

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Product Specification

Coherent 64 Gbaud Polarization Diversity Cartesian Phase Detector

CPDV1200R-GM

PRODUCT FEATURES

- Up to 64 Gbaud
- 40 GHz bandwidth
- Surface mount package
- GPPO® compatible RF-output interface
- Polarization diversity

APPLICATIONS

- Coherent T&M Systems
- 400 Gb/s and 1 Tb/s coherent detection
- OFDM
- Intradyne and homodyne coherent detection

The coherent detector module CPDV1200R-GM consists of an integrated polarization beam splitter and four balanced photodiodes pairs monolithically integrated with optical 90° hybrids. The detector is a fully differential optical front-end suited for up to 64 Gbaud polarization diversity x-QAM measurement applications featuring high common mode rejection ratio. The optical 90° hybrids demodulate the I/Q incident signal for each respective polarization state using external reference oscillator laser sources. The mixing products are detected by pin-photodiodes and signal is available via GPPO® compatible connectors.

ORDERING INFORMATION

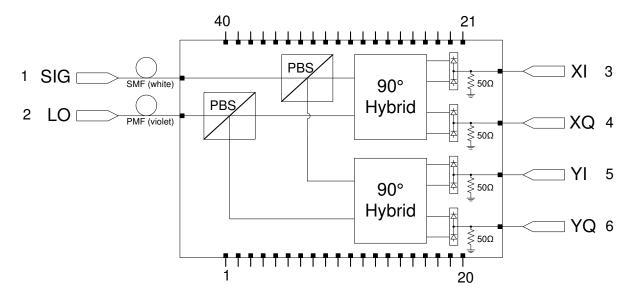
CPDV1200R-GM-zz

R: $R = 50 \Omega$ internal, DC

GM: GM = GPPO® compatible, male

zz: FA = FC/APC connector LP = LC/PC connector

For accessories, please check section IX



I. Pin Description

# Pin	Symbol	Description	# Pin	Symbol	Description
1	NC	future use	40	NC	future use
2	NC	future use	39	NC	future use
3	NC	future use	38	NC	future use
4	NC	future use	37	NC	future use
5	DNU	future use (reserved for MPD, cathode)	36	T2	thermistor (NTC)
6	DNU	future use (reserved for MPD, anode)	35	T1	thermistor (NTC)
7	NC	future use	34	NC	future use
8	GND	ground reference	33	GND	ground reference
9	PD-YI+	positive I-photodiode supply voltage Y-pol.	32	PD-XQ-	negative Q-photodiode supply voltage X-pol.
10	PD-YI-	negative l-photodiode supply voltage Y-pol.	31	PD-XQ+	positive Q-photodiode supply voltage X-pol.
11	PD-YQ+	positive Q-photodiode supply voltage Y-pol.	30	PD-XI-	negative I-photodiode supply voltage X-pol.
12	PD-YQ-	negative Q-photodiode supply voltage Y-pol.	29	PD-XI+	positive I-photodiode supply voltage X-pol.
13	GND	ground reference	28	GND	ground reference
14	NC	future use	27	NC	future use
15	NC	future use	26	NC	future use
16	NC	future use	25	NC	future use
17	NC	future use	24	NC	future use
18	NC	future use	23	NC	future use
19	NC	future use	22	NC	future use
20	NC	future use	21	NC	future use

II. Block Diagram

III. Absolute Maximum Ratings

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Photodiada Pias Valtaga	V_{PDP}		0		3.5	٧
Photodiode Bias Voltage	V_{PDN}		-3.5		0	
Average Optical Indust Device	P _{opt, Sig}	unpolarized CW			18	dBm
Average Optical Input Power	P _{opt, LO}	polarized CW			18	dBm
ESD, Output Pins	V _{ESD}	human body model	-250		250	٧
Fiber Bend Radius			20			mm

Notice

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operations section for extended periods of time may affect reliability.

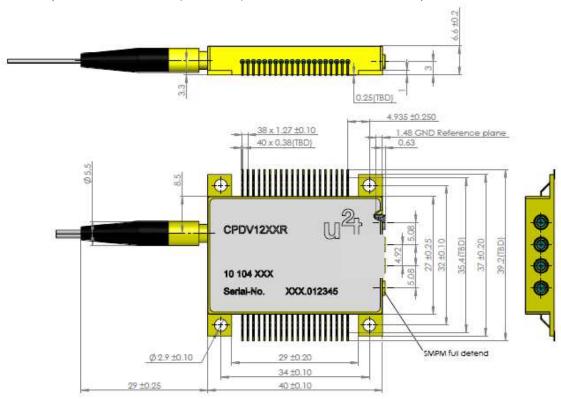
The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation to equipment, take normal ESD precautions when handling this product.

IV. Environmental Conditions

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Case Temperature	T_{Case}		5		35	°C
Relative Humidity	RH	non condensing	5		85	%
Storage Temperature	T_{sto}		-40		85	°C

V. Operating Conditions

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Photodiode Bias Voltage	V_{PDP}		2.0	2.8	3.3	V
Priotodiode bias voltage	V_{PDN}		-3.3	-2.8	-2.0	V
Wavelength Range	λ		1530		1570	nm
Average Optical Input Power Local Oscillator	P _{LO}	CW			16	dBm
Average Optical Input Power Signal	P_{SIG}	DP-QPSK	-20		10	dBm


VI. Electro-Optical Specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Dhata dia da Daga angivitu	R_{Sig}	linear polarized, optimum transition at PBS	0.045	0.060		A/W
Photodiode Responsivity,	R _{LO}	including 3 dB splitting loss	0.020	0.030		A/W
Photodiode Dark Current	I _{DARK}	sum of all photocurrents		100	500	nA
3dB Cut-off Frequency	f _{3dB}		40	42		GHz
6dB Cut-off Frequency	f _{6dB}		45			GHz
Electrical Output Reflection Coefficient	S _{XX}	f < 15 GHz 15 GHz - 50 GHz			-10 -1	dB dB
Common Mode Rejection Ratio ¹	CMRR	Sig & LO, DC			-18	dB _e
	τρη	intra symbol		0		ps
Skew	τ_{IQ}	inter symbol per polarization		0		ps
	τ_{XY}	inter polarization		1		ps
Imbalance ²	I_{Sig} , I_{LO}	DC			2	dB ₀
Phase Deviation from 90°	Δφ		-7.5		+7.5	Deg
Polarization Extinction Ratio for Sig & LO	PER		20			dB ₀
Optical Return Loss	ORL		27			dB ₀
Thermistor Resistance	R _{THERM}	T _{Case} = 25°C	9.9	10	10.1	kΩ
Thermistor B Value	B _{25/50}		3300		3400	K
Notes: 1. CMRR=20 log(\triangle IPD / Σ IPD),	10*log(Rmax/R	min)				

VII. Mechanical Specifications*

(*All dimensions in mm, tolerances, if not stated otherwise: ±0.2 mm)

RF interface is realized in GPPO® compatible, male connectors.

VIII. Fiber Pigtail and Optical Connector

LO optical port has polarization maintaining single-mode fiber (e.g. Corning Panda PM 15-U25A). The connector key is aligned to the slow axis. Signal optical port has SMF. FC/APC connectors are used. The fiber length is 1400 + 0/-200 mm.

IX. Accessories

Evaluation Kit

The evaluation kit EVA-CPDV serves as easy-to-use utility to characterize the Finisar photodetector CPDV1200R-GM under laboratory conditions. The kit consists of a PCB (printed circuit board), a DC cable set and 4 socket head screws (see picture).

ORDERING INFORMATION

EVA-CPDV

X. Revision History

Revision	Date	Description
A1	04/09/2014	Document created.

Notes

- Any trademarks used in this document are properties of their respective owners.
- Finisar Corporation reserves the right to make changes without notice.

For More Information

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com