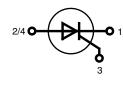
imall

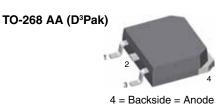
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



High Voltage Phase Control Thyristor

 $V_{DRM} = 2500 V$ 200 A I_{TSM} =

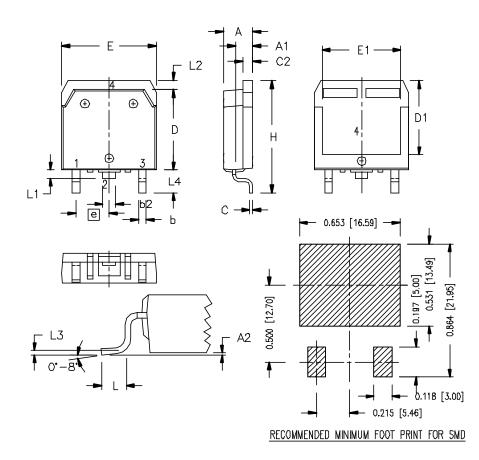
Thyristor			
Symbol	Conditions	Maximum Rat	tings
V _{DRM} V _{DSM}		2500 2500	V V
V _{RRM / RSM}		1650	V
I _{TSM}	sine 180°; t = 10 ms; $V_R = 0 V$; $T_{VJ} = 25^{\circ}C$	200	Α
(di/dt) _{cr}		150	A/µs
(dv/dt) _{cr}	$V_{D} = 2200 V$ $R_{GK} = \infty$; method 1 (linear voltage rise)	5000	V/µs

Symbol	Conditions
-	

Symbol	Conditions		Characte	eristic Va	alues
			min.	max.	
V _T	$I_{T} = 45 \text{ A}$	$T_{VJ} = 25^{\circ}C$		3.0	V
V _{gt} I _{gt}	$V_{D} = 6 V$	$T_{VJ} = 25^{\circ}C$		2.5 250	V mA
V _{gd} I _{gd}	$V_D = {}^2/_3 V_{DRM}$	$T_{VJ} = 25^{\circ}C$		0.2 5	V mA
I _L	$t_p = 10 \ \mu s; V_D = 6 \ V$ $I_G = 0.45 \ A; di_G / dt = 0.45 \ A/\mu s$	$T_{vj} = 0^{\circ}C$		700	mA
I _H	$V_{D} = 6 V; R_{GK} = \infty$	$\begin{array}{l} T_{vJ}=~0^{\circ}C\\ T_{vJ}=70^{\circ}C \end{array}$	55	300	mA mA
t _q	$ I_{\tau} = 20 \text{ A}; t_{p} = 300 \mu\text{s}; \text{ d}\text{i}/\text{d}\text{t} = -20 \text{V}_{\text{R}} = 10 \text{ V}; \text{ d}\text{v}/\text{d}\text{t} = 20 \text{ V}/\mu\text{s} \\ V_{\text{D}} = 800 \text{ V} $	A/μs T _{vJ} = 70°C		100	μs
I _{RRM / DRM}	$V_{R} = V_{RRM}; V_{D} = V_{DRM}$	$\begin{array}{l} T_{vJ}=25^{\circ}C\\ T_{vJ}=70^{\circ}C \end{array}$		50 200	μA μA
I _{DSM / RSM}	$V_{R} = V_{RSM}; V_{D} = V_{DSM}$	$T_{VJ} = 70^{\circ}C$		2	mA
\mathbf{R}_{thJC}				0.80	K/W

Features

- high voltage thyristor
- for line frequency
- chip technology for long term stability
- planar glass passivated
- International standard package JEDEC TO-268
- Epoxy meets UL 94V-0


Applications

- controlled rectifiers
 - power supplies
- drives
- AC switches
- capacitor discharge control
- flash tubes
- X-ray and laser generators

Component				
Symbol	Conditions	Maximum Ratir	ngs	
T _{vj} T _{stg}		-10 +70 -40 +70	°C ℃	
Fc	Mounting force with clip	20120	Ν	
Symbol	Conditions	Characteristic Valu	185	

Symbol	Conditions	Characteristic values			
		min.	typ.	max.	
R _{thCH}	with heatsink compound		0.15		K/W
Weight			5		g

Dim.	Millir	neter	Inches	
Din.	min	max	min	max
Α	4.90	5.10	0.193	0.201
A1	2.70	2.90	0.106	0.114
A2	0.02	0.25	0.001	0.100
b	1.15	1.45	0.045	0.057
b2	1.90	2.10	0.075	0.083
С	0.40	0.65	0.016	0.026
C2	1.45	1.60	0.057	0.063
D	13.80	14.00	0.543	0.551
D1	12.40	12.70	0.488	0.500
Е	15.85	16.05	0.624	0.632
E1	13.30	13.60	0.524	0.535
е	5.45 BSC		0.215 BSC	
Н	18.70	19.10	0.736	0.752
L	2.40	2.70	0.094	0.106
L1	1.20	1.40	0.047	0.055
L2	1.00	1.15	0.039	0.045
L3	0.25	BSC	0.100 BSC	
L4	3.80	4.10	0.150	0.161

IXYS reserves the right to change limits, test conditions and dimensions.