imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

				ADVANCE	CS 19					
Pha	se C	ontr	ol Th	yristor			V _{RRM} T(RMS)	= 800 - 1200 V = 35 A		
ISO	PLU	S22() ™				T(AV)M	= 13 A		
Elect	rically	/ Isola	ated Ba	ack Surfac	e					
		T					ISOBI IIS 220™			
V _{RSM} V _{DSM} V	V _{RRM} V _{DRM} V	туре			A 0		C			
800 1200	800 1200	CS 19 CS 19	-08ho1C -12ho1C			٦ G				
							G D _S	Isolated back surface*		
Symbol	Tes	t Condi	tions		Maximum	Ratings				
I _{T(RMS)} I _{T(AV)M}	$T_{VJ} = T_{C} = T_{C}$	Т _{vjм} 85°С; 18	80° sine		35 13	A A	Features Features	¢		
I _{tsm}	$T_{VJ} = V_{R} =$	45°C; 0 V	t = 10 ms t = 8.3 m	s (50 Hz), sine s (60 Hz), sine	100 105	A	• Silicon ch substrate	ip on Direct-Copper-Bond		
	T _{vj} = V _R =	T _{VJM} 0 V	t = 10 ms t = 8.3 m	s (50 Hz), sine s (60 Hz), sine	85 90	A	- High pov - Isolated	wer dissipation mounting surface		
l²t	$T_{VJ} = V_{R} =$	45°C 0 V	t = 10 ms t = 8.3 m	s (50 Hz), sine s (60 Hz), sine	50	A²s A²s	 2500V e Low cathor typical) 	ode-to-tab capacitance (15pF		
	$T_{VJ} = V_{R} =$	T _{VJM} 0 V	t = 10 ms t = 8.3 m	s (50 Hz), sine s (60 Hz), sine	36	A²s A²s	 Planar pa Epoxy me High perf 	ssivated chips eets UL 94V-0 ormance class		
(di/dt) _{cr}	$T_{vJ} = T_{vJM}$ repetitive f = 50 Hz, t _p =200 µs			e, I _T = 20 A	100	A/μs	passivate • Long-tern	d chip n stability of leakage		
	$V_{D} = 2/3 V_{DRM}$ — $I_{G} = 0.08 A$ non repe $di_{G}/dt = 0.08 A/\mu s$		titive, $I_{T} = I_{T(AV)M}$	500	A/μs	current ar	nd blocking voltage			
(dv/dt) _{cr}	Т _{vJ} = R _{gк} =	T _{vjM} ; = ∞; metł	V _{DR} = 2/3 nod 1 (linea	V _{DRM} r voltage rise)	500	V/µs	Application Motor contract	ns ntrol		
Р _{GM}	T _{vj} = I ₊ = I ₁	T _{VJM}	t _p = t _p =	30 μs 300 μs	5	W	 Power co AC powe Light and 	onverter er controller L temperature control		
P _{GAV}	I	I (AV)M	P		0.5	W	 SCR for i 	inrush current limiting		
V _{RGM}					10	V	in power	supplies or AC drive		
T _{vj} T _{vjm} T _{sta}					-40+125 125 -40+125	O° O° O°	Advantage	es		
V _{ISOL}	50/60) Hz RM	S; I _{ISOL} ≤ 1 r	nA	2500	٧~	 Simple m 	nounting		
T,	1.6m	m from o	case; 10s		260	°C				
F _c	Mour	nting for	e		1165 / 2.411	N / Ib				
Weight					2	g				

IXYS reserves the right to change limits, conditions and dimensions.

Symbol	Test Conditions	Characteristic Values			
I _R , I _D	$T_{_{VJ}}=T_{_{VJM}};V_{_{R}}=V_{_{RRM}};V_{_{D}}=V_{_{DRM}}$	\leq	1	mA	
V _T	$I_{T} = 30 \text{ A}; T_{VJ} = 25^{\circ}\text{C}$	\leq	1.65	V	
V _{T0} r _T	For power-loss calculations only $(T_{vJ} = 125^{\circ}C)$;)	0.87 29	V mΩ	
V _{gt}	$V_{D} = 6 V;$ $T_{VJ} = 25^{\circ}C$ $T_{VJ} = -40^{\circ}C$	≤ ≤	1.5 2.5	V V	
I _{GT}	$V_{D} = 6 V;$ $T_{VJ}^{VJ} = 25^{\circ}C$ $T_{VJ} = -40^{\circ}C$	≤ ≤	25 50	mA mA	
	$T_{\rm VJ} = T_{\rm VJM}; \qquad \qquad V_{\rm D} = 2/3 \ V_{\rm DRM}$	≤ ≤	0.2 3	V mA	
	T _{vJ} = 25°C; t _P = 10 μs I _G =0.08 A; di _G /dt =0.08 A/μs	≤	75	mA	
I _H	$T_{_{VJ}} = 25^{\circ}C; V_{_{D}} = 6 V; R_{_{GK}} = \infty$	\leq	50	mA	
t _{gd}	$T_{VJ} = 25^{\circ}C; V_{D} = 1/2 V_{DRM}$ $I_{G} = 0.08 A; di_{G}/dt = 0.08 A/\mu s$	\leq	2	μs	
R _{thJC} R _{thCK}	DC current DC current	typical	1.7 0.6	K/W K/W	
a	Max. acceleration, 50 Hz		50	m/s ²	
		M IN MIN 2 .098 0 .035 2 .049 4 .093 5 .028 0 .591 01 .472 3 .394	CHES MAX .197 .118 .051 .065 .100 .039 .630 .512 .433 .235	MILLIMETE MIN M. 4.00 5 2.50 3 0.90 1 1.25 1 2.35 2 0.70 1 15.00 16 12.00 13 10.00 11	RS AX 00 00 .00 .55 .55 .00 .00 .00
 [=	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.00 BASIC 	2.55 BASI 13.00 14 3.00 3 42.5° 47 rrically isolated from the requirement of requirement of the requi	100 50 550 55° om Pin 1, 2, or 3. f JEDEC SS Product Ou