imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

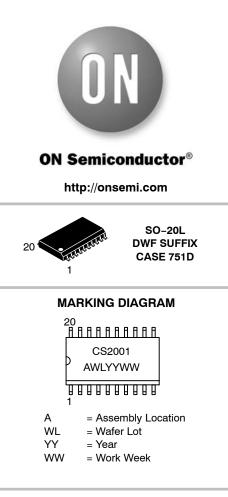
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1.2 A Switching Regulator, and 5.0 V, 100 mA Linear Regulator with RESET

The CS2001 is a smart power supply ASIC utilized in automotive airbag systems. It contains a current-mode switching regulator with a 1.2 A on-chip switch and a 5.0 V, 100 mA linear regulator. The linear output capacitor must be 3.3 μ F or greater with an ESR in the range of 100 m Ω to 1.0 Ω . If the ESR of the cap is less than 100 m Ω a series resistor must be used. The switcher can be configured in either a boost or flyback topology. The boost topology produces energy reserve the resistor divider connected to the V_{FB} pin. In the event of fault voltage VER which is externally adjustable (25 V maximum) through conditions that produce V_{FB} either open or shorted, the switcher is shut down.

Under normal operating conditions ($V_{BAT} > 8.0$ V), the current loading on the linear regulator is directed through V_{BAT} . A low battery or loss of battery condition switches the supply for the linear regulator from V_{BAT} to VER and shuts down the switcher using the ASIC's internal smart switch. This switchover feature minimizes the power dissipation in both the linear and switcher output devices and saves the cost of using a larger inductor.

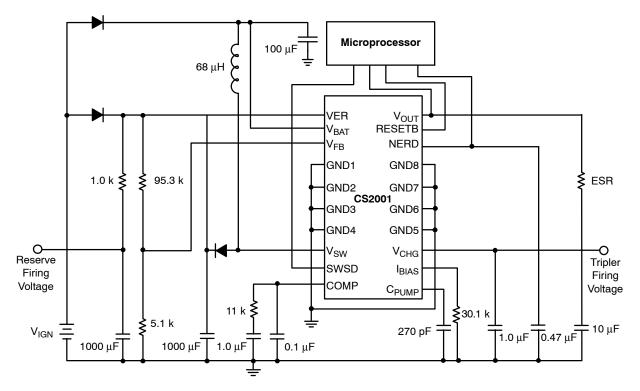

The NERD (No Energy Reserve Detected) pin is a dual function output. If V_{OUT} is not in regulation, it provides a Power On Reset function whose time interval is externally adjustable with the capacitor. This interval can be seen on the RESETB pin, which allows for clean power–up and power–down of the microprocessor. Once V_{OUT} is in regulation, the logic level of the NERD output (usually low) indicates to the microprocessor whether or not the VER pin is connected.

A switched–capacitor voltage tripler accepts input voltage VER and produces output voltage V_{CHG} (typically VER + 8.0 V). This voltage is used in the system to drive high–side FETs.

This part is capable of withstanding a 50 V peak transient voltage. The linear regulator will not shut down during this event.

Features

- Linear Regulator 5.0 V ±2% @ 100 mA
- Switching Regulator 1.2 A Peak Internal Switch
- Voltage Tripler
- Smart Functions
 - Smartswitch
 - RESET
 - Energy Reserve Status
- Protection
 - Overtemperature
 - Current Limit
 - 50 V Peak Transient Capability
- Internally Fused Leads in SO-20L Package



VER U V _{BAT} U V _{FB} U GND1 U GND2 U GND3 U GND4 U V _{SW} U SWSD U	0 VOUT RESETB NERD GND8 GND7 GND6 GND5 VCHG BIAS
SWSD ा COMP ा	I I _{BIAS} C _{PUMP}
GND1 H GND2 H GND3 H GND4 H V _{SW} H SWSD H	GND8 GND7 GND6 GND5 V _{CHG}

ORDERING INFORMATION

Device	rice Package Shi	
CS2001YDWF20	SO-20L	37 Units/Rail
CS2001YDWFR20	SO-20L	1000 Tape & Reel

ABSOLUTE MAXIMUM RATINGS*

Rating	Value	Unit
V _{BAT}	–0.5 to 25	V
VER	–0.5 to 25	V
V _{OUT}	-0.5 to 7.0	V
Digital Input/Output Voltage	-0.5 to 7.0	V
Peak Transient Voltage (36 V Load Dump @ 14 V Battery Voltage)	50	V
Storage Temperature Range	-55 to 150	°C
Junction to Free Air Thermal Impedance	55	°C/W
ESD Susceptibility (Human Body Model)	4.0	kV
Lead Temperature Soldering: Reflow: (SMD styles only) (Note 1)	230 peak	°C
T _A	-40 to 85	°C
TJ	-40 to 150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. 60 second maximum above 183°C.

*The maximum package power dissipation must be observed.

$\textbf{ELECTRICAL CHARACTERISTICS} \quad (8.0 \ V \leq V_{BAT} \leq 16 \ V, \ 8.0 \ V \leq VER \leq 25 \ V, \ 1.0 \ mA \leq I_{V(OUT)} \leq 100 \ mA,$

 $T_{TEST} = -40^{\circ}C$ to 125°C; unless otherwise specified.)

Characteristic	Test Conditions	Min	Тур	Max	Unit
Linear Regulator			1		
Output Voltage	Output Driven from V_{BAT} , VER = 25 V Output Driven from VER, V_{BAT} = 0 V	4.9 4.9		5.1 5.1	V V
Regulator Bias Current (from V_{BAT})	$I_{V(BAT)} @ I_{V(OUT)} = -100 \text{ mA},$ SWSD = 4.0 V, V _{BAT} = 16 V, VER = 25 V T = -40°C			8.0	mA
	$T = 25^{\circ}C$ $T = 125^{\circ}C$	-		7.0 6.0	mA mA
Regulator Bias Current (from VER)	I _{VER} @ I _{V(OUT)} = -100 mA, SWSD = 4.0 V, V _{BAT} = 0 V, VER = 25 V				
	T = -40°C T = 25°C T = 125°C	- -		11 9.0 8.0	mA mA mA
Dropout Voltage V _{BAT} – V _{OUT}	VER = 25 V, I _{V(OUT)} = -100 mA (Probe Only)	-	-	1.5	V
Dropout Voltage VER – V _{OUT}	V _{BAT} = 0 V, I _{V(OUT)} = -100 mA	-	-	1.5	V
Smart Switch Threshold V _{BAT} to VER	VER = 25 V, I _{V(OUT)} = -50 mA	6.5	-	8.0	V
Smart Switch Threshold Hysteresis	VER = 25 V, I _{V(OUT)} = -50 mA	0.5	-	1.0	V
V _{OUT} Output Noise	V_{BAT} = 16 V, VER = 25 V, $I_{V(OUT)}$ = – 1.0 mA, C = 10 $\mu F,$ ESR = 0.5 Ω	-	_	0.05	V
Line Regulation	-	_	-	0.025	V
Load Regulation	_	_	-	0.025	V
Output Current Limit	_	120	_	-	mA
Switching Regulator	VER = 25V, I _{V(OUT)} = -1.0 mA				
Switching Frequency	C_{PUMP} 270 pF, $R_{I(BIAS)}$ = 30.1 k Ω	135	150	165	kHz
Pump Drive Current	$\Delta I_{V(BAT)}$ for 0 A $\leq I_{V(SW)} \leq$ 1.2 A	-	-	50	mA
Switch Saturation Voltage	I _{V(SW)} = 1.2 A	-	-	1.6	V
Output Current Limit	-	1.2	-	2.4	А
V _{FB} Regulation	-	1.238	1.27	1.303	V
V _{FB} Input Current	V _{FB} Above Short Low Detection Level	-	-	1.0	μA
V _{FB} Input Shorted Low Detection Level	_	200	250	300	mV
C _{PUMP} Short Detection Threshold	_	200	250	300	mV
Maximum Duty Cycle	-	80	-	95	%
V _{SW} Leakage Current	$I_{V(SW)}$ @ V_{SW} = 50 V, SWSD = V_{OUT}	-	-	100	μA
Voltage Tripler	V_{BAT} = 16 V, $I_{V(OUT)}$ = –1.0 mA, C_{CHG} = 1.5 μF				
Output Voltage Clamp V _{CHG} – VER	VER = 8.0 V, $I_{V(CHG)}$ = –30 μA VER = 12 V, $I_{V(CHG)}$ = –90 μA	6.25 6.25	8.0 8.0	13 13	V V
Initial Charge Time	$\label{eq:C_chg} \begin{array}{l} C_{CHG} = 0.15 \mu\text{F}, \text{VER} = 8.0 \ \text{V}, \\ V_{CHG} = 14.25 \ \text{V} \end{array}$	-	-	30	ms
Maximum Output Voltage Clamp $V_{\rm CHG}$	_	25	32.5	40	V
Output Voltage Clamp V _{CHG}	VER = 28 V, $I_{V(CHG)}$ = 0 μ A	25	32.5	40	V
Short Circuit Path Current Limit VER to V _{CHG}	-	_	-	3.0	mA

Characteristic Test Conditions		Min	Тур	Max	Uni
RESETB OUTPUT	V _{BAT} = 0 V	i i		- <u>1</u>	
High Threshold	V _{OUT} Increasing	4.525	4.75	4.85	V
Low Threshold	V _{OUT} Decreasing	4.5	4.65	4.825	V
Hysteresis	-	25	100	200	m٧
Output Low Voltage	V _{OUT} = 1.0 V, I _{RESETB} = 100 μA I _{RESETB} = 1.0 mA, V _{OUT} = 4.5 V			0.5 0.5	V V
Pull–Up Resistor	RESETB = 1.0 V	25	50	100	kΩ
SWSD Input	V _{BAT} = 16 V, VER = 25 V, I _{V(OUT)} = -1.0 mA	++		-	
High Threshold	-	_	_	$0.7 imes V_{OUT}$	V
Low Threshold	-	$0.3 imes V_{OUT}$	_	_	V
Input Impedance	Referenced to Ground	10	20	40	kΩ
NERD OUTPUT	V _{BAT} = 16 V, I _{V(OUT)} = -1.0 mA, C _{NERD} = 0.47	μF			
VER Detection Voltage	-	1.5	_	6.5	V
Output Low Voltage	I _{NERD} = 1.0 mA, V _{OUT} = 4.5 V	-	_	0.5	V
Pull–Up Current	NERD = 0.5 V	30	40	50	μA
Power On Delay	-	6.25	8.5	11	ms
Clamping Voltage (Low)	VER Present	1.0	1.25	1.5	V
Clamping Voltage (High)	VER Not Present	3.5	3.75	4.0	V
General		1		1	
VER Load Current	VER = 25 V, V _{BAT} = 16 V, I _{V(OUT)} = -100 mA T = -40°C T = 25°C T = 125°C		- - -	5.0 5.0 4.0	mA mA mA
Thermal Shutdown	(Guaranteed by Design)	160	_	210	°C

ELECTRICAL CHARACTERISTICS (continued) (8.0 V \leq V_{BAT} \leq 16 V, 8.0 V \leq VER \leq 25 V, 1.0 mA \leq I_{V(OUT)} \leq 100 mA, T_{TEST} = -40°C to 125°C; unless otherwise specified.)

PACKAGE PIN DESCRIPTION

PACKAGE PIN #		
SO-20L	PIN SYMBOL	FUNCTION
1	VER	Energy reserve input.
2	V _{BAT}	Battery input.
3	V _{FB}	Charge PUMP control voltage input.
4	GND1	Ground.
5	GND2	Ground.
6	GND3	Ground.
7	GND4	Ground.
8	V _{SW}	Charge PUMP switch collector.
9	SWSD	Charge PUMP shutdown input.
10	COMP	Charge PUMP compensation pin.
11	C _{PUMP}	Charge PUMP timing cap input.
12	I _{BIAS}	Reference current resistor pin.

PACKAGE PIN DESCRIPTION (continued)

PACKAGE PIN #		
SO-20L	PIN SYMBOL	FUNCTION
13	V _{CHG}	Switched cap voltage tripler output.
14	GND5	Ground.
15	GND6	Ground.
16	GND7	Ground.
17	GND8	Ground.
18	NERD	No energy reserve detected output.
19	RESETB	Reset output.
20	V _{OUT}	Linear regulator output.

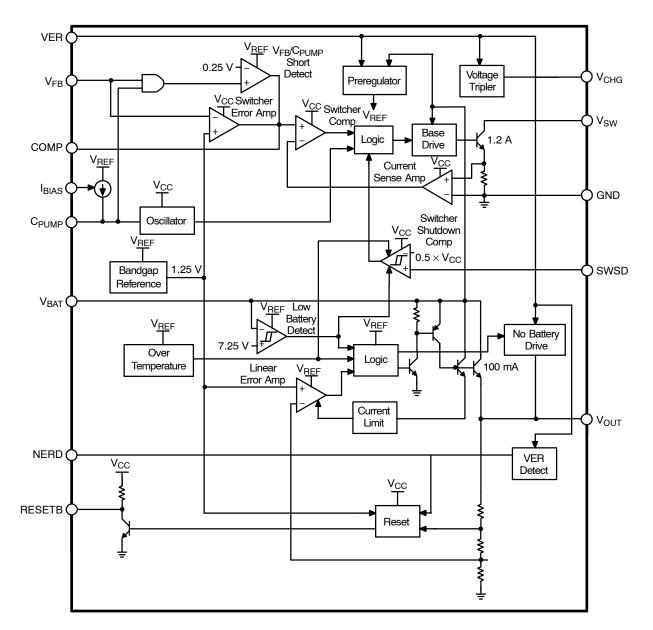


Figure 2. Block Diagram

CIRCUIT DESCRIPTION

Figure 3 is an oscilloscope waveform showing the charge pump collector voltage, collector current and the charge pump timing capacitor during normal operation with $I_{VER} = 30$ mA.

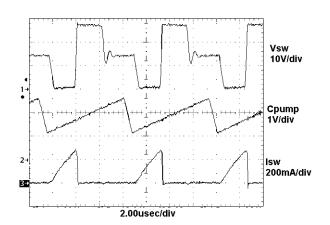


Figure 3. Typical Operation with I_{VER} = 30 mA

Figure 4 is an oscilloscope waveform showing the voltage tripler output and the energy reserve input during power up.

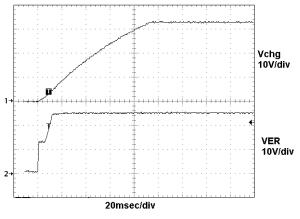
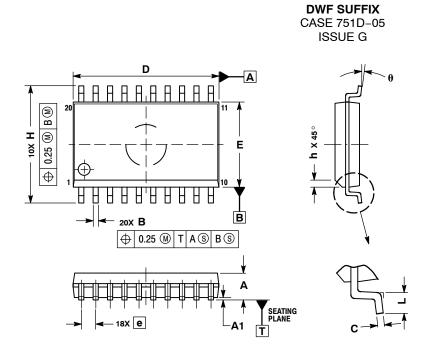



Figure 4. Startup with $R_{V(CHG)} = 510 \text{ k}$

PACKAGE DIMENSIONS

SOIC-20 WB

NOTES:

- DIMENSIONS ARE IN MILLIMETERS.
 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD
- PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS				
DIM	MIN MAX				
Α	2.35	2.65			
A1	0.10	0.25			
В	0.35	0.49			
С	0.23	0.32			
D	12.65	12.95			
Е	7.40	7.60			
е	1.27 BSC				
Н	10.05	10.55			
h	0.25	0.75			
L	0.50	0.90			
θ	0° 7°				

PACKAGE THERMAL DATA

Parameter		SO-20L	Unit
$R_{\Theta JC}$	Typical	9	°C/W
$R_{\Theta JA}$	Typical	55	°C/W

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer applications by customer's technical experts. SCILLC does not convey any license under its patent rights or other rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications and so the region of the rights of others. intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

For additional information, please contact your local Sales Representative