: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

16-bit \& 20-bit Bridge Transducer A/D Converters

Features

- On-chip Instrumentation Amplifier
- On-chip Programmable Gain Amplifier
- On-Chip 4-Bit D/A For Offset Removal
- Dynamic Excitation Options
- Linearity Error: $\pm 0.0015 \%$ FS
- 20-bit, No Missing Codes
- CMRR at $50 / 60 \mathrm{~Hz}>200 \mathrm{~dB}$
- System Calibration Capability with calibration read/write option
- 3-, 4-, or 5-wire Serial Communications Port
- Low Power Consumption: 40 mW
- $10 \mu \mathrm{~W}$ Standby Mode for Portable applications

Description

The CS5516 and CS5520 are complete solutions for digitizing low level signals from strain gauges, load cells, and pressure transducers. Any family of mV output transducers, including those requiring bridge excitation, can be interfaced directly to the CS5516 or CS5520. The devices offer an on-chip software programmable instrumentation amplifier block, choice of DC or AC bridge excitation, and software selectable reference and signal demodulation.

The CS5516 uses delta-sigma modulation to achieve 16 -bit resolution at output word rates up to 60 Sps . The CS5520 achieves 20-bit resolution at output word rates up to 60 Sps .

The CS5516 and CS5520 sample at a rate set by the user in the form of either an external CMOS clock or a crystal. On-chip digital filtering provides rejection of all frequencies above 12 Hz for a 4.096 MHz clock.

The CS5516 and CS5520 include system calibration to null offset and gain errors in the input channel. The digital values associated with the system calibration can be written to, or read from, the calibration RAM locations at any time via the serial communications port. The 4-bit DC offset D/A converter, in conjunction with digital correction, is initially used to zero the input offset value.

ORDERING INFORMATION

See page 29.

ANALOG CHARACTERISTICS $\left(T_{A}=T_{\text {MIN }}\right.$ to $T_{M A X} ; V_{+}, V D_{+}, M D R V_{+}=5 \mathrm{~V} ; \mathrm{VA}^{-}, \mathrm{VD}-=-5 \mathrm{~V}$; VREF=2.5V (external differential voltage across VREF+ and VREF-); fcLk $=4.9152 \mathrm{MHz}$;
AC Excitation 300 Hz ; Gain = 25; Bipolar Mode; Rsource $=300 \Omega$ with a 4.7 nF to AGND at AIN (see Note 1); unless otherwise specified.)

Parameter*		Min	Typ	Max	Units
Specified Temperature Range		-40 to +85			${ }^{\circ} \mathrm{C}$
Accuracy					
Linearity Error		-	0.0015	0.003	$\pm \%$ FS
Differential Nonlinearity		-	± 0.25	± 0.5	LSB16
Unipolar Gain Error	(Note 2)	-	± 8	± 31	ppm
Bipolar Gain Error	(Note 2)	-	± 8	± 31	ppm
Unipolar/Bipolar Gain Drift		-	± 1	-	ppm $/{ }^{\circ} \mathrm{C}$
Unipolar Offset	(Note 2)	-	± 1	± 2	LSB_{16}
Bipolar Offset	(Note 2)	-	± 1	± 2	LSB16
Offset Drift		-	± 0.005	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Noise (Referred to Input)	$\begin{array}{r} \text { Gain }=25(25 \times 1) \\ \text { Gain }=50(25 \times 2) \\ \text { Gain }=100(25 \times 4) \\ \text { Gain }=200(25 \times 8) \end{array}$		$\begin{aligned} & 250 \\ & 200 \\ & 150 \\ & 150 \end{aligned}$	- -	nVrms nVrms nVrms nVrms

Notes: 1. The AIN and VREF pins present a very high input resistance at dc and a minor dynamic load which scales to the master clock frequency. Both source resistance and shunt capacitance are therefore critical in determining the source impedance requirements of the CS5516 and CS5520 at these pins.
2. Applies after system calibration at the temperature of interest.

$\mu \mathrm{V}$	Unipolar Mode			Bipolar Mode		
	LSB's		ppm FS	LSB's		ppm FS
0.4	0.26	0.0004	4	0.13	0.0002	2
0.76	0.50	0.0008	8	0.26	0.0004	4
1.52	1.00	0.0015	15	0.50	0.0008	8
3.04	2.00	0.0030	30	1.00	0.0015	15
6.08	4.00	0.0061	61	2.00	0.0030	30
VREF $=2.5 \mathrm{~V}$				PGA gain $=1$		

CS5516; 16-Bit Unit Conversion Factors

* Refer to the Specification Definitions immediately following the Pin Description Section.

Specifications are subject to change without notice.

ANALOG CHARACTERISTICS (continued)

	Unipolar Mode \% FS			ppm FS	LSB's	Bipolar Mode $\%$ FS		
$\mu \mathrm{V}$	LSB's	ppm FS						
0.025	0.26	0.0000238	0.25	0.13	0.0000119	0.125		
0.047	0.50	0.0000477	0.50	0.26	0.0000238	0.25		
0.095	1.00	0.0000954	1.0	0.50	0.0000477	0.50		
0.190	2.00	0.0001907	2.0	1.00	0.0000954	1.0		
0.380	4.00	0.0003814	4.0	2.00	0.0001907	2.0		
VREF $=2.5 \mathrm{~V}$						PGA gain $=1$		

CS5520; 20-Bit Unit Conversion Factors

* Refer to the Specification Definitions immediately following the Pin Description Section.

Specifications are subject to change without notice.

ANALOG CHARACTERISTICS (continued)

Parameter		Min	Typ	Max	Units
Specified Temperature Range			40 to +85		${ }^{\circ} \mathrm{C}$
Analog Input					
Analog Input Range	Unipolar Bipolar	$\begin{gathered} 12.5,25,50,100 \\ \pm 12.5, \pm 25, \pm 50, \pm 100 \end{gathered}$			$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Common Mode Rejection	$\begin{array}{r} \mathrm{dc} \\ 50,60 \mathrm{~Hz} \end{array}$		$\begin{aligned} & 165 \\ & 200 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input Capacitance		-	5	-	pF
Input Bias Current	(Note 1)	-	100	-	pA
Instrumentation Amplifier					
Gain		-	25	-	
Bandwidth		-	200	-	kHz
Unity Gain Bandwidth		-	5	-	MHz
Output Slew Rate		-	1.5	-	V/ $\mu \mathrm{sec}$
Noise @ 10 Hz BW		-	100	-	nVrms
Power Supply Rejection @ 50/60 Hz	(Note 3)	-	120	-	dB
Common Mode Range	(Note 4)	-	± 3	-	V
Chopping Frequency		-	XIN/128	-	Hz
Programmable Gain Amplifier					
Gain Tracking	(Note 5)	-	± 1	-	\%
4-Bit Offset Trim DAC					
Accuracy		-	± 5	-	\%
Voltage Reference Input					
Range	(Note 6)	2.0	2.5	3.8	V
Common Mode Rejection:	$\begin{array}{r} \mathrm{dc} \\ 50,60 \mathrm{~Hz} \end{array}$		$\begin{gathered} 60 \\ 200 \\ \hline \end{gathered}$		dB
Input Capacitance		-	15	-	pF
Input Bias Current	(Note 1)	-	10	-	nA

Notes: 3. This includes the on-chip digital filtering.
4. The maximum magnitude of the differential input voltage, Vdiff(in) is determined by the following: Vdiff(in) < $300 \mathrm{mV}-|\mathrm{Vcm} / 12.5|$ and should never exceed 300 mV .
Vcm is the common mode voltage which is applied to the instrumentation amplifier inputs.
The above equation should be used to calculate the allowable common mode voltage for a given differential voltage applied to the first gain stage inputs. This limit ensures that the instrumentation amplifier does not saturate.
5. Gain tracking accuracy can be significantly improved by uploading a calibrated gain word to the gain register for each PGA gain selection.
6. The common mode voltage on the Voltage Reference Input, plus the reference range, $[(V R E F+)$ - (VREF-)]/2, must not exceed ± 3 volts.

ANALOG CHARACTERISTICS (continued)

Parameter		Min	Typ	Max	Units
Modulator Differential Voltage Reference					
Nominal Output Voltage		-	3.75	-	V
Initial Output Voltage Tolerance		-	± 100	-	mV
Temperature Coefficient		-	100	-	ppm $/{ }^{\circ} \mathrm{C}$
Line Regulation	$(4.75 \mathrm{~V}<\mathrm{VA}<5.25 \mathrm{~V})$	-	0.5	-	mV / V
Output Voltage Noise	0.1 to 15 Hz	-	10	-	$\mu \mathrm{V}_{\mathrm{p}-\mathrm{p}}$
Output Current Drive:	Source Current Sink Current	-	-	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Power Supplies					
DC Power Supply Currents	$\begin{aligned} & \text { IA+ } \\ & \text { IA- } \\ & \text { ID+ } \\ & \text { ID } \end{aligned}$		$\begin{array}{r} 2.7 \\ -2.7 \\ 1.5 \\ -0.6 \\ \hline \end{array}$	$\begin{array}{r} 3.5 \\ -3.5 \\ 2.2 \\ -0.8 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Power Dissipation:	(Note 7) Normal Operation Standby Mode	-	$\begin{gathered} 37.5 \\ 10 \\ \hline \end{gathered}$	-	$\begin{aligned} & \mathrm{mW} \\ & \mu \mathrm{~W} \end{aligned}$
Power Supply Rejection: $\begin{aligned} & \text { dc } \\ & \text { dc }\end{aligned}$	Positive Supplies Negative Supplies		$\begin{gathered} 100 \\ 95 \end{gathered}$		dB dB
System Calibration Specifications					
Positive Full Scale Calibration Range	(Note 8) Unipolar Mode Bipolar Mode	$\begin{aligned} & 0.8 \mathrm{~T} \\ & 0.8 \mathrm{~T} \\ & \hline \end{aligned}$		$\begin{aligned} & 1.2 \mathrm{~T} \\ & 1.2 \mathrm{~T} \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
Maximum Ratiometric Offset Calibration Range	(Note 8) Unipolar Mode Bipolar Mode	$\begin{aligned} & -2 T \\ & -2 T \\ & \hline \end{aligned}$		$\begin{aligned} & +2 T \\ & +2 T \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
Differential Input Voltage Range	(Notes 4, 8, 9, 10) Unipolar Mode Bipolar		$\begin{aligned} & \text { set }+(1) \\ & s e t+(1 \end{aligned}$		$\begin{aligned} & V \\ & V \end{aligned}$

Notes: 7. All outputs unloaded. All inputs CMOS levels.
8. $\mathrm{T}=\mathrm{VREF} /(\mathrm{G} \times 25)$, where T is the full scale span, where VREF is the differential voltage across VREF+ and VREF- in volts, and G is the gain setting of the second gain block. G can be set to $1,2,4,8$. This sets the overall gain to $25,50,100,200$. The gain can then be fine tuned by using the calibration of the full scale point.
9. When calibrated.
10. $\mathrm{V}_{\text {offset }}$ is the offset corrected by the offset calibration routine. $\mathrm{V}_{\text {offset }}$ may be as large as 2 T .

DYNAMIC CHARACTERISTICS

Parameter	Symbol	Ratio	Units
AIN and VREF Input Sampling Frequency	f_{is}	$\mathrm{f}_{\mathrm{clk}} / 128$	Hz
Modulator Sampling Frequency	f_{s}	$\mathrm{f}_{\mathrm{clk}} / 256$	Hz
Output Update Rate	$\mathrm{f}_{\text {out }}$	$\mathrm{f}_{\mathrm{clk}} / 81,920$	Sps
Filter Corner Frequency	$\mathrm{f}_{\mathrm{c}-3 \mathrm{~dB}}$	$\mathrm{f}_{\mathrm{clk}} / 341,334$	Hz
Settling Time to $\pm 0.0007 \% \quad$ (FS Step)	t_{s}	$6 / \mathrm{fout}$	s

DIGITAL CHARACTERISTICS (TA $=T_{\text {MIN }}$ to $T_{M A X} ; V A+, V D+=5 V \pm 5 \% ; V A-$, VD- $=-5 V \pm 5 \%$; DGND $=0$) All measurements below are performed under static conditions.

Parameter		Symbol	Min	Typ	Max	Units
High-Level Input Voltage:	XIN	V_{IH}	4.5	-	-	V
	All Pins Except XIN	V_{IH}	2.0	-	-	V
Low-Level Input Voltage	XIN	$\mathrm{V}_{\text {IL }}$	-	-	0.5	V
	All Pins Except XIN	VIL	-	-	0.8	V
High-Level Output Voltage	(Note 11)	VOH	(VD+)-1.0	-	-	V
Low-Level Output Voltage	lout $=1.6 \mathrm{~mA}$	Vol	-	-	0.4	V
Input Leakage Current		lin	-	1	10	$\mu \mathrm{A}$
3-State Leakage Current		loz	-	-	± 10	$\mu \mathrm{A}$
Digital Output Pin Capacitance		Cout	-	9	-	pF

Notes: 11 . $\mathrm{I}_{\text {out }}=-100 \mu \mathrm{~A}$. This guarantees the ability to drive one TTL load. $\left(\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V} @ \mathrm{I}_{\text {out }}=-40 \mu \mathrm{~A}\right)$.

RECOMMENDED OPERATING CONDITIONS (AGND, DGND = ov, see Note 12.)

Parameter	Symbol	Min	Typ	Max	Units	
DC Power Supplies:	Positive Digital	VD+	4.5	5.0	5.5	V
	Negative Digital	VD-	-4.5	-5.0	-5.5	V
	Positive Analog	VA+	4.5	5.0	5.5	V
	Negative Analog	VA-	-4.5	-5.0	-5.5	V
Differential Analog Reference Voltage	(VREF+) - (VREF-)	2.0	2.5	3.8	V	
Analog Input Voltage:	Unipolar					
	Bipolar	VAIN	0	-	+T	V
		VAIN	-T	-	+T	V

Notes: 12. All voltages with respect to ground.
13. The CS5516 and CS5520 can accept input voltages up to $+T$ in unipolar mode and $-T$ to $+T$ in bipolar mode where $\mathrm{T}=\mathrm{VREF} /(\mathrm{G} \times 25)$. G is the gain setting at the second gain block. When the inputs exceed these values, the CS5516 and CS5520 will output positive full scale for any input above T, and negative full scale for inputs below AGND in unipolar and -T in bipolar mode. This applies when the analog input does not exceed $\pm 2 T$ overrange.

ABSOLUTE MAXIMUM RATINGS* (AGND, DGND = 0 V , all voltages with respect to ground.)

Parameter	Symbol	Min	Typ	Max	Units
DC Power Supplies: Positive Digital (Note 14) Negative Digital Positive Analog Negative Analog 	VD+ VD- VA+ VA-	$\begin{array}{r} -0.3 \\ -0.3 \\ -0.3 \\ +0.3 \end{array}$		$\begin{gathered} (\mathrm{VA}+)+0.3 \\ -5.5 \\ 5.5 \\ -5.5 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Input Current, Any Pin Except Supplies (Notes 15, 16)	lin	-	-	± 10	mA
Analog Input Voltage AIN and VREF pins	Vina	(VA-)-0.3	-	(VA +)+0.3	V
Digital Input Voltage	VIND	-0.3	-	(VD+)+0.3	V
Ambient Operating Temperature	TA	-55	-	125	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-65	-	150	${ }^{\circ} \mathrm{C}$

Notes: 14. No pin should go more positive than (VA+)+0.3V. VD+ must always be less than (VA+)+0.3 V,and can never exceed 6.0V.
15. Applies to all pins including continuous overvoltage conditions at the analog input pins.
16. Transient currents of up to 100 mA will not cause SCR latch-up. Maximum input current for a power supply pin is $\pm 50 \mathrm{~mA}$.

* WARNING: Operation beyond these limits may result in permanent damage to the device.

Normal operation is not guaranteed at these extremes.

SID Write Timing (Not to Scale)

SOD Read Timing (Not to Scale)

SOD Read Timing with CS = 0 (Not to Scale)

CS with Continuous SCLK (Not to Scale)

SWITCHING CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}} ; \mathrm{VA}_{+}, \mathrm{VD}+=5 \mathrm{~V} \pm 5 \%$;
VA-, VD- $=-5 \mathrm{~V} \pm 5 \%$; Input Levels: Logic $0=0 \mathrm{~V}$, Logic $1=\mathrm{VD}+; \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$)

Parameter	Symbol	Min	Typ	Max	Units
Master Clock Frequency: Internal Oscillator / External Clock	XIN	1.0	4.096	5.0	MHz
Master Clock Duty Cycle		40	-	60	\%
Rise Times Any Digital Input Any Digital Output (Note 18)	trise		50	1.0	$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$
Fall Times Any Digital Input Any Digital Output (Note 18)	tall		50	1.0	$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$
Startup					
Power-on Reset Period	tpor	-	100	-	ms
Oscillator Start-up Time \quad XTAL $=4.9152 \mathrm{MHz}$ (Note 19)	tost	-	60	-	ms
RST Pulse Width	tres	1/XIN	-	-	ns
Serial Port Timing					
Serial Clock Frequency	SCLK	-	-	2.4	MHz
Serial Clock Pulse Width High Pulse Width Low	$\begin{aligned} & \mathrm{t}_{1} \\ & \mathrm{t}_{2} \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		-	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
SID Write Timing					
CS Enable to Valid Latch Clock	t3	150	-	-	ns
Data Set-up Time prior to SCLK rising	t4	50	-	-	ns
Data Hold Time After SCLK Rising	t5	50	-	-	ns
SCLK Falling Prior to CS Disable	t6	50	-	-	ns
SOD Read Timing					
CS to Data Valid	t_{7}	-	-	150	ns
SCLK Falling to New Data Bit	t8	-	-	170	ns
SCLK Falling to SOD Hi-Z	t9	-	-	200	ns
DRDY Falling to Valid Data ($C S=0$)	t10	-	-	150	ns
CS Rising to SOD Hi-Z	t_{11}	-	-	150	ns
CS Disable Hold Time	t_{12}	50	-	-	ns
CS Enable Set-up Time	t13	150	-	-	ns
CS Enable Hold Time	t_{14}	50	-	-	ns
CS Disable Set-up Time	t15	150	-	-	ns

Notes: 18. Specified using 10% and 90% points on waveform of interest. Output loaded with 50 pF .
19. Oscillator start-up time varies with crystal parameters. This specification does not apply when using an external clock source.

GENERAL DESCRIPTION

The CS5516 and CS5520 are monolithic CMOS A/D converters which include an instrumentation amplifier input, an on-chip programmable gain amplifier, and a DAC for offset trimming. While the devices are optimized for ratiometric measurement of Wheatstone bridge applications, they can be used for general purpose low-level signal measurement.

Each of the devices includes a two-channel differential delta-sigma modulator (the signal measurement input and the reference input are digitized independently before a digital output word is computed), a calibration microcontroller, a two-channel digital filter, a programmable instrumentation amplifier block, a 4-bit DAC for
coarse offset trimming, circuitry for generation and demodulation of AC (actually switched DC) bridge excitation, and a serial port. The CS5516 outputs 16 -bit words; the CS5520 outputs 20-bit words.

The CS5516/20 devices can measure either unipolar or bipolar signals. Self-calibration is utilized to maximize performance of the measurement system. To better understand the capabilities of the CS5516/20, it is helpful to examine some of the error sources in bridge measurement systems.

Figure 1. System Connection Diagram: AC Excitation Mode Using External Excitation

CIRRUS LOGIC'

THEORY OF OPERATION

The front page of this data sheet illustrates the block diagram of the CS5516 and CS5520 A/D converter. The device includes an instrumentation amplifier with a fixed gain of 25 . This chopper-stabilized instrumentation amplifier is followed by a programmable gain stage with gain settings of $1,2,4$, and 8 . The sensitivity of the input is a function of the programmable gain setting and of the reference voltage connected between the VREF+ and VREF- pins of the device. The full scale of the converter is VREF/(G $\mathrm{x} 25)$ in unipolar, or $\pm \mathrm{VREF} /(\mathrm{G} \times 25)$ in bipolar, where VREF is the reference voltage between the VREF+ and VREF- pins, G is the gain setting of the programmable gain amplifier, and 25 is the gain of the instrumentation amplifier.

After the programmable gain block, the output of a 4-bit DAC is combined with the input signal. The DAC can be used to add or subtract offset from the analog input signal. Offsets as large as $\pm 200 \%$ of full scale can be trimmed from the input signal.

The CS5516 and CS5520 are optimized to perform ratiometric measurement of bridge-type transducers. The devices support dc bridge excitation or two modes of ac (switched dc) bridge excitation. In the switched-dc modes of operation the converter fully demodulates both the reference voltage and the analog input signal from the bridge.

Figure 2. System Connection Diagram: DC Excitation Mode (EXC bit =0), F1 = F0 = 0 .

Command Register

D7	D6	D5	D4	D3	D2	D1	D0
$\mathbf{1}$	RSB2	RSB1	RSB0	R/ $\overline{\mathbf{W}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

BIT	NAME	VALUE	FUNCTION
D7	D7	1	Must always be logic 1
RSB2-0	Register Select Bit	$\begin{aligned} & 000 \\ & 001 \\ & 010 \\ & 011 \\ & 100 \\ & 101 \\ & 110 \\ & 111 \end{aligned}$	Selects Register to be Read or Written per R/ $\overline{\mathrm{W}}$ bit CONVERSION DATA (read only) CONFIGURATION GAIN DAC RATIOMETRIC OFFSET NON-RATIOMETRIC OFFSET - AIN NON-RATIOMETRIC OFFSET - VREF NOT USED
R/W	Read/Write	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Write to the register selected by the RSB2-0 bits Read from the register selected by the RSB2-0 bits
$\begin{aligned} & \text { D2 } \\ & \text { D1 } \end{aligned}$	$\begin{aligned} & \text { D2 } \\ & \text { D1 } \\ & \text { D0 } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	Not Used Not Used Not Used

Table 1. CS5516 and CS5520 Commands

The CS5516/20 includes a microcontroller which manages operation of the chip. Included in the microcontroller are eight different registers associated with the operation of the device. An 8-bit command register is used to interpret instructions received via the serial port. When power is applied, and the device has been reset, the serial port is initialized into the command mode. In this mode it is waiting to receive an 8 -bit command via its serial port. The first 8 bits into the serial port are placed into the command register. Table 1 lists all the valid command words for reading from or writing to internal registers of the converter. Once a valid 8 -bit command word has been received and decoded, the serial port goes into data mode. In data mode the next 24 serial clock pulses shift data either into or out of the serial port. When writing data to the port, the data may immediately follow the command word. When reading data from the port, the user must pause after clocking in the 8 -bit command word to allow the microcontroller time to decode the command word, access the appropriate regis-
ter to be read, and present its 24 -bit word to the port. The microcontroller will signal when the 24-bit read data is available by causing the $\overline{\text { DRDY }}$ pin to go low.

The user must write or read the full 24 -bit word except in the case of reading conversion data. In read data conversion mode, the user may read less than 24 bits if $\overline{\mathrm{CS}}$ is then made inactive ($\overline{\mathrm{CS}}=1$). $\overline{\mathrm{CS}}$ going inactive releases user control over the port and allows new data updates to the port.

The user can instruct the on-chip microcontroller to perform certain operations via the configuration register. Whenever a new word is written to the 24-bit configuration register, the microcontroller then decodes the word and executes the configuration register instructions. Table 2 illustrates the bits of the configuration register. The bits in the configuration register will be discussed in various sections of this data sheet.

Configuration Register

	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12
Register	DAC3	DAC2	DAC1	DAC0	EXC	F1	F0	D16	G1	G0	U/B	D12
Reset (R)	0	0	0	0	0	0	0	0	0	0	0	0
	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Register	A/S	EC	D9	D8	CC3	CC2	CC1	CCO	D3	D2	D1	RF
Reset (R)	0	0	0	0	0	0	0	0	0	0	0	0

BIT	NAME	VALUE		FUNCTION
DAC3	DAC Sign Bit	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	R^{1}	Add Offset Subtract Offset This bit is read only ${ }^{2}$
DAC2-0	DAC Bits	$\begin{aligned} & 000 \\ & 001 \\ & 010 \\ & 011 \\ & 100 \\ & 101 \\ & 110 \\ & 111 \\ & \hline \end{aligned}$	R	25\% Offset 50\% Offset 75\% Offset 100\% Offset These bits are read only ${ }^{2}$ 125\% Offset 150\% Offset 175\% Offset
EXC	Excitation: Internal External	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	R	BX1 and BX2 outputs are determined by bits F1 and F0 $B X 1$ is an input which determines the phase of the demodulation clock and the BX2 output
F1-F0	Select Frequency	$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \\ & \hline \end{aligned}$	R	Excitation on $B X 1 \& B X 2$ is dc. $B X 1=0 \vee, B X 2=+5 V$ Excitation Frequency on BX1 \& BX2 is XIN/8192 Hz Excitation Frequency on BX1 \& BX2 is $\mathrm{XIN} / 16384 \mathrm{~Hz}$ Excitation Frequency on BX1 \& BX2 is XIN/4096 Hz
D16	D16	0	R	Must always be logic 0
G1-G0	Select PGA Gain	$\begin{aligned} & 00 \\ & 10 \\ & 01 \\ & 11 \end{aligned}$	R	$\begin{aligned} & \text { Gain }=1(\times 25) \\ & \text { Gain }=2(\times 25) \\ & \text { Gain }=4(\times 25) \\ & \text { Gain }=8(X 25) \end{aligned}$
U/B	Select Unipolar/Bipolar Mode	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	R	Bipolar Measurement Mode Unipolar Measurement Mode
D12	D12	0	R	Must always be logic 0
A/S	Awake/Sleep	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	R	Awake Mode Sleep Mode
EC	Execute Calibration	0	R	Calibration not active Perform calibration selected by CC3-CCO bits. EC bit must be written back to " 0 " after calibration is completed
D9	D9	0	R	Must always be logic 0
D8	D8	0	R	Must always be logic 0
CC3-CC0	Calibration Control Bits	$\begin{aligned} & 0000 \\ & 1000 \\ & 0100 \\ & 0010 \\ & 0001 \end{aligned}$	R	No calibration to be performed Calibrate non-ratiometric offset, VREF Calibrate non-ratiometric offset, AIN Calibrate ratiometric offset, AIN Calibrate gain, AIN
D3	D3	0	R	Must always be logic 0
D2	D2	0	R	Must always be logic 0
D1	D2	0	R	Must always be logic 0
RF	Reset Filter	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	R	Normal operation Reset Filter

Notes:1.Reset State
2.A write to these bits does not change the register bit values. These bits are just a mirror of the DAC register contents.

Table 2. Configuration Register

System Initialization

Whenever power is applied to the CS5516/CS5520 A/D converters, the devices must be reset to a known condition before proper operation can occur. The internal reset is applied after power is established and lasts for approximately 100 ms . The $\overline{\mathrm{RST}}$ pin can also be used to establish a reset condition. The reset signal should remain low for at least one XIN clock cycle to ensure adequate reset time. It is recommended that the $\overline{\mathrm{RST}}$ pin be used to reset the converter if the power supplies rise very slowly or with poor startup characteristics. The RST signal can be generated by a microcontroller output, or by use of an R-C circuit.

The reset function initializes the configuration register and all five of the calibration registers; and places the microcontroller in command mode ready to accept a command from the serial port. Whenever the device is reset the DRDY pin will be set to a logic 1 and the on-chip registers are initialized to the following states:

Configuration	$000000(\mathrm{H})$
Calibration registers:	$000000(\mathrm{H})$
DAC	$800000(\mathrm{H})$
Gain	$000000(\mathrm{H})$
AIN Ratiometric Offset	$000000(\mathrm{H})$
AIN Non-ratiometric Offset	
VREF Non-ratiometric Offset	$000000(\mathrm{H})$

CALIBRATION

After the CS5516/20 is reset, the device is functional and can perform measurements without being calibrated. The converter will utilize the initialized values of the calibration registers to calculate output words.

The converter uses the two outputs (AIN \& VREF) of the dual channel converter along with the contents of the calibration registers to compute the conversion data word. The following equation indicates the computation.

$$
\mathrm{R} 0=\mathrm{R} 4\left[\left[\frac{\mathrm{D}_{\mathrm{AIN}}-\mathrm{R} 1}{\mathrm{DVREF}-\mathrm{R} 2}\right]-\mathrm{R} 3\right]
$$

Where R0 is the output data, Dain and Dvref are the digital output words from the AIN and VREF digital filter channels, and R1, R2, R3 and R4 are the contents of the following calibration registers:

R1 = AIN non-ratiometric offset
R2 = VREF non-ratiometric offset
R3 $=$ AIN ratiometric offset
R4 = Gain

The computed output word, R0, is a two's complement number.

Calibration minimizes the errors in the converted output data. If calibration has not been performed, the measurements will include offset and gain errors of the entire system.

The converter may be calibrated each time it is powered up, or calibration words from a previous calibration may be uploaded into the appropriate calibration registers from some type of E^{2} PROM by the system microcontroller.

The converter uses five different registers to store specific calibration information. Each of the calibration registers stores information pertinent to correcting a specific source of error associated with either the converter or with the input transducer and its wiring. The method by

Configuration Register						CAL Type
EC	CC3	CC2	CC1	CC0		
1	1	0	0	0	VREF Non-ratiometric Offset	$573,440 / f c l k$
1	0	1	0	0	AIN Non-ratiometric Offset	$573,440 / f \mathrm{flk}$
1	0	0	1	0	AIN Ratiometric Offset	$2,211,840 / f c l k$
1	0	0	0	1	AIN System Gain	$573,440 / f c l k$
1	1	1	0	0	VREF \& AIN Non-ratiometric Offset	$573,440 / f \mathrm{flk}$
0	X	X	X	X	End Calibration	-

$\overline{\mathrm{DRDY}}$ remains high through calibration sequence. In all modes, $\overline{\mathrm{DRDY}}$ falls immediately upon completion of the calibration sequence.

Table 3. CS5516/CS5520 Calibration Control
which calibration is initiated is common to each of the calibration registers. The configuration register controls the execution of the calibration process. Bits CC3--CC0 in the configuration register determine which type of calibration will be performed and which of the five calibration registers will be affected. On the falling edge of the 24th SCLK, the configuration word will be latched into the configuration register and the selected calibration will be executed. The time required to perform a calibration is listed in Table 3. The $\overline{\mathrm{DRDY}}$ pin will remain a logic 1 during calibration, and will go low when the calibration step is completed.

The serial port should not be accessed while a calibration is in progress. The EC bit of the configuration register remains a logic 1 until it is overwritten by a new configuration word ($\mathrm{EC}=$ 0). Consequently, if EC is left active, any write (the falling edge of the 24th SCLK) to any register inside the converter will cause a re-execution of the calibration sequence. This occurs because the internal microcontroller executes the contents of the configuration register every time the 24th SCLK falls after writing a 24-bit word to any internal register. To be certain that calibrations will not be re-executed each time a new word is written or read via the serial port, the EC bit of the configuration register must be written back to a logic 0 after the final calibration step has been completed.

The CC3--CC0 bits of the configuration register determine the type of calibration to be per-
formed. The calibration steps should be performed in the following sequence. If the user determines that non-ratiometric offset calibration is important, the non-ratiometric offset errors of the VREF and AIN input channels should be calibrated first. Then the ratiometric offset of the AIN channel should be calibrated. And finally, the AIN channel gain should be calibrated.

Non-ratiometric Errors

To calibrate out the VREF and AIN non-ratiometric errors, the input channels to the VREF path into the converter and the AIN path into the converter must be grounded (this may occur at the pins of the IC, or at the bridge excitation as shown in Figure 3.). Then the EC, CC 2 and CC 3 bits of the configuration register must be set to logic 1. The converter will then perform a non-ratiometric calibration and place

Figure 3. Non-ratiometric System Calibration using Internal Excitation

CIRRUS LOGIC

the proper 24 bit calibration words in the VREF and AIN non-ratiometric registers. Note that the two non-ratiometric offsets can be calibrated simultaneously or independently, but they must be calibrated prior to the other calibration steps if non-ratiometric offset calibration is to be used. If the effects of the non-ratiometric errors are not significant enough to affect the user application, they can be left uncalibrated (after a reset, the non-ratiometric offset registers will contain 000000(H)).

Ratiometric Offset

Once the non-ratiometric errors have been calibrated, the ratiometric offset error of the AIN channel should be calibrated next. To perform this calibration step, a reference voltage must be applied to the VREF+ and VREF- pins. Then, place "zero" weight on the scale platform. This will result in an offset voltage into the converter which will represent the offset of the bridge, the wiring, and the AIN input of the converter itself. A configuration word with the EC and CC1 bits set to logic 1 is then written into the configuration register. During the ratiometric offset calibration of AIN the microcontroller first uses a successive approximation algorithm to compute the correct values for the DAC3-DAC0 bits of the DAC register. This accommodates any large offsets on the AIN input signal. Once the four DAC bits are computed, this amount of offset is removed from the input signal. The microcontroller then computes the appropriate 24 bit number to place in the AIN ratiometric offset register to calibrate out the remaining offset not removed by the DAC.

Gain

After the AIN ratiometric offset has been calibrated, the next step is to perform a gain calibration. Gain calibration is performed with "full scale" weight on the scale platform. The EC and CC0 bits of the configuration register are set to logic 1. The gain calibration of the AIN channel is the final calibration step. After
$\overline{\text { DRDY }}$ falls to signal the completion of this calibration step, the EC bit of the configuration register must be set back to logic 0 to terminate the calibration mode.

Limitations in Calibration Range

There are five calibration registers in the converter. There are two non-ratiometric offset calibration registers, one for the AIN input and one for the VREF input; one 4-bit offset trim DAC; one ratiometric offset calibration register for the AIN input; and one gain calibration register. After the non-ratiometric offsets are calibrated, an LSB in either of the 24-bit non-ratiometric calibration registers represents 2^{-23} proportion of an internally-scaled MDRV (Modulator Differential Reference Voltage). At the MDRV+ and MDRV- pins, the MDRV has a nominal value of 3.75 volts. This voltage is internally scaled to a nominal 2.5 volts (never less than 2.4 volts) for use with the non-ratiometric calibration. The two non-ratiometric calibration words are stored in 2's complement form with one count equal to slightly less than 300 nV at the input of the internal A/D converter. For the AIN channel this will be scaled down by the gain of the instrumentation amplifier (X25) and the PGA gain. For a PGA gain $=1$, one count of a non-ratiometric register will represent slightly less than 12 nV . Non-ratiometric offset at the VREF input cannot exceed ± 2.4 volts to be within calibration range of the converter. Nonratiometric offset to be calibrated by the AIN channel cannot exceed ± 2.4 volts divided by the channel gain. With a PGA gain $=1$, the maximum non-ratiometric offset which can be calibrated on the AIN channel cannot exceed $\pm 96 \mathrm{mV}$.

When the ratiometric offset is calibrated, the 4bit DAC coarsely trims offset from the analog signal. The ratiometric offset which remains is finely trimmed after the signal has been converted; using the contents of the ratiometric offset register for digital correction. The DAC
bits can be manipulated by the user to add or subtract offset up to 200 percent of the nominal input signal. The AIN ratiometric offset register can be manipulated to add or subtract offset equal to the maximum differential input signal into the X25 amplifier. An LSB in the ratiometric offset register represents 2^{-23} proportion of the voltage input across the VREF+ and VREFpins at the internal input to the AIN channel A/D converter. This will be scaled down by the AIN channel gain when calculated relative to the instrumentation amplifier input. For example, with a VREF $=2.5 \mathrm{~V}$, the PGA gain $=1$, one count of the ratiometric offset register would represent about 12 nV at the instrumentation amplifier input. The proportion remains ratiometric even if the VREF voltage should change. The 24 -bit register content is stored in 2's complement form.

Manipulation of the DAC or ratiometric offset register allows the user to shift the transfer function to allow for load cell creep or load cell zero drift.

The gain calibration is performed last. The contents of the gain register spans from 2^{-23} to 2 as shown in Table 4. After gain calibration has been performed, the numeric value in the gain register should not exceed the range of 0.8 to 1.2. The gain calibration range is $\pm 20 \%$ of the nominal value of 1.0 . The nominal value of 1.0 is for an input span dictated by the VREF voltage, the PGA gain, and the X25 instrumentation gain. The converter may operate with gain slope factors from 0.5 to 2.0 (decimal), but when the slope exceeds 1.2 the converter output code computation may lack adequate resolution and result in missing codes in the transfer function. Internal circuitry may saturate for large signals which would calibrate to a gain factor less than 0.8 .

In a typical weigh scale application, the CS5516/CS5520 will be calibrated in combination with a load cell at the factory. Once calibrated, the calibration words are off-loaded from the converter and stored in $E^{2} P R O M$. When powered-up in the field the calibration words are up-loaded into the appropriate registers. This is viable because the AIN and VREF input to the converter are "chopper-stabilized" and maintain excellent stability when subjected to changes in temperature.

Programmable Gain Amplifier

The programmable gain amplifier inside the CS5516/20 offers gains of $1,2,4$, and 8 . This is in addition to the fixed gain of $\times 25$ in the input instrumentation amplifier. The gain tracking of the PGA is about one percent between ranges. The user can remove this error by performing a gain calibration at the factory with a full scale signal on each range. The gain calibration word for each gain range can be off-loaded into E^{2} PROM and uploaded into the gain register whenever a new gain setting is selected for the PGA. Gain stability over temperature for the converter itself is approximately $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ when the device is used ratiometrically.

Serial Interface Modes

The CS5516/20 support either 5, 4 or 3 pin serial interfacing. The SMODE pin sets the operating mode of the serial interface. With SMODE $=0$, the device assumes the user is operating with either a 5 or 4 wire interface. The five wire mode includes SOD, SID, SCLK, $\overline{\mathrm{DRDY}}$, and $\overline{\mathrm{CS}}$. In the four wire mode, $\overline{\mathrm{CS}}$ is connected to DGND as a logic 0 . The user would then interface to the SOD, SID, SCLK, and DRDY pins.

AIN and VREF Non-Ratiometric Offset Registers

MSB												
Register	2^{0}	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-18}	2^{-19}	2^{-20}	2^{-21}	2^{-22}	2^{-23}
Reset (R)	0	0	0	0	0	0	0	0	0	0	0	0

One LSB represents 2^{-23} proportion of the internal MDRV (≈ 2.5 Volts)

DAC Register

	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12
Register	DAC3	DAC2	DAC1	DAC0	EXC	F1	F0	D16	G1	G0	U/B	D12
Reset (R)	0	0	0	0	0	0	0	0	0	0	0	0
	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Register	A/S	EC	D9	D8	CC3	CC2	CC1	CCO	D3	D2	D1	RF
Reset (R)	0	0	0	0	0	0	0	0	0	0	0	0

BIT	NAME	VALUE		FUNCTION	
DAC3	DAC Sign Bit	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	R^{1}	Add Offset Subtract Offset	
DAC2-0	DAC Bits	000 001 010 011 100 101 110 111	R	25\% Offset 50\% Offset 75\% Offset 100\% Offset 125\% Offset 150\% Offset 175\% Offset	
Bits D19 to D0		0	R	These bits mirror the Configuration Register	read only ${ }^{2}$

Note: 1. Reset State
2. A write to these bits does not change the register bit values.

AIN Ratiometric Offset Register

One LSB represents 2^{-23} proportion of the voltage $[<(\mathrm{VREF}+)-(\mathrm{VREF}-)>/ \mathrm{GAIN}]$ where GAIN $=25 \mathrm{X}$ PGA Gain

GAIN Register

Register
Reset (R)

MSB LSB											
2^{0}	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-18}	2^{-19}	2^{-20}	2^{-21}	2^{-22}	2^{-23}
1	0	0	0	0	0	0	0	0	0	0	0

The gain register span from 0 to $\left(2-2^{-23}\right)$. After Reset the MSB $=1$, all other bits are 0 .
Table 4. Calibration Registers

Reading a register in the converter requires a command word to be written to the SID pin. For example, to read the conversion data register, the following command sequence should be performed. First, the command word $88(\mathrm{H})$ would be issued to the port. In the 5 wire interface mode, this would involve activating $\overline{\mathrm{CS}}$ low, followed by 8 SCLKs (note that SCLK must always start low and transition from low to high to latch the transmit data, and then back low again) to input the 8 -bit command word. $\overline{\mathrm{CS}}$ must be low for the serial port to recognize SCLKs during a write or a read, but it is actually the first rising SCLK during command time that gives the user control over the port. After writing the command word, the user must pause and wait until the CS5520 presents the selected register data to the serial port. The $\overline{\mathrm{DRDY}}$ signal will fall when the data is available. When reading the conversion data register, it may take up to 112,000 XIN clock cycles for $\overline{\text { DRDY }}$ to fall after the $88(\mathrm{H})$ command word is recognized. See Figure 4 for an illustration of command and data word timing.

The conversion data register is actually the accumulator of the post-processor which computes the output data. At the end of each filter convolution cycle, the internal microcontroller checks to see if a read conversion data register command has been interpreted. If so, it transfers the accumulator result to the serial port.

Whenever registers other than the conversion data register are read, the DRDY pin will fall within 256 XIN clock cycles ($62.5 \mu \mathrm{~s}$ with $\mathrm{XIN}=4.096 \mathrm{MHz})$ after the command word is recognized. When $\overline{\text { DRDY }}$ falls, 24 SCLKs are then issued to the port to read the 24 -bit output data word. DRDY will return high after all 24 bits have been clocked out. The SOD pin will be in a Hi-Z state whenever $\overline{\mathrm{CS}}$ is high, or after all 24 output data bits have been clocked out of the port.

The CS5516/20 is designed such that it can output conversion data words continuously, without issuing a new command word prior to each data read. Under the following circumstances, continuous conversion data can be read from the port after issuing only one $88(\mathrm{H})$ command word. Once the command to read the conversion data register is issued, $\overline{\mathrm{DRDY}}$ must be allowed to go low, after which 24 SCLKs are issued to read the data. This will cause $\overline{\mathrm{DRDY}}$ to return high.

The converter will continue to output conversion words at the update rate as long as a different command word is not started prior to DRDY falling again. The user is not required to read every output word to remain in the continuous update mode. $\overline{\text { DRDY }}$ will toggle high, and then low as each new output word becomes available. If a command word is issued immediately after a data word is read, the converter will end the read conversion mode. Figure 5 illustrates the continuous data mode.

The user should perform all data reads and command writes within 51,000 XIN clock cycles after $\overline{\text { DRDY }}$ falls to avoid ambiguity as to who controls the serial port.

If SMODE $=1$ (tied to VD+), the interface operates as a 3 wire interface using only SOD, SID, and SCLK. In the 3 wire mode $\overline{\mathrm{CS}}$ must be tied to DGND. $\overline{\text { DRDY }}$ operates normally but is not used. Instead, the $\overline{\mathrm{DRDY}}$ signal modifies the behavior of the SOD signal, allowing it to signal to the user when data is available. To read data from the converter requires a command word to be written to the SID pin. The SOD output is normally high (never Hi-Z). When output data is available, the SOD signal will go low. The user would then issue 8 SCLKs to the SCLK pin to clear this data ready signal. On the falling edge of the 8th SCLK the SOD pin will present the first bit of the 24 -bit output word. 24 SCLKs are then issued to read the data. Then SOD will go high. SID should remain low whenever the

SCLK $\overline{\mathrm{CS}}$

Figure 4. Command and Data Word Timing
*See text for td time.

SID pin is not being written. When reading SOD, SCLK cannot be continuous but must burst one clock cycle per bit.

The continuous read conversion data mode is also functional in the 3-wire interface mode. Issue one $88(\mathrm{H})$ command word to the converter. Then wait for SOD to go low. Issue 8 SCLKs to clear the data ready function. The MSB data bit will then appear on the SOD pin. Issue 24 SCLKs to read the conversion word. At the falling edge of the 24th SCLK SOD will return high. SOD will go low at the next $\overline{\text { DRDY }}$ falling time to indicate a new conversion word. Eight SCLKs must again be issued to clear the data ready function before clocking out the data conversion word. The SOD pin will continue to toggle low each time a word is available even if the conversion data is not read. To terminate the continuous conversion mode, input an 8 -bit command word immediately after reading a conversion word.

The user should perform all data reads and command writes within 51,000 XIN clock cycles after SOD falls to avoid ambiguity as to who controls the serial port.

Serial Port Initialization

If for any reason the off-chip microcontroller fails to know whether the serial port of the CS5516/20 is in data mode or command mode, the following initialization procedure can be issued to the port to force the CS5516/20 into the command mode. Write 128 or more 1's to the SID pin. Then issue a single 0 to the SID pin. The port will then be initialized into the command mode and will be waiting for an 8 -bit command word.

Bridge Excitation Options

The CS5516/CS5520 A/D converters are optimized for Wheatstone bridge applications. The converters support either dc or ac (switched dc) bridge excitation.

DC Bridge Excitation

The CS5516/CS5520 can be configured for dc bridge excitation in either of two ways. The EXC bit of the configuration register can be set for either internal or for external excitation. If set to internally-controlled mode ($\mathrm{EXC}=0$), the F1 and F0 bits must be set to logic 0s. In this condition, the bridge can be excited from a dc supply with a resistor divider to develop the appropriate reference voltage for the VREF+ and VREF- pins. Note that the bridge excitation

Figure 5. Continuous Read Conversion Data Mode (4 or 5 Wire)
should not be applied prior to the CS5516/CS5520 being powered-up. With EXC, F1, and F0 set to logic 0 , the BX1 output will be logic 0 (0 volts) and the BX2 output will be a logic 1 (+5 volts).

A second method for configuring the converter for dc excitation is by setting $\mathrm{EXC}=1$, and pulling up BX1 (pin 12) to VD+ (pin 20) through a resistor. This sets the converter for use with external excitation which uses the BX1 pin as an input to set the excitation frequency. With BX1 = VD+, the external excitation frequency is zero, or dc.

AC Bridge Excitation

AC bridge excitation involves using a clock signal to generate a square wave which repetitively reverses the excitation polarity on the bridge. To excite the bridge dynamically requires some type of bridge driver external to the CS5516/CS5520 converter. This driver is driven by a square wave clock. The source of this clock depends upon whether the converter is set for internal excitation or for external excitation. Figure 6 illustrates a sample bridge drive circuit when operating in the internal AC excitation mode.

Figure 6. Sample AC Bridge Driver
Using internal excitation involves setting the EXC bit of the configuration register to 0 , and setting the F1 and F0 bits to select the excitation frequency for the bridge. In this mode the excitation frequency is a sub-multiple of the XIN clock frequency. The excitation clock is output
from the BX 1 and BX 2 pins of the converter in the form of a two-phase non-overlapping clock. The converter is capable of demodulating this clocked excitation. But only if the signals into the AIN+ and VREF+ pins of the converter are in phase with the demodulation clock inside the converter (see Figure 7). The non-overlapping clock signals from BX1 and BX2 are CMOS level outputs (0 to VD+ volts) and are capable of driving one TTL load. A buffer amplifier MUST be used to drive the bridge.

Note: The signals from the bridge into AIN+ and VREF+ of the converter must be in phase with the demodulation clock. t_{d} is 1 cycle of XIN clock.
Figure 7. Internal Excitation Clock Phasing
Whenever the internal mode is used for dynamic bridge excitation the signals are non-overlapping. The non-overlapping time is one XIN clock cycle.

The converter can also be configured to provide dynamic bridge excitation when operating in the external-controlled bridge excitation mode. With the EXC bit of the configuration register set to logic 1, the BX1 pin becomes an input which determines the bridge excitation frequency and phase. BX1 should be near 50% duty cycle. The user can select the excitation frequency with the following restrictions. The excitation frequency must be synchronous with the XIN frequency of the converter and must be chosen using the following equation:

$$
\mathrm{F}_{\mathrm{exc}}=(\mathrm{N} \times \mathrm{XIN}) / 81,920
$$

where N is an integer and lies in the range including 1 to $160 . \mathrm{F}_{\text {exc }}$ is the desired bridge excitation frequency. Other asynchronous fre-
quencies are possible but may introduce a jitter component in the BX output signals. It is desirable not to choose an excitation frequency where interference components are present, such as 50 Hz or 60 Hz or their harmonics. The XIN frequency can be divided down using a counter IC external to the A/D converter. Fexc would be input to the BX1 pin of the converter to synchronize the internal operations of the amplifiers and synchronous detection circuitry and to generate a clock output from the BX2 pin. The BX2 output is then used to drive the bridge amplifier with a signal of proper phase for detection by the converter. Figure 8 indicates the necessary phase of the signals to ensure proper demodulation.

Figure 8. External Excitation Clock Phasing
Whenever the dynamic excitation clock output from either the BX1 and BX2 pins (during internal excitation) or from the BX2 pin (during external excitation) changes states, the converter waits 64 XIN cycles before sampling the AIN and VREF signal inputs. The delay allows some time for the signal to settle from the modulation event.

Input Filtering

Some load cells are located a distance from the input to the converter. Under these conditions, separate twisted pair cabling is recommended for the excitation drive to the bridge, the excitation sense leads (if used), and for the $\mathrm{AIN} \pm / \mathrm{AIN}-$ signal leads. If the AIN+/AIN- leads to the con-
verter and the VREF+/VREF- leads to the converter are filtered, care should be exercised in the choice of components. With either dc or ac excitation, one should limit any input filtering resistors on AIN to below $1 \mathrm{k} \Omega$. Values greater than this will degrade noise performance of the converter. In ac excitation applications, any filtering must be broadband enough that the switched dc excitation signal can settle within 10 μ secs. Failure to meet this settling requirement will affect measurement accuracy. Figure 9 illustrates acceptable filter components for ac excitation. If only differential filtering is required, a single capacitor can be placed between AIN+ and AIN- (and VREF+ and VREF-) in place of two capacitors to ground.

Figure 9. AIN and VREF Input Filter Components

Voltage Reference Considerations

The CS5516/20 include an on-chip voltage reference which is output on the MDRV- and referenced from the MDRV+ pin. The converter is designed to be operated as a ratiometric measurement device. The 2 -channel delta-sigma converter uses the internal MDVR (Modulator Differential Voltage Reference) as its reference. Since the MDVR is used for converting both the AIN and VREF signals at the same time, the absolute value of the MDVR and its tempco are not important when the CS5516/20 is used in the ratiometric measurement mode. The voltage reference output, MDVR-, should be decoupled using a $1 \mu \mathrm{~F}$ capacitor which is connected to the MDRV+ supply line. Voltage reference decou-
pling is shown on the system connection diagrams.

If absolute measurements are to be made by the CS5516/20, then a precision reference should be input into the VREF+ and VREF- terminals.

Clock Generator

The CS5516/20 includes a gate which can be connected as a crystal oscillator to provide the master clock to run the chip. Alternatively, an external (CMOS compatible) clock can be input into the XIN pin. Figure 10 illustrates a simple model for the on-chip gate oscillator. The onchip oscillator is designed to typically operate with crystal frequencies between 4.0 and 5.0 MHz without additional loading capacitors. If other crystal frequencies, or if ceramic resonators are used, additional loading capacitance may be necessary.

Figure 10. On-Chip Gate Oscillator Model

The XOUT pin can be used to drive one CMOS gate for system clock requirements. Be sure to include the gate's input capacitance and stray capacitance as part of the loading capacitance for the resonating element.

Digital Filter

The CS5516/20 is optimized to operate with clock frequencies of 4.096 MHz or 4.9152 MHz . These result in the filter having a 3 dB bandwidth of 12 Hz or 15 Hz , with output word rates of 50 or 60 Sps . The rejection at $50 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$ is 70 dB minimum with a 4.096 MHz clock. Similar rejection is obtained at 60 Hz with a 4.9152 MHz clock.

The digital filter has a deep notch in its transfer function at $50 \mathrm{~Hz}(\mathrm{XIN}=4.096 \mathrm{MHz})$ or 60 Hz (XIN $=4.9152 \mathrm{MHz})$ but other XIN frequencies can be used. The filter transfer function will scale proportionally. Figure 11 shows the transfer function of the filter when operated at three different frequencies. With a 3.579 MHz XIN , the filter offers greater than 90 dB rejection of both 50 and 60 Hz .

Figure 11. Filter Magnitude Response

Figure 12. Filter Phase Response.
The output word rate of the converter scales with the XIN clock rate and is set by the ratio of XIN/81,920; or 50 Sps for XIN $=4.096 \mathrm{MHz}$. If very narrow signal bandwidths, such as 3 Hz , are desired, averaging of the output words is recommended.

The digital filter computes a new output data word every 81,920 XIN clock cycles. If the input experiences a large change in amplitude, the PGA gain is changed, or the DAC calibration registers are changed, it may take up to six filter cycles (81,920 X 6 clock cycles) for the filter to compute an output word which is fully settled to the input signal.

Output Coding

The CS5516/20 converters output data in binary format when operating in unipolar mode and in two's complement when operating in bipolar mode. Table 5 illustrates the output coding for the converters. Note that when reading conversion data from the converter the data word is output MSB or sign bit first. Falling edges on SCLK advance the data word to the next lower bit.

The output conversion words from both the CS5516 and the CS5520 are 24 bits long. The CS5516 has 16 data bits followed by 8 flag bits (all identical). The CS5520 has 20 data bits followed by 4 flag bits (all identical). To read the conversion data, including the error flag information will require at least 17 SCLKs for the CS5516 and at least 21 SCLKs for the CS5520.

Unipolar Input Voltage	Offset Binary	Bipolar Input Voltage	Two's Complement
$>$ (VFS-1.5 LSB)	FFFF	$>(\mathrm{VFS}-1.5 \mathrm{LSB})$	7FFF
VFS-1.5 LSB	FFFF FFFF	VFS-1.5 LSB	$\begin{gathered} \text { 7FFF } \\ \text { 7---- } \\ \text { 7FFE } \end{gathered}$
VFS/2-0.5 LSB	$\begin{gathered} 8000 \\ ----- \\ \text { 7FFF } \end{gathered}$	-0.5 LSB	$\begin{gathered} 0000 \\ ----- \\ \text { FFFF } \end{gathered}$
+0.5 LSB	$\begin{gathered} 0001 \\ ---- \\ 0000 \end{gathered}$	-VFS+0.5 LSB	$\begin{gathered} 8001 \\ ---- \\ 8000 \end{gathered}$
$<(+0.5 \mathrm{LSB})$	0000	<(-VFS+0.5 LSB)	8000

CS5516 Output Coding

Under normal operating conditions, the flag bits will be zeroes. The flag bits will be set to all ones whenever an overrange condition exists. Under large overrange conditions where the input signal exceeds the nominal full scale input by approximately two times (for example: 50 mV input when the nominal full scale input is set-up for 25 mV), the converter may be unable to compute a proper output code. In this condition flag bits will be set to all 1 s but the conversion data may be a value other than full scale plus or minus.

After the converter is first powered-up, a $\overline{\mathrm{RST}}$ is issued, or the device comes out of the SLEEP mode, the first conversion data read may erroneously have its error flag bits set to "1".

Synchronizing Multiple Converters

Multiple converters can be made to output their conversion words at the same time if they are operated from the same clock signal at XIN. To synchronize multiple converters requires that they all have their RF bit of the configuration register written to a logic 1 and then back to 0 . The filters will be allowed to start convolutions after the falling edge of the 24th SCLK used to write the RF bit to the configuration register.

Unipolar Input Voltage	Offset Binary	Bipolar Input Voltage	Two's Complement
$>$ (VFS-1.5 LSB)	FFFFF	$>$ (VFS-1.5 LSB)	7FFFF
VFS-1.5 LSB	FFFFF F----- FFFFE	VFS-1.5 LSB	7FFFF ----- 7FFFE
VFS/2-0.5 LSB	80000 ----- 7FFFF	-0.5 LSB	00000 ----- FFFFF
+0.5 LSB	00001 ----- 00000	-VFS+0.5 LSB	80001 ----- $<(+0.5$ LSB) 00000
<(-VFS+0.5 LSB)	80000		

CS5520 Output Coding

Note: VFS in the table equals the full scale voltage between + VREF/($\mathrm{G} \times 25$) and ground for unipolar mode; and between $\pm \mathrm{VREF} /(\mathrm{G} \times 25)$ for bipolar mode. The signal input to the A / D section of the converter has been amplified by the instrumentation amplifier (x25) and the PGA gain, G (1, 2, 4, or 8). See text about error flags under overrange conditions.

Table 5. Output Coding for the CS5516/20 Converters.

