

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









# **IGBT SIP Module (Fast IGBT)**



SIP (IMS-2)

| PRIMARY CHARACTERISTICS                                               |                           |  |  |  |  |
|-----------------------------------------------------------------------|---------------------------|--|--|--|--|
| OUTPUT CURRENT IN A TYPE                                              | PICAL 5.0 kHz MOTOR DRIVE |  |  |  |  |
| V <sub>CES</sub>                                                      | 600 V                     |  |  |  |  |
| I <sub>RMS</sub> per phase (3.1 kW total) with T <sub>C</sub> = 90 °C | 11 A                      |  |  |  |  |
| TJ                                                                    | 125 °C                    |  |  |  |  |
| Supply voltage                                                        | 360 V <sub>DC</sub>       |  |  |  |  |
| Power factor                                                          | 0.8                       |  |  |  |  |
| Modulation depth See fig. 1                                           | 115 %                     |  |  |  |  |
| V <sub>CE(on)</sub> (typical)<br>at I <sub>C</sub> = 4.8 A, 25 °C     | 1.41 V                    |  |  |  |  |
| Speed                                                                 | 1 kHz to 8 kHz            |  |  |  |  |
| Package                                                               | SIP                       |  |  |  |  |
| Circuit configuration                                                 | Three phase inverter      |  |  |  |  |

#### **FEATURES**





- Switching-loss rating includes all "tail" losses
- HEXFRED® soft ultrafast diodes
- RoHS
- · Optimized for medium speed, see fig. 1 for current vs. frequency curve
- · Designed and qualified for industrial level
- UL approved file E78996
- · Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

#### **DESCRIPTION**

The IGBT technology is the key to the advanced line of IMS (Insulated Metal Substrate) power modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium.

| ABSOLUTE MAXIMUM RAT                             | INGS                              |                                                                                                                   |                                 |                    |  |
|--------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------|--|
| PARAMETER                                        | SYMBOL                            | TEST CONDITIONS                                                                                                   | MAX.                            | UNITS              |  |
| Collector to emitter voltage                     | V <sub>CES</sub>                  |                                                                                                                   | 600                             | V                  |  |
| Continuous collector current, each               |                                   | T <sub>C</sub> = 25 °C                                                                                            | 8.8                             |                    |  |
| IGBT                                             | I <sub>C</sub>                    | T <sub>C</sub> = 100 °C                                                                                           | 4.8                             |                    |  |
| Pulsed collector current                         | I <sub>CM</sub>                   | Repetitive rating; V <sub>GE</sub> = 20 V,<br>pulse width limited by maximum<br>junction temperature. See fig. 20 | 26                              | A                  |  |
| Clamped inductive load current                   | I <sub>LM</sub>                   | $V_{CC} = 80 \% (V_{CES}), V_{GE} = 20 V,$<br>L = 10 µH, R <sub>G</sub> = 50 $\Omega$ See fig. 19                 | 800                             |                    |  |
| Diode continuous forward current                 | I <sub>F</sub>                    | T <sub>C</sub> = 100 °C                                                                                           | 3.4                             |                    |  |
| Diode maximum forward current                    | I <sub>FM</sub>                   |                                                                                                                   | 26                              |                    |  |
| Gate to emitter voltage                          | $V_{GE}$                          |                                                                                                                   | ± 20                            | V                  |  |
| Isolation voltage                                | V <sub>ISOL</sub>                 | Any terminal to case, t = 1 min                                                                                   | 2500                            | V <sub>RMS</sub>   |  |
| Maximum power dissipation, each                  | num power dissipation, each       |                                                                                                                   | 23                              | W                  |  |
| IGBT                                             | FD                                | T <sub>C</sub> = 100 °C                                                                                           | 9.1                             | VV                 |  |
| Operating junction and storage temperature range | T <sub>J</sub> , T <sub>Stg</sub> | -40 to +150                                                                                                       |                                 | °C                 |  |
| Soldering temperature                            |                                   | For 10 s                                                                                                          | 300 (0.063" (1.6 mm) from case) |                    |  |
| Mounting torque                                  |                                   | 6-32 or M3 screw                                                                                                  | 5 to 7<br>(0.55 to 0.8)         | lbf · ir<br>(N · m |  |

| THERMAL AND MECHANICAL SPECIFICATIONS                 |                            |          |      |         |
|-------------------------------------------------------|----------------------------|----------|------|---------|
| PARAMETER                                             | SYMBOL                     | TYP.     | MAX. | UNITS   |
| Junction to case, each IGBT, one IGBT in conduction   | R <sub>thJC</sub> (IGBT)   | -        | 5.5  |         |
| Junction to case, each diode, one diode in conduction | R <sub>thJC</sub> (diode)  | -        | 9.0  | °C/W    |
| Case to sink, flat, greased surface                   | R <sub>thCS</sub> (module) | 0.1      | -    |         |
| Weight of module                                      |                            | 20 (0.7) | -    | g (oz.) |





| <b>ELECTRICAL SPECIFICATIONS</b> (T <sub>J</sub> = 25 °C unless otherwise specified) |                                    |                                                                              |                                         |      |      |       |       |
|--------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------|-----------------------------------------|------|------|-------|-------|
| PARAMETER                                                                            | SYMBOL                             | TEST CONDITIONS                                                              |                                         | MIN. | TYP. | MAX.  | UNITS |
| Collector to emitter breakdown voltage                                               | V <sub>(BR)CES</sub>               | $V_{GE}$ = 0 V, $I_{C}$ = 250 μA<br>Pulse width ≤ 80 μs, duty factor ≤ 0.1 % |                                         | 600  | -    | -     | V     |
| Temperature coeff. of breakdown voltage                                              | $\Delta V_{(BR)CES}/\Delta T_J$    | $V_{GE} = 0 \text{ V}, I_{C} = 1.0 \text{ mA}$                               |                                         | -    | 0.72 | -     | V/°C  |
|                                                                                      |                                    | $I_C = 4.8 \text{ A}$                                                        | 45.1/                                   | -    | 1.41 | 1.7   | V     |
| Collector to emitter saturation voltage                                              | V <sub>CE(on)</sub>                | I <sub>C</sub> = 8.8 A                                                       | V <sub>GE</sub> = 15 V<br>See fig. 2, 5 | -    | 1.66 | -     |       |
|                                                                                      |                                    | I <sub>C</sub> = 4.8 A, T <sub>J</sub> = 150 °C                              |                                         | -    | 1.42 | -     | V     |
| Gate threshold voltage                                                               | $V_{GE(th)}$                       | $V_{CE} = V_{GE}, I_{C} = 250 \mu\text{A}$                                   |                                         | 3.0  | -    | 6.0   |       |
| Gate to emitter leakage current                                                      | I <sub>GES</sub>                   | V <sub>GE</sub> = ± 20 V                                                     |                                         | -    | -    | ± 100 | nA    |
| Temperature coeff. of threshold voltage                                              | $\Delta V_{GE(th)} / \Delta T_{J}$ | V <sub>GE</sub> = 0 V, I <sub>C</sub> = 1.0 mA                               |                                         | -    | -11  | -     | mV/°C |
| Forward transconductance                                                             | g <sub>fe</sub>                    | $V_{CE}$ = 100 V, $I_{C}$ = 4.8 A<br>Pulse width 5.0 $\mu$ s; single shot    |                                         | 2.9  | 5.0  | -     | S     |
| Zero gate voltage collector current I <sub>CES</sub>                                 |                                    | $V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}$                               |                                         | -    | -    | 250   | μA    |
|                                                                                      |                                    | V <sub>GE</sub> = 0 V, V <sub>CE</sub> = 600 V, T <sub>J</sub> = 150 °C      |                                         | -    | _    | 1700  |       |
| Diada famuard valtaga dran                                                           | $V_{\sf FM}$                       | I <sub>C</sub> = 8.0 A                                                       | See fig. 13                             | -    | 1.4  | 1.7   | V     |
| Diode forward voltage drop V <sub>FM</sub>                                           |                                    | $I_C = 8.0 \text{ A}, T_J = 150 ^{\circ}\text{C}$                            | See lig. 13                             | -    | 1.3  | 1.6   | ] '   |

| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SYMBOL                   | TEST CONDITIONS                                                                                                                                                                                                                               |                                                                          | MIN.                                | TYP. | MAX. | UNITS |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|------|------|-------|---------|
| Total gate charge (turn on)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Qg                       | I <sub>C</sub> = 4.8 A                                                                                                                                                                                                                        |                                                                          | -                                   | 30   | 45   |       |         |
| Gate to emitter charge (turn on)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $Q_{ge}$                 | $V_{CC} = 400 \text{ V}$                                                                                                                                                                                                                      |                                                                          |                                     | -    | 4.0  | 6.0   | nC      |
| Gate to collector charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q <sub>gc</sub>          | See fig. 8                                                                                                                                                                                                                                    |                                                                          |                                     | -    | 13   | 20    |         |
| Turn-on delay time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t <sub>d(on)</sub>       |                                                                                                                                                                                                                                               |                                                                          |                                     | -    | 49   | -     |         |
| Rise time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t <sub>r</sub>           | T <sub>.1</sub> = 25 °C                                                                                                                                                                                                                       |                                                                          |                                     | -    | 22   | -     | 1       |
| Turn-off delay time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t <sub>d(off)</sub>      | $I_{\rm C} = 4.8  \rm A,  V_{\rm C}$                                                                                                                                                                                                          | <sub>CC</sub> = 480 V                                                    |                                     | -    | 200  | 300   | ns      |
| Fall time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t <sub>f</sub>           | V <sub>GE</sub> = 15 V, F                                                                                                                                                                                                                     | $R_G=50\Omega$ es include "tai                                           | l" and                              | -    | 214  | 320   | 1       |
| Turn-on switching loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E <sub>on</sub>          | diode revers                                                                                                                                                                                                                                  |                                                                          | and                                 | -    | 0.23 | -     |         |
| Turn-off switching loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E <sub>off</sub>         | See fig. 9, 10                                                                                                                                                                                                                                | See fig. 9, 10, 18                                                       |                                     |      | 0.33 | -     | mJ      |
| Total switching loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E <sub>ts</sub>          |                                                                                                                                                                                                                                               |                                                                          |                                     | -    | 0.45 | 0.70  |         |
| Turn-on delay time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t <sub>d(on)</sub>       | $\begin{split} T_J &= 150 \text{ °C}, \\ I_C &= 4.8 \text{ A}, V_{CC} = 480 \text{ V} \\ V_{GE} &= 15 \text{ V}, R_G = 50 \Omega \\ \text{Energy losses include "tail" and diode reverse recovery} \\ \text{See fig. 10, 11, 18} \end{split}$ |                                                                          |                                     | -    | 48   | -     | - ns    |
| Rise time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t <sub>r</sub>           |                                                                                                                                                                                                                                               |                                                                          |                                     | -    | 25   | -     |         |
| Turn-off delay time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t <sub>d(off)</sub>      |                                                                                                                                                                                                                                               |                                                                          |                                     | -    | 435  | -     |         |
| Fall time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t <sub>f</sub>           |                                                                                                                                                                                                                                               |                                                                          |                                     | -    | 364  | -     |         |
| Total switching loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E <sub>ts</sub>          |                                                                                                                                                                                                                                               |                                                                          |                                     | -    | 0.93 | -     | mJ      |
| Input capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C <sub>ies</sub>         | V <sub>GE</sub> = 0 V<br>V <sub>CC</sub> = 30 V                                                                                                                                                                                               |                                                                          | See fig. 7                          | -    | 340  | -     | pF      |
| Output capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C <sub>oes</sub>         |                                                                                                                                                                                                                                               |                                                                          |                                     | -    | 63   | -     |         |
| Reverse transfer capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C <sub>res</sub>         | VCC = 30 V                                                                                                                                                                                                                                    |                                                                          |                                     | -    | 5.9  | _     | 1       |
| Die de verseure verseure kinne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | T <sub>J</sub> = 25 °C                                                                                                                                                                                                                        | $T_{J} = 25 ^{\circ}\text{C}$ $T_{J} = 125 ^{\circ}\text{C}$ See fig. 14 | fig. 14                             | -    | 37   | 55    |         |
| Diode reverse recovery time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t <sub>rr</sub>          | T <sub>J</sub> = 125 °C                                                                                                                                                                                                                       |                                                                          | T <sub>J</sub> = 125 °C See lig. 14 |      | -    | 55    | 90      |
| Die de la colonia de la coloni |                          | $T_{J} = 25 ^{\circ}\text{C}$ $T_{J} = 125 ^{\circ}\text{C}$ See fig. 15                                                                                                                                                                      |                                                                          | -                                   | 3.5  | 50   | _     |         |
| Diode peak reverse recovery current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I <sub>rr</sub>          |                                                                                                                                                                                                                                               | = 125 °C See lig. 15 I <sub>F</sub> = 8.0 A V <sub>R</sub> = 200 V       |                                     | -    | 4.5  | 8.0   | A       |
| Die de verreure verene elemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T <sub>J</sub> =         | $T_{J} = 25  ^{\circ}\text{C}$ $T_{J} = 125  ^{\circ}\text{C}$ See fig. 16                                                                                                                                                                    | V <sub>R</sub> = 200 V<br>dI/dt = 200 A/μs                               | -                                   | 65   | 138  | 0     |         |
| Diode reverse recovery charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Q_{rr}$                 |                                                                                                                                                                                                                                               | ee lig. 16                                                               | -                                   | 124  | 360  | nC    |         |
| Diada pask rata of fall of recovery division t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ما /مان                  | $T_J = 25 \degree C$ See fig. 17                                                                                                                                                                                                              | T <sub>J</sub> = 25 °C                                                   |                                     | -    | 240  | -     | Δ /ι ις |
| Diode peak rate of fall of recovery during t <sub>b</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dI <sub>(rec)M</sub> /dt |                                                                                                                                                                                                                                               |                                                                          | -                                   | 210  | -    | A/µs  |         |



Fig. 1 - Typical Load Current vs. Frequency (Load Current = I<sub>RMS</sub> of Fundamental)



Fig. 2 - Typical Output Characteristics



Fig. 4 - Maximum Collector Current vs. Case Temperature



Fig. 3 - Typical Transfer Characteristics



Fig. 5 - Typical Collector to Emitter Voltage vs. Junction Temperature





Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction to Case



Fig. 7 - Typical Capacitance vs. Collector to Emitter Voltage



V<sub>GE</sub> - Gate to Emitter Voltage (V)

Fig. 8 - Typical Gate Charge vs. Gate to Emitter Voltage



Fig. 9 - Typical Switching Losses vs. Gate Resistance



Fig. 10 - Typical Switching Losses vs. Junction Temperature



Fig. 11 - Typical Switching Losses vs. Collector to Emitter Current



Fig. 12 - Turn-Off SOA



Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current



Fig. 14 - Typical Reverse Recovery Time vs. dI<sub>F</sub>/dt



Fig. 15 - Typical Recovery Current vs. dl<sub>F</sub>/dt



Fig. 16 - Typical Stored Charge vs. dl<sub>F</sub>/dt





Fig. 17 - Typical  $dI_{(REC)M}/dt$  vs  $dI_F/dt$ 



Fig. 18a - Test Circuit for Measurement of  $I_{LM}$ ,  $E_{on}$ ,  $E_{off(diode)}$ ,  $t_{rr}$ ,  $Q_{rr}$ ,  $I_{rr}$ ,  $t_{d(on)}$ ,  $t_r$ ,  $t_{d(off)}$ ,  $t_f$ 



Fig. 18b - Test Waveforms of Circuit of Fig. 18a, Defining  $E_{\text{off}},\,t_{\text{d(off)}},\,t_{\text{f}}$ 



Fig. 18c - Test Waveforms of Circuit of Fig. 18a, Defining  $E_{on},\,t_{d(on)},\,t_{r}$ 



Fig. 18d - Test Waveforms of Circuit of Fig. 18a, Defining  $E_{rec},\,t_{rr},\,Q_{rr},\,I_{rr}$ 



Fig. 18e - Macro Waveforms for Figure 18a's Test Circuit







Fig. 19 - Clamped Inductive Load Test Circuit

Fig. 20 - Pulsed Collector Current Test Circuit

#### **CIRCUIT CONFIGURATION**



| LINKS TO RELATED DOCUMENTS |                          |  |  |  |
|----------------------------|--------------------------|--|--|--|
| Dimensions                 | www.vishay.com/doc?95066 |  |  |  |



# IMS-2 (SIP)

#### **DIMENSIONS** in millimeters (inches)



#### Notes

- $^{(1)}$  Tolerance uless otherwise specified  $\pm$  0.254 mm (0.010")
- (2) Controlling dimension: inch
- (3) Terminal numbers are shown for reference only

Document Number: 95066 Revision: 30-Jul-07



## **Legal Disclaimer Notice**

Vishay

### **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.