3.91

3.9.2

3.9.3

3.10

Power Matters.

defined in the PICMG Hot-Swap specification. The insertion and extraction sequences are shown in
Figure 66 and Figure 67.

CorePCIF Backend Dataflow

CorePCIF has a very flexible backend interface that supports various transfer rates as well as FIFOs. To
decouple the backend data transfers from the PCI transfers, CorePCIF implements an eight-stage FIFO
for each BAR. During normal operation, the FIFO stores up to four data words, the remaining four
locations being used for the FIFO recovery mechanism. This is implemented using FPGA memory
resources in all families except SX-A, RTSX-S, and RTAX-S.

Burst Transfers

CorePCIF is capable of bursting data from the PCI bus to the backend or vice versa. During transfers to
the backend, the WR_BE_RDY and WR_BE_NOW signals are used to control the dataflow. When the
backend asserts WR_BE_RDY, the core is allowed to write data to the backend by asserting
WR_BE_NOW. A separate WR_BE_NOW signal is provided for each byte.

For transfers from the backend, RD_STB_IN and RD_STB_OUT control the dataflow. When both of
these signals are active, data is transferred from the backend into the core.

Byte-Controlled Transfers

CorePCIF supports both write- and read-controlled byte transfers to the backend. When data is written to
the backend, four (eight for 64-bit operations) write strobes (WR_BE_NOW) are provided, indicating
which bytes should be written.

When data is read from the backend interface, the BYTE_ENN and BYTE_VALN signals can be used to
control the byte reads. The backend should wait until BYTE_VALN is active (LOW) and then use the four
(eight for 64-bit) BYTE_ENN signals (active low) to control the data read. Using the BYTE_VALN signal

prevents the core from bursting data every clock cycle; in that case, data will be transferred once every

four clock cycles at best.

Dataflow Control

CorePCIF allows the backend to stop data transfers in Master and Target mode, and to initiate transfers
in Master mode. In Target mode, the BUSY signal can be used to terminate a data transfer so it will be
retried. The ERROR signal can be used to simply terminate a transfer.

Likewise, in Master mode, the STOP_MASTER signal can be used to terminate a data transfer. The
WR_BUSY_MASTER and RD_BUSY_MASTER signals can be used to delay a DMA transfer from
starting. If STOP_MASTER and RD_BUSY_MASTER are connected to a FIFO empty signal, the DMA
engine will automatically stop a DMA cycle when the FIFO becomes empty and restart it when the FIFO
becomes non-empty. This allows the core to move data from a FIFO to PCl memory without any host
intervention.

FIFO Recovery Logic

The CorePCIF backend interface directly supports the connection of external FIFOs using internal FPGA
FIFO memories or external FIFO devices. To prevent data loss, CorePCIF includes optional FIFO
recovery logic for each BAR. In normal burst operations, the core reads data from the backend at the
same time as previous data is being transferred on the PCI bus. When the Master terminates the Target
transfer, it is likely that data has been read from the FIFO and not transferred on the PCI bus (Figure 15).
Without recovery logic, this data would be lost; however, if the FIFO recovery logic is enabled

(Figure 24), the core stores this data until the next Target access to the same BAR. Data loss also
potentially occurs when the core is operating in Master mode. In this case, the core also needs to recover
data lost due to PCI cycles that are terminated with a disconnect without data cycle.

Figure 3 and Figure 4 show how to connect a FIFO to the backend interface, supporting Target and
Master transfers. In Target mode, the FIFO empty signal is used to assert the BUSY input while the FIFO
is empty and to assert RD_STB_IN when data is available.

In Master mode, the FIFO empty signal is used to assert the RD_BUSY_MASTER input while the FIFO is
empty, preventing a DMA cycle from starting, and to assert RD_STB_IN when data is available. The

HB0087 Handbook Revision 8.0 15

Functional Description O M. .
Iicrosemi

Figure 3 -

Figure 4 -

3.1

Figure 5 -

Power Matters.

FIFO almost empty signal is used to assert STOP_MASTER, which will cause the current DMA cycle to
be terminated as soon as possible. Additional data words may be read from the backend after
STOP_MASTER has been asserted.

If both Master and Target transfers will be used, the connections in both Figure 3 and Figure 4 should be
implemented.

External FIFO Connection (Target mode)

CorePCIF
BAR SELECT
RD_CYC l|:>_ AFO
RD_STB_OUT N— }—— READ
RD_STB_IN ‘—| | EMPTY
BUSY _G_ DATA_OUT
MEM_DATA_IN
External FIFO Connection (Master mode)
CorePCIF
BAR SELECT
RD_CYC ;D_ FIFO
RD_STB_OUT y — }—— READ
RD STB IN [—— EMPTY
DMA BAR ALMOST EMPTY
RD_BUSY_MASTER
STOP_MASTER N
| DATA_OUT
MEM_DATA_IN

Example System Implementation

CorePCIF provides an extremely flexible PCI interface that can be configured in many ways. Figure 5
shows a PCI-to-1553 interface. In this example, CorePCIF is configured as a Target with a single
memory BAR used to access the Core1553BRT memory.

Simple Target Implementation

PCl Bus

CorePCIF |e¢—> ~—>»| Core1553BRT
Memory Busses

—
Dual Port 1553B
—

A more complex system is shown in Figure 6. In this case, the core supports both Target and Master
operation. Core8051 is connected to the backend interface, allowing it to initiate PCI cycles. Core8051 is
used to control the AES encryption core and the Core10/100 Ethernet interface. CorePCIF has two
memory BARs configured. The first allows the PCI interface to access the 8051 memory space, and the
second reads data from the FIFO.

HB0087 Handbook Revision 8.0 16

	Contact us
	1 Revision History
	1.1 Revision 8.0
	1.2 Revision 7.0
	1.3 Revision 6.0
	1.4 Revision 5.0
	1.5 Revision 4.0
	1.6 Revision 3.0
	1.7 Revision 2.0
	1.8 Revision 1.0

	2 Introduction
	2.1 Core Versions
	2.2 Supported Families
	2.3 CorePCIF Device Requirements
	2.4 Utilization Statistics
	2.5 Performance Statistics
	2.6 I/O Requirements
	2.7 Electrical Requirements

	3 Functional Description
	3.1 Target Controller
	3.2 CorePCIF – Master Controller
	3.3 CorePCIF – Datapath
	3.4 CorePCIF – Internal Data Storage
	3.5 CorePCIF Target Function
	3.5.1 Supported Target Commands
	3.5.2 I/O Read (0010) and Write (0011)
	3.5.3 Memory Read (0110) and Write (0111)
	3.5.4 Memory Read Multiple (1100) and Memory Read Line (1110)
	3.5.5 Memory Write and Invalidate (1111)
	3.5.6 Configuration Read (1010) and Write (1011)
	3.5.7 Disconnects and Retries

	3.6 CorePCIF Master Function
	3.6.1 Backend Interface
	3.6.2 Supported Master Commands
	3.6.3 DMA Master Registers
	3.6.4 Master Transfers
	3.6.5 Master Byte Commands

	3.7 CardBus Support
	3.8 CompactPCI Hot-Swap Support
	3.9 CorePCIF Backend Dataflow
	3.9.1 Burst Transfers
	3.9.2 Byte-Controlled Transfers
	3.9.3 Dataflow Control

	3.10 FIFO Recovery Logic

