
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

1

®

January 28, 2008

80C286
High Performance Microprocessor

with Memory Management and Protection

Features
� Compatible with NMOS 80286

� Wide Range of Clock Rates

- DC to 25MHz (80C286-25)

- DC to 20MHz (80C286-20)

- DC to 16MHz (80C286-16)

- DC to 12.5MHz (80C286-12)

- DC to 10MHz (80C286-10)

� Static CMOS Design for Low Power Operation

- ICCSB = 5mA Maximum

- ICCOP = 185mA Maximum (80C286-10)

220mA Maximum (80C286-12)

260mA Maximum (80C286-16)

310mA Maximum (80C286-20)

410mA Maximum (80C286-25)

� High Performance Processor (Up to 19 Times the 8086

Throughput)

� Large Address Space

� 16 Megabytes Physical/1 Gigabyte Virtual per Task

� Integrated Memory Management, Four-Level Memory

Protection and Support for Virtual Memory and Operat-

ing Systems

� Two 80C86 Upward Compatible Operating Modes

- 80C286 Real Address Mode

- PVAM

� Compatible with 80287 Numeric Data Co-Processor

� High Bandwidth Bus Interface (25 Megabyte/Sec)

� Available In

- 68 Pin PGA (Commercial, Industrial, and Military)

- 68 Pin PLCC (Commercial and Industrial)

Description

The Intersil 80C286 is a static CMOS version of the NMOS
80286 microprocessor. The 80C286 is an advanced, high-
performance microprocessor with specially optimized capa-
bilities for multiple user and multi-tasking systems. The
80C286 has built-in memory protection that supports operat-
ing system and task isolation as well as program and data
privacy within tasks. A 25MHz 80C286 provides up to nine-
teen times the throughput of a standard 5MHz 8086. The
80C286 includes memory management capabilities that map
230 (one gigabyte) of virtual address space per task into 224

bytes (16 megabytes) of physical memory.

The 80C286 is upwardly compatible with 80C86 and 80C88
software (the 80C286 instruction set is a superset of the
80C86/80C88 instruction set). Using the 80C286 real
address mode, the 80C286 is object code compatible with
existing 80C86 and 80C88 software. In protected virtual
address mode, the 80C286 is source code compatible with
80C86 and 80C88 software but may require upgrading to
use virtual address as supported by the 80C286’s integrated
memory management and protection mechanism. Both
modes operate at full 80C286 performance and execute a
superset of the 80C86 and 80C88 instructions.

The 80C286 provides special operations to support the effi-
cient implementation and execution of operating systems.
For example, one instruction can end execution of one task,
save its state, switch to a new task, load its state, and start
execution of the new task. The 80C286 also supports virtual
memory systems by providing a segment-not-present excep-
tion and restartable instructions.

Ordering Information

PACKAGE TEMP. RANGE 10MHz 12.5MHz 16MHz 20MHz 25MHz PKG. NO.

PGA 0oC to +70oC - CG80C286-12 CG80C286-16 CG80C286-20 - G68.B

-40oC to +85oC IG80C286-10 IG80C286-12 - - - G68.B

-55oC to +125oC 5962-

9067801MXC

5962-

9067802MXC

- - - G68.B

PLCC 0oC to +70oC - CS80C286-12 CS80C286-16 CS80C286-20 CS80C286-25 N68.95

-40oC to +85oC IS80C286-10 IS80C286-12 IS80C286-16 IS80C286-20 - N68.95

FN2947.3
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 2003-2008. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.

2

Pinouts

68 LEAD PGA

Component Pad View - As viewed from underside of the component when mounted on the board.

68 LEAD PGA

P.C. Board View - As viewed from the component side of the P.C. board.

68

66

64

62

60

58

56

54

5253

51

55

57

59

61

63

65

67

2

13579

10 46812

1113

1416

1517

1918

2120

22

24

26

28

30

32

34

23

25

27

29

31

33

36

35 37

38 40

39 41

42 44

43 45

46 48

47 49

50

E
R

R
O

R

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

N
C

S
1

P
E

A
C

K

A
2
2

A
2
1

A
1
9

A
1
7

A
1
5

A
1
2

D0

A1

CLK

RESET

A4

A6

A8

A10

A12

ERROR

NC

INTR

NMI

PEREQ

READY

HLDA

M/IO

NC

NC

BUSY

NC

NC

VSS

VCC

HOLD

COD/INTA

LOCK

D
1

5

D
1

4

D
1

3

D
1

2

D
1
1

D
1

0

D
9

D
8

V
S

S

B
H

E

N
C

S
0

A
2
3

V
S

S

A
2
0

A
1
8

A
1
6

A
1
4

A0

A2

VCC

A3

A5

A7

A9

A11

A13

PIN 1 INDICATOR

68

66

64

62

60

58

56

54

52 53

51

55

57

59

61

63

65

67

2

1 3 5 7 9

104 6 8 12

11 13

14 16

15 17

19 18

21 20

22

24

26

28

30

32

34

23

25

27

29

31

33

36

3537

3840

3941

4244

4345

4648

4749

50

E
R

R
O

R

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

N
C

S
1

P
E

A
C

K

A
2

2

A
2

1

A
1

9

A
1

7

A
1

5

A
1

2

D0

A1

CLK

RESET

A4

A6

A8

A10

A12

ERROR

NC

INTR

NMI

PEREQ

READY

HLDA

M/IO

NC

NC

BUSY

NC

NC

VSS

VCC

HOLD

COD/INTA

LOCK

D
1
5

D
1
4

D
1
3

D
1
2

D
1
1

D
1
0

D
9

D
8

V
S

S

B
H

E

N
C

S
0

A
2

3

V
S

S

A
2

0

A
1

8

A
1

6

A
1

4

A0

A2

VCC

A3

A5

A7

A9

A11

A13

PIN 1 INDICATOR

80C286

3

68 LEAD PLCC

P.C. Board View - As viewed from the component side of the P.C. board.

Functional Diagram

Pinouts (Continued)

68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

3418 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

D15

D7

D14

D6

D13

D5

D12

D4

D11

D3

D10

D2

D9

D1

D8

D0

VSS

BHE

NC

NC

S1

S0

PEACK

A23

A22

VSS

A21

A20

A19

A18

A17

A16

A15

A14

L
O

C
K

M
/I

O

C
O

D
/I

N
T

A

H
L

D
A

H
O

L
D

R
E

A
D

Y

V
C

C

P
E

R
E

Q

V
S

S

N
M

I

N
C

IN
T

R

N
C

N
C

B
U

S
Y

E
R

R
O

R

N
C

A
1

3

A
1

2

A
1
1

A
1

0

A
9

A
8

A
7

A
6

A
5

A
4

A
3

R
E

S
E

T

V
C

C

C
L

K

A
2

A
1

A
0

PIN 1 INDICATOR

MOLD MARK DOES NOT

INDICATE PIN 1

OFFSET
ADDER

SEGMENT

LIMIT

CHECKER

SEGMENT

BASES

SEGMENT

SIZES

PHYSICAL

ADDRESS

ADDER

ALU

CONTROLREGISTERS

ADDRESS

LATCHES AND DRIVERS

PRE-

BUS CONTROL

FETCHER

PROCESSOR
EXTENSION
INTERFACE

DATA TRANSCEIVERS

6-BYTE
PREFETCH

QUEUE

INSTRUCTION
UNIT (IU)

BUS UNIT (BU)

EXECUTION UNIT (EU)

ADDRESS UNIT (AU)
A23 - A0,

BHE, M/IO

PEACK

3 DECODED
INSTRUCTION

QUEUE

INSTRUCTION
DECODER

PEREQ

READY,
HOLD,

S1, S0,
COD/INTA,
LOCK, HLDA

D15 - D0

RESET

CLK

VSS

VCC

NMI BUSY

ERRORINTR

80C286

4

Pin Descriptions The following pin function descriptions are for the 80C286 microprocessor.

SYMBOL

PIN

NUMBER TYPE DESCRIPTION

CLK 31 I SYSTEM CLOCK: provides the fundamental timing for the 80C286 system. It is divided by two inside
the 80C286 to generate the processor clock. The internal divide-by-two circuitry can be synchro-

nized to an external clock generator by a LOW to HIGH transition on the RESET input.

D15 - D0 36 - 51 I/O DATA BUS: inputs data during memory, I/O, and interrupt acknowledge read cycles; outputs data

during memory and I/O write cycles. The data bus is active HIGH and is held at high impedance to
the last valid logic level during bus hold acknowledge.

A23 - A0 7 - 8

10 - 28

32 - 43

O ADDRESS BUS: outputs physical memory and I/O port addresses. A23 - A16 are LOW during I/O

transfers. A0 is LOW when data is to be transferred on pins D7 - D0 (see table below). The address

bus is active High and floats to three-state off during bus hold acknowledge.

BHE 1 O BUS HIGH ENABLE: indicates transfer of data on the upper byte of the data bus, D15 - D8. Eight-bit

oriented devices assigned to the upper byte of the data bus would normally use BHE to condition chip
select functions. BHE is active LOW and floats to three-state OFF during bus hold acknowledge.

S1, S0 4, 5 O BUS CYCLE STATUS: indicates initiation of a bus cycle and along with M/IO and COD/lNTA, de-

fines the type of bus cycle. The bus is in a TS state whenever one or both are LOW. S1 and S0 are
active LOW and are held at a high impedance logic one during bus hold acknowledge.

BHE AND A0 ENCODINGS

BHE VALUE A0 VALUE FUNCTION

0 0 Word transfer

0 1 Byte transfer on upper half of data bus (D15 - D8)

1 0 Byte transfer on lower half of data bus (D7 - D0)

1 1 Reserved

 80C286 BUS CYCLE STATUS DEFINITION

COD/INTA M/IO S1 S0 BUS CYCLE INITIATED

0(LOW) 0 0 0 Interrupt acknowledge

0 0 0 1 Reserved

0 0 1 0 Reserved

0 0 1 1 None; not a status cycle

0 1 0 0 If A1 = 1 then halt; else shutdown

0 1 0 1 Memory data read

0 1 1 0 Memory data write

0 1 1 1 None; not a status cycle

1(HIGH) 0 0 0 Reserved

1 0 0 1 I/O read

1 0 1 0 I/O write

1 0 1 1 None; not a status cycle

1 1 0 0 Reserved

1 1 0 1 Memory instruction read

1 1 1 0 Reserved

1 1 1 1 None; not a status cycle

80C286

5

M/IO 67 O MEMORY I/O SELECT: distinguishes memory access from I/O access. If HIGH during TS, a mem-
ory cycle or a halt/shutdown cycle is in progress. If LOW, an I/O cycle or an interrupt acknowledge

cycle is in progress. M/IO is held at high impedance to the last valid logic state during bus hold ac-

knowledge.

COD/lNTA 66 O CODE/INTERRUPT ACKNOWLEDGE: distinguishes instruction fetch cycles from memory data

read cycles. Also distinguishes interrupt acknowledge cycles from I/O cycles. COD/lNTA is held at
high impedance to the last valid logic state during bus hold acknowledge. Its timing is the same as

M/IO.

LOCK 68 O BUS LOCK: indicates that other system bus masters are not to gain control of the system bus for

the current and following bus cycles. The LOCK signal may be activated explicitly by the “LOCK”

instruction prefix or automatically by 80C286 hardware during memory XCHG instructions, interrupt
acknowledge, or descriptor table access. LOCK is active LOW and is held at a high impedance logic

one during bus hold acknowledge.

READY 63 l BUS READY: terminates a bus cycle. Bus cycles are extended without limit until terminated by

READY LOW. READY is an active LOW synchronous input requiring setup and hold times relative

to the system clock be met for correct operation. READY is ignored during bus hold acknowledge.
(See Note 1)

HOLD

HLDA

64

65

I

O

BUS HOLD REQUEST AND HOLD ACKNOWLEDGE: control ownership of the 80C286 local bus.

The HOLD input allows another local bus master to request control of the local bus. When control is

granted, the 80C286 will float its bus drivers and then activate HLDA, thus entering the bus hold ac-

knowledge condition. The local bus will remain granted to the requesting master until HOLD be-
comes inactive which results in the 80C286 deactivating HLDA and regaining control of the local

bus. This terminates the bus hold acknowledge condition. HOLD may be asynchronous to the sys-

tem clock. These signals are active HIGH. Note that HLDA never floats.

INTR 57 I INTERRUPT REQUEST: requires the 80C286 to suspend its current program execution and service
a pending external request. Interrupt requests are masked whenever the interrupt enable bit in the

flag word is cleared. When the 80C286 responds to an interrupt request, it performs two interrupt

acknowledge bus cycles to read an 8-bit interrupt vector that identifies the source of the interrupt.
To ensure program interruption, INTR must remain active until an interrupt acknowledge bus cycle

is initiated. INTR is sampled at the beginning of each processor cycle and must be active HIGH at

least two processor cycles before the current instruction ends in order to interrupt before the next
instruction. INTR is level sensitive, active HIGH, and may be asynchronous to the system clock.

NMI 59 l NON-MASKABLE INTERRUPT REQUEST: interrupts the 80C286 with an internally supplied vector

value of two. No interrupt acknowledge cycles are performed. The interrupt enable bit in the 80C286

flag word does not affect this input. The NMI input is active HIGH, may be asynchronous to the sys-
tem clock, and is edge triggered after internal synchronization. For proper recognition, the input must

have been previously LOW for at least four system clock cycles and remain HIGH for at least four

system clock cycles.

PEREQ
PEACK

61
6

l
O

PROCESSOR EXTENSION OPERAND REQUEST AND ACKNOWLEDGE: extend the memory
management and protection capabilities of the 80C286 to processor extensions. The PEREQ input

requests the 80C286 to perform a data operand transfer for a processor extension. The PEACK out-

put signals the processor extension when the requested operand is being transferred. PEREQ is ac-
tive HIGH. PEACK is active LOW and is held at a high impedance logic one during bus hold

acknowledge. PEREQ may be asynchronous to the system clock.

BUSY

ERROR

54

53

l

I

PROCESSOR EXTENSION BUSY AND ERROR: indicates the operating condition of a processor

extension to the 80C286. An active BUSY input stops 80C286 program execution on WAIT and
some ESC instructions until BUSY becomes inactive (HIGH). The 80C286 may be interrupted while

waiting for BUSY to become inactive. An active ERROR input causes the 80C286 to perform a pro-

cessor extension interrupt when executing WAIT or some ESC instructions. These inputs are active
LOW and may be asynchronous to the system clock.

Pin Descriptions The following pin function descriptions are for the 80C286 microprocessor. (Continued)

SYMBOL

PIN

NUMBER TYPE DESCRIPTION

80C286

6

Functional Description

Introduction

The Intersil 80C286 microprocessor is a static CMOS ver-
sion of the NMOS 80286 microprocessor. The 80C286 is an
advanced, high-performance microprocessor with specially
optimized capabilities for multiple user and multi-tasking sys-
tems. Depending on the application, the 80C286's perfor-
mance is up to nineteen times faster than the standard
5MHz 8086's, while providing complete upward software
compatibility with Intersil 80C86 and 80C88 CPU family.

The 80C286 operates in two modes: 80C286 real address
mode and protected virtual address mode. Both modes exe-
cute a superset of the 80C86 and 80C88 instruction set.

In 80C286 real address mode programs use real addresses
with up to one megabyte of address space. Programs use vir-
tual addresses in protected virtual address mode, also called
protected mode. In protected mode, the 80C286 CPU automat-
ically maps 1 gigabyte of virtual addresses per task into a 16
megabyte real address space. This mode also provides mem-
ory protection to isolate the operating system and ensure pri-
vacy of each tasks' programs and data. Both modes provide
the same base instruction set, registers and addressing modes.

The Functional Description describes the following: Static oper-
ation, the base 80C286 architecture common to both modes,
80C286 real address mode, and finally, protected mode.

Static Operation

The 80C286 is comprised of completely static circuitry.
Internal registers, counters, and latches are static and
require no refresh as with dynamic circuit design. This elim-
inates the minimum operating frequency restriction typically
placed on microprocessors. The CMOS 80C286 can oper-
ate from DC to the specified upper frequency limit. The
clock to the processor may be stopped at any point (either
phase one or phase two of the processor clock cycle) and
held there indefinitely. There is, however, a significant
decrease in power requirement if the clock is stopped in
phase two of the processor clock cycle. Details on the clock
relationships will be discussed in the Bus Operation sec-
tion. The ability to stop the clock to the processor is espe-
cially useful for system debug or power critical applications.

RESET 29 l SYSTEM RESET: clears the internal logic of the 80C286 and is active HIGH. The 80C286 may be

reinitialize at any time with a LOW to HIGH transition on RESET which remains active for more than

16 system clock cycles. During RESET active, the output pins of the 80C286 enter the state shown
below.

Operation of the 80C286 begins after a HlGH to LOW transition on RESET. The HIGH to LOW
transition of RESET must be synchronous to the system clock. Approximately 50 system clock

cycles are required by the 80C286 for internal initializations before the first bus cycle to fetch code

from the power-on execution address is performed. A LOW to HIGH transition of RESET
synchronous to the system clock will end a processor cycle at the second HIGH to LOW transition

of the system clock. The LOW to HIGH transition of RESET may be asynchronous to the system

clock; however, in this case it cannot be predetermined which phase of the processor clock will occur

during the next system clock period. Synchronous LOW to HIGH transitions of RESET are required
only for systems where the processor clock must be phase synchronous to another clock.

VSS 9, 35, 60 l SYSTEM GROUND: are the ground pins (all must be connected to system ground).

VCC 30, 62 l SYSTEM POWER: +5V power supply pins. A 0.1μF capacitor between pins 60 and 62 is recommended.

NOTES:

1. READY is an open-collector signal and should be pulled inactive with an appropriate resistor (620Ω at 10MHz and 12.5MHz, 470Ω at

16MHz, 390Ω at 20MHz, 270Ω at 25MHz).

2. HLDA is only Low if HOLD is inactive (Low).

3. All unused inputs should be pulled to their inactive state with pull up/down resistors.

Pin Descriptions The following pin function descriptions are for the 80C286 microprocessor. (Continued)

SYMBOL

PIN

NUMBER TYPE DESCRIPTION

80C286 PIN STATE DURING RESET

PIN VALUE PIN NAMES

1 (HIGH) S0, S1, PEACK, A23 - A0, BHE, LOCK

0 (LOW) M/IO, COD/lNTA, HLDA (Note 2)

HIGH IMPEDANCE D15 - D0

80C286

7

The 80C286 can be single-stepped using only the CPU
clock. This state can be maintained as long as necessary.
Single step clock information allows simple interface circuitry
to provide critical information for system debug.

Static design also allows very low frequency operation
(down to DC). In a power critical situation, this can provide
low power operation since 80C286 power dissipation is
directly related to operating frequency. As the system fre-
quency is reduced, so is the operating power until, ulti-
mately, with the clock stopped in phase two of the processor
clock cycle, the 80C286 power requirement is the standby
current (5mA maximum).

80C286 Base Architecture

The 80C86, 80C88, and 80C286 CPU family all contain the
same basic set of registers, instructions, and addressing
modes. The 80C286 processor is upwardly compatible with
the 80C86 and 80C88 CPU's.

Register Set

The 80C286 base architecture has fifteen registers as
shown in Figure 1. These registers are grouped into the fol-
lowing four categories.

GENERAL REGISTERS: Eight 16-bit general purpose regis-
ters used to contain arithmetic and logical operands. Four of
these (AX, BX, CX and DX) can be used either in their
entirety as 16-bit words or split into pairs of separate 8-bit
registers.

SEGMENT REGISTERS: Four 16-bit special purpose regis-
ters select, at any given time, the segments of memory that
are immediately addressable for code, stack and data. (For
usage, refer to Memory Organization.)

BASE AND INDEX REGISTERS: Four of the general pur-
pose registers may also be used to determine offset
addresses of operands in memory. These registers may
contain base addresses or indexes to particular locations
within a segment. The addressing mode determines the spe-
cific registers used for operand address calculations.

STATUS AND CONTROL REGISTERS: Three 16-bit spe-
cial purpose registers record or control certain aspects of the
80C286 processor state. These include the Flags register
and Machine Status Word register shown in Figure 2, and
the Instruction Pointer, which contains the offset address of
the next sequential instruction to be executed.

Flags Word Description

The Flags word (Flags) records specific characteristics of
the result of logical and arithmetic instructions (bits 0, 2, 4, 6,
7 and 11) and controls the operation of the 80C286 within a
given operating mode (bits 8 and 9). Flags is a 16-bit regis-
ter. The function of the flag bits is given in Table 1.

AH AL

DL

CL

BL

DH

CH

BH

AX

DX

CX

BX

BP

SI

DI

SP

BYTE
ADDRESSABLE

(8-BIT
REGISTER

NAMES
SHOWN)

MULTIPLY/DIVIDE
I/O INSTRUCTIONS

LOOP/SHIFT/REPEAT

BASE REGISTERS

COUNT

INDEX REGISTERS

STACK POINTER

15 0

0707

SPECIAL
REGISTER

FUNCTIONS

16-BIT
REGISTER

NAME

GENERAL
REGISTERS

CS

DS

SS

ES

015

CODE SEGMENT

SEGMENT
REGISTERS

SELECTOR

DATA SEGMENT
SELECTOR

STACK SEGMENT
SELECTOR

EXTRA SEGMENT
SELECTOR

F

015

FLAGS

INSTRUCTION

MACHINE

POINTER

STATUS WORD

IP

MSW

STATUS AND CONTROL
REGISTERS

FIGURE 1. REGISTER SET

80C286

8

TABLE 1. FLAGS WORD BIT FUNCTIONS

BIT POSITION NAME FUNCTION

0 CF Carry Flag - Set on high-order bit carry or borrow; cleared otherwise.

2 PF Parity Flag - Set if low-order 8 bits of result contain an even number of 1 bits; cleared otherwise.

4 AF Set on carry from or borrow to the low order four bits of AL; cleared otherwise.

6 ZF Zero Flag - Set if result is zero; cleared otherwise.

7 SF Sign Flag - Set equal to high-order bit of result (0 if positive, 1 if negative).

11 OF Overflow Flag - Set if result is a too-large positive number or a too-small negative number (excluding
sign-bit) to fit in destination operand; cleared otherwise.

8 TF Single Step Flag - Once set, a single step interrupt occurs after the next instruction executes. TF is
cleared by the single step interrupt.

9 IF Interrupt-Enable Flag - When set, maskable interrupts will cause the CPU to transfer control to an inter-
rupt vector specified location.

10 DF Direction Flag - Causes string instructions to auto decrement the appropriate index registers when set.
Clearing DF causes auto increment.

CONTROL FLAGS:

TRAP FLAG

INTERRUPT ENABLE

DIRECTION FLAG

SPECIAL FIELDS:

I/O PRIVILEGE LEVEL

NESTED TASK FLAG

TS EM MP PE

CFPFAFZFSFTFIFDFOFIOPLNTFLAGS:

1415 13 12 11 10 9 8 7 6 5 4 3 2 1 0

012315

OVERFLOW

SIGN

ZERO

AUXILIARY CARRY

PARITY

CARRY

STATUS FLAGS:

MSW:

RESERVED TASK SWITCH

PROCESSOR EXTENSION EMULATED

MONITOR PROCESSOR EXTENSION

PROTECTION ENABLE

FIGURE 2. STATUS AND CONTROL REGISTER BIT FUNCTIONS

80C286

9

Instruction Set

The instruction set is divided into seven categories: data
transfer, arithmetic, string manipulation, shift/rotate/logical,
high level, processor control and control transfer instruc-
tions. These categories are summarized in Table 2.

An 80C286 instruction can reference zero, one, or two oper-
ands; where an operand may reside in a register, in the
instruction itself, or in memory. Zero-operand instructions
(e.g. NOP and HLT) are usually one byte long. One-operand
instructions (e.g. INC and DEC) are usually two bytes long
but some are encoded in only one byte. One-operand
instructions may reference a register or memory location.
Two-operand instructions permit the following six types of
instruction operations:

� Register to Register � Memory to Memory

� Memory to Register � Register to Memory

� Immediate to Register � Immediate to Memory

Two-operand instructions (e.g. MOV and ADD) are usually
three to six bytes long. Memory to memory operations are
provided by a special class of string instructions requiring
one to three bytes. For detailed instruction formats and
encodings refer to the instruction set summary at the end of
this document.

TABLE 2A. DATA TRANSFER INSTRUCTIONS

GENERAL PURPOSE

MOV Move byte or word

PUSH Push word onto stack

POP Pop word off stack

PUSHA Push all registers on stack

POPA Pop all registers from stack

XCHG Exchange byte or word

XLAT Translate byte

INPUT/OUTPUT

IN Input byte or word

OUT Output byte or word

ADDRESS OBJECT

LEA Load effective address

LDS Load pointer using DS

LES Load pointer using ES

FLAG TRANSFER

LAHF Load AH register from flags

SAHF Store AH register in flags

PUSHF Push flags onto stack

POPF Pop flags off stack

TABLE 2B. ARITHMETIC INSTRUCTIONS

ADDITION

ADD Add byte or word

ADC Add byte or word with carry

INC Increment byte or word by 1

AAA ASClI adjust for addition

DAA Decimal adjust for addition

SUBTRACTION

SUB Subtract byte or word

SBB Subtract byte or word with borrow

DEC Decrement byte or word by 1

NEG Negate byte or word

CMP Compare byte or word

AAS ASClI adjust for subtraction

DAS Decimal adjust for subtraction

MULTIPLICATION

MUL Multiply byte or word unsigned

lMUL Integer multiply byte or word

AAM ASClI adjust for multiply

DIVISION

DlV Divide byte or word unsigned

lDlV Integer divide byte or word

AAD ASClI adjust for division

CBW Convert byte to word

CWD Convert word to doubleword

TABLE 2C. STRING INSTRUCTIONS

MOVS Move byte or word string

INS Input bytes or word string

OUTS Output bytes or word string

CMPS Compare byte or word string

SCAS Scan byte or word string

LODS Load byte or word string

STOS Store byte or word string

REP Repeat

REPE/REPZ Repeat while equal/zero

REPNE/REPNZ Repeat while not equal/not zero

80C286

10

TABLE 2D. SHIFT/ROTATE LOGICAL INSTRUCTIONS

LOGICALS

NOT “Not” byte or word

AND “And” byte or word

OR “Inclusive or” byte or word

XOR “Exclusive or” byte or word

TEST “Test” byte or word

SHIFTS

SHL/SAL Shift logical/arithmetic left byte or word

SHR Shift logical right byte or word

SAR Shift arithmetic right byte or word

ROTATES

ROL Rotate left byte or word

ROR Rotate right byte or word

RCL Rotate through carry left byte or word

RCR Rotate through carry right byte or word

TABLE 2E. HIGH LEVEL INSTRUCTIONS

ENTER Format stack for procedure entry

LEAVE Restore stack for procedure exit

BOUND Detects values outside prescribed range

TABLE 2F. PROCESSOR CONTROL INSTRUCTIONS

FLAG OPERATIONS

STC Set carry flag

CLC Clear carry flag

CMC Complement carry flag

STD Set direction flag

CLD Clear direction flag

STl Set interrupt enable flag

CLl Clear interrupt enable flag

EXTERNAL SYNCHRONIZATION

HLT Halt until interrupt or reset

WAIT Wait for TEST pin active

ESC Escape to extension processor

LOCK Lock bus during next instruction

NO OPERATION

NOP No operation

EXECUTION ENVIRONMENT CONTROL

LMSW Load machine status word

SMSW Store machine status word

TABLE 2G. PROGRAM TRANSFER INSTRUCTIONS

CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS

JA/JNBE Jump if above/not below nor equal CALL Call procedure

JAE/JNB Jump if above or equal/not below RET Return from procedure

JB/JNAE Jump if below/not above nor equal JMP Jump

JBE/JNA Jump if below or equal/not above

JC Jump if carry ITERATION CONTROLS

JE/JZ Jump if equal/zero LOOP Loop

JG/JNLE Jump if greater/not less nor equal

JGE/JNL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero

JL/JNGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero

JLE/JNG Jump if less or equal/not greater JCXZ Jump if register CX = 0

JNC Jump if not carry

JNE/JNZ Jump if not equal/not zero INTERRUPTS

JNO Jump if not overflow INT Interrupt

JNP/JPO Jump if not parity/parity odd

JNS Jump if not sign INTO Interrupt if overflow

JO Jump if overflow lRET Interrupt return

JP/JPE Jump if parity/parity even

JS Jump if sign

80C286

11

Memory Organization

Memory is organized as sets of variable-length segments. Each
segment is a linear contiguous sequence of up to 64K (216) 8-
bit bytes. Memory is addressed using a two-component
address (a pointer) that consists of a 16-bit segment selector
and a 16-bit offset. The segment selector indicates the desired
segment in memory. The offset component indicates the
desired byte address within the segment. (See Figure 3).

All instructions that address operands in memory must spec-
ify the segment and the offset. For speed and compact
instruction encoding, segment selectors are usually stored in
the high speed segment registers. An instruction need spec-
ify only the desired segment register and offset in order to
address a memory operand.

Most instructions need not explicitly specify which segment
register is used. The correct segment register is automati-
cally chosen according to the rules of Table 3. These rules
follow the way programs are written (see Figure 4) as inde-
pendent modules that require areas for code and data, a
stack, and access to external data areas.

Special segment override instruction prefixes allow the
implicit segment register selection rules to be overridden for
special cases. The stack, data and extra segments may
coincide for simple programs. To access operands not resid-
ing in one of the four immediately available segments, a full
32-bit pointer or a new segment selector must be loaded.

Addressing Modes

The 80C286 provides a total of eight addressing modes for
instructions to specify operands. Two addressing modes are
provided for instructions that operate on register or immedi-
ate operands:

REGISTER OPERAND MODE: The operand is located in
one of the 8 or 16-bit general registers.

IMMEDIATE OPERAND MODE: The operand is included in
the instruction.

Six modes are provided to specify the location of an operand in
a memory segment. A memory operand address consists of
two 16-bit components: segment selector and offset. The seg-
ment selector is supplied by a segment register either implicitly
chosen by the addressing mode or explicitly chosen by a seg-
ment override prefix. The offset is calculated by summing any
combination of the following three address elements:

the displacement (an 8 or 16-bit immediate value contained
in the instruction)

the base (contents of either the BX or BP base registers)

the index (contents of either the SI or Dl index registers)

Any carry out from the 16-bit addition is ignored. Eight-bit
displacements are sign extended to 16-bit values.

TABLE 3. SEGMENT REGISTER SELECTION RULES

MEMORY

REFERENCE

NEEDED

SEGMENT

REGISTER

USED

IMPLICIT SEGMENT

SELECTION RULE

Instructions Code (CS) Automatic with instruction prefetch

Stack Stack (SS) All stack pushes and pops. Any

memory reference which uses BP

as a base register.

Local Data Data (DS) All data references except when
relative to stack or string destination

External

(Global) Data

Extra (ES) Alternate data segment and

destination of string operation

POINTER

OFFSETSEGMENT

31 16 15 0

OPERAND SELECTED
SEGMENT

MEMORY

SELECTED

FIGURE 3. TWO COMPONENT ADDRESS CODE

DATA

CODE

DATA

MEMORY

CPU

CODE

DATA

STACK

EXTRA

SEGMENT
REGISTERS

MODULE A

MODULE B

PROCESS
STACK

PROCESS
DATA

BLOCK 1

PROCESS
DATA

BLOCK 2

FIGURE 4. SEGMENTED MEMORY HELPS STRUCTURE

SOFTWARE

80C286

12

Combinations of these three address elements define the six
memory addressing modes, described below.

DIRECT MODE: The operand's offset is contained in the
instruction as an 8 or 16-bit displacement element.

REGISTER INDIRECT MODE: The operand's offset is in
one of the registers SI, Dl, BX or BP.

BASED MODE: The operand's offset is the sum of an 8 or
16-bit displacement and the contents of a base register (BX
or BP).

INDEXED MODE: The operand's offset is the sum of an 8 or 16-
bit displacement and the contents of an index register (SI or Dl).

BASED INDEXED MODE: The operand's offset is the sum
of the contents of a base register and an index register.

BASED INDEXED MODE WITH DISPLACEMENT: The
operand's offset is the sum of a base register's contents, an
index register's contents, and an 8 or 16-bit displacement.

Data Types

The 80C286 directly supports the following data types:

Integer: A signed binary numeric value contained in an 8-
bit byte or a 16-bit word. All operations assume a
2's complement representation. Signed 32 and
64-bit integers are supported using the 80287
Numeric Data Processor.

Ordinal: An unsigned binary numeric value contained in an
8-bit byte or 16-bit word.

Pointer: A 32-bit quantity, composed of a segment selec-
tor component and an offset component. Each
component is a 16-bit word.

String: A contiguous sequence of bytes or words. A string
may contain from 1 byte to 64K bytes.

ASClI: A byte representation of alphanumeric and control
characters using the ASClI standard of character
representation.

BCD: A byte (unpacked) representation of the decimal
digits 0-9.

Packed A byte (packed) representation of two decimal
BCD: digits 0-9 storing one digit in each nibble of the

byte.

Floating A signed 32, 64 or 80-bit real number representa-
Point: tion. (Floating point operands are supported using

the 80287 Numeric Processor extension).

Figure 5 graphically represents the data types supported by
the 80C286.

NOTE: Supported by 80C286/80C287 Numeric Data Processor
Configuration

SIGNED
BYTE

UNSIGNED
BYTE

SIGNED
WORD

SIGNED
DOUBLE

WORD
(NOTE)

SIGN BIT

SIGN BIT

SIGNED
QUAD
WORD
(NOTE)

SIGN BIT

UNSIGNED
WORD

BINARY
CODED

DECIMAL
(BCD)

ASCII

STRING

PACKED
BCD

POINTER

FLOATING
POINT (NOTE)

SIGN BIT

MAGNITUDE

7 0

MAGNITUDE

7 0

MSB

15

MAGNITUDE

MSB

14 +1 08 7 0

SIGN BIT

31 +3 +2 16 +1 015 0

MAGNITUDE

MAGNITUDE

MSB

MSB

63
+6+7 +5 +4 +3 +2 +1 0

48 47 32 31 16 15 0

MAGNITUDE

MSB

15
+1

0
0

BCD

7
+N

0

DIGIT N
BCD

7
+1

0

DIGIT 1
BCD

7
0

0

DIGIT 0

• • •

• • •

• • •

• • •

ASCII

7
+N

0

CHARACTERN

ASCII

7
+1

0

CHARACTER1

ASCII

7
0

0

CHARACTER0

7
+N

0

MOST
SIGNIFICANT DIGIT

7
+1

0 7
0

0

LEAST
SIGNIFICANT DIGIT

BYTE/WORD N BYTE/WORD 1 BYTE/WORD 0

7/15
+N

0 7/15
+1

0 7/15
0

0

SELECTOR OFFSET

31
+3

16
+1 0

0

EXPONENT MAGNITUDE

79 +9 +8 +7 +6 +5 +4 +3 +2 +1 0 0

+1
15

FIGURE 5. 80C286 SUPPORTED DATA TYPES

80C286

13

I/O Space

The I/O space consists of 64K 8-bit ports, 32K 16-bit ports, or
a combination of the two. I/O instructions address the I/O
space with either an 8-bit port address, specified in the
instruction, or a 16-bit port address in the DX register. 8-bit
port addresses are zero extended such that A15-A8 are LOW.
I/O port addresses 00F8(H) through 00FF(H) are reserved.

Interrupts

An interrupt transfers execution to a new program location.
The old program address (CS:lP) and machine state (Flags)
are saved on the stack to allow resumption of the interrupted
program. Interrupts fall into three classes: hardware initiated,
INT instructions, and instruction exceptions. Hardware initi-
ated interrupts occur in response to an external input and
are classified as non-maskable or maskable. Programs may
cause an interrupt with an INT instruction. Instruction excep-
tions occur when an unusual condition which prevents fur-
ther instruction processing is detected while attempting to
execute an instruction. The return address from an excep-
tion will always point to the instruction causing the exception
and include any leading instruction prefixes.

A table containing up to 256 pointers defines the proper
interrupt service routine for each interrupt. Interrupts 0-31,
some of which are used for instruction exceptions, are
reserved. For each interrupt, an 8-bit vector must be sup-
plied to the 80C286 which identifies the appropriate table
entry. Exceptions supply the interrupt vector internally. INT
instructions contain or imply the vector and allow access to
all 256 interrupts. Maskable hardware initiated interrupts
supply the 8-bit vector to the CPU during an interrupt
acknowledge bus sequence. Nonmaskable hardware inter-
rupts use a predefined internally supplied vector.

Maskable Interrupt (INTR)

The 80C286 provides a maskable hardware interrupt request
pin, INTR. Software enables this input by setting the interrupt
flag bit (IF) in the flag word. All 224 user-defined interrupt
sources can share this input, yet they can retain separate
interrupt handlers. An 8-bit vector read by the CPU during the
interrupt acknowledge sequence (discussed in System Inter-
face section) identifies the source of the interrupt.

The processor automatically disables further maskable inter-
rupts internally by resetting the IF as part of the response to
an interrupt or exception. The saved flag word will reflect the
enable status of the processor prior to the interrupt. Until the
flag word is restored to the flag register, the interrupt flag will
be zero unless specifically set. The interrupt return instruc-
tion includes restoring the flag word, thereby restoring the
original status of IF.

Non-Maskable Interrupt Request (NMI)

A non-maskable interrupt input (NMI) is also provided. NMI
has higher priority than INTR. A typical use of NMI would be
to activate a power failure routine. The activation of this input
causes an interrupt with an internally supplied vector value
of 2. No external interrupt acknowledge sequence is per-
formed.

While executing the NMI servicing procedure, the 80C286
will service neither further NMI requests, INTR requests, nor
the processor extension segment overrun interrupt until an
interrupt return (lRET) instruction is executed or the CPU is
reset. If NMI occurs while currently servicing an NMI, its
presence will be saved for servicing after executing the first
IRET instruction. IF is cleared at the beginning of an NMI
interrupt to inhibit INTR interrupts.

TABLE 4. INTERRUPT VECTOR ASSIGNMENTS

FUNCTION

INTERRUPT

NUMBER

 RELATED

INSTRUCTIONS

DOES RETURN ADDRESS

POINT TO INSTRUCTION

CAUSING EXCEPTION?

Divide Error Exception 0 DlV, lDlV Yes

Single Step Interrupt 1 All

NMI Interrupt 2 INT 2 or NMI Pin

Breakpoint Interrupt 3 INT 3

INTO Detected Overflow Exception 4 INTO No

BOUND Range Exceeded Exception s BOUND Yes

Invalid Opcode Exception 6 Any Undefined Opcode Yes

Processor Extension Not Available Exception 7 ESC or WAIT Yes

Reserved - Do Not Use 8 - 15

Processor Extension Error Interrupt 16 ESC or WAIT

Reserved 17 - 31

User Defined 32 - 255

80C286

14

Single Step Interrupt

The 80C286 has an internal interrupt that allows programs to
execute one instruction at a time. It is called the single step
interrupt and is controlled by the single step flag bit (TF) in the
flag word. Once this bit is set, an internal single step interrupt
will occur after the next instruction has been executed. The
interrupt clears the TF bit and uses an internally supplied vec-
tor of 1. The lRET instruction is used to set the TF bit and
transfer control to the next instruction to be single stepped.

Interrupt Priorities

When simultaneous interrupt requests occur, they are pro-
cessed in a fixed order as shown in Table 5. Interrupt pro-
cessing involves saving the flags, return address, and
setting CS:lP to point at the first instruction of the interrupt
handler. If another enabled interrupt should occur, it is pro-
cessed before the next instruction of the current interrupt
handler is executed. The last interrupt processed is therefore
the first one serviced.

Initialization and Processor Reset

Processor initialization or start up is accomplished by driving
the RESET input pin HIGH. RESET forces the 80C286 to
terminate all execution and local bus activity. No instruction
or bus activity will occur as long as RESET is active. After
RESET becomes inactive, and an internal processing inter-
val elapses, the 80C286 begins execution in real address
mode with the instruction at physical location FFFFF0(H).
RESET also sets some registers to predefined values as
shown in Table 6.

HOLD must not be active during the time from the leading
edge of the initial RESET to 34 CLKs after the trailing edge
of the initial RESET of an 80C286 system.

Machine Status Word Description

The machine status word (MSW) records when a task switch
takes place and controls the operating mode of the 80C286.
It is a 16-bit register of which the lower four bits are used.
One bit places the CPU into protected mode, while the other
three bits, as shown in Table 7, control the processor exten-
sion interface. After RESET, this register contains FFF0(H)
which places the 80C286 in 80C286 real address mode.

The LMSW and SMSW instructions can load and store the
MSW in real address mode. The recommended use of TS,
EM, and MP is shown in Table 8.

Halt

The HLT instruction stops program execution and prevents
the CPU from using the local bus until restarted. Either NMI,
INTR with IF = 1, or RESET will force the 80C286 out of halt.
If interrupted, the saved CS:IP will point to the next instruc-
tion after the HLT.

TABLE 5. INTERRUPT PROCESSING ORDER

ORDER INTERRUPT

1 Instruction Exception

2 Single Step

3 NMI

4 Processor Extension Segment Overrun

5 INTR

6 INT Instruction

TABLE 6. 80C286 INITIAL REGISTER STATE AFTER RESET

Flag Word 0002(H)

Machine Status Word FFF0(H)

Instruction Pointer FFF0(H)

Code Segment F000(H)

Data Segment 0000(H)

Extra Segment 0000(H)

Stack Segment 0000(H)

TABLE 7. MSW BIT FUNCTIONS

BIT

POSITION NAME FUNCTION

0 PE Protected mode enable places the

80C286 into protected mode and cannot

be cleared except by RESET.

1 MP Monitor processor extension allows WAIT

instructions to cause a processor exten-

sion not present exception (number 7).

2 EM Emulate processor extension causes a

processor extension not present excep-

tion (number 7) on ESC instructions to al-
low emulating a processor extension.

3 TS Task switched indicates the next instruc-

tion using a processor extension will

cause exception 7, allowing software to
test whether the current processor exten-

sion context belongs to the current task.

80C286

15

80C286 Real Address Mode

The 80C286 executes a fully upward-compatible superset of
the 80C86 instruction set in real address mode. In real
address mode the 80C286 is object code compatible with
80C86 and 80C88 software. The real address mode archi-
tecture (registers and addressing modes) is exactly as
described in the 80C286 Base Architecture section of this
Functional Description.

Memory Size

Physical memory is a contiguous array of up to 1,048,576
bytes (one megabyte) addressed by pins A0 through A19
and BHE. A20 through A23 should be ignored.

Memory Addressing

In real address mode physical memory is a contiguous array
of up to 1,048,576 bytes (one megabyte) addressed by pin
A0 through A19 and BHE. Address bits A20-A23 may not
always be zero in real mode. A20-A23 should not be used by
the system while the 80C286 is operating in Real Mode.

The selector portion of a pointer is interpreted as the upper
16-bits of a 20-bit segment address. The lower four bits of
the 20-bit segment address are always zero. Segment
addresses, therefore, begin on multiples of 16 bytes. See
Figure 6 for a graphic representation of address information.

All segments in real address mode are 64K bytes in size and
may be read, written, or executed. An exception or interrupt
can occur if data operands or instructions attempt to wrap
around the end of a segment (e.g. a word with its low order
byte at offset FFFF(H) and its high order byte at offset
0000(H)). If, in real address mode, the information contained

in a segment does not use the full 64K bytes, the unused
end of the segment may be overlaid by another segment to
reduce physical memory requirements.

TABLE 8. RECOMMENDED MSW ENCODINGS FOR PROCESSOR EXTENSION CONTROL

TS MP EM RECOMMENDED USE

INSTRUCTION

CAUSING

EXCEPTION 7

0 0 0 Initial encoding after RESET. 80C286 operation is identical to 80C86/88. None

0 0 1 No processor extension is available. Software will emulate its function. ESC

1 0 1 No processor extension is available. Software will emulate its function. The

current processor extension context may belong to another task.

ESC

0 1 0 A processor extension exists. None

1 1 0 A processor extension exists. The current processor extension context may

belong to another task. The exception 7 on WAIT allows software to test for

an error pending from a previous processor extension operation.

ESC or WAIT

TABLE 9. REAL ADDRESS MODE ADDRESSING INTERRUPTS

FUNCTION

INTERRUPT

NUMBER RELATED INSTRUCTIONS

RETURN ADDRESS

BEFORE INSTRUCTION

Interrupt table limit too small exception 8 INT vector is not within table limit Yes

Processor extension segment overrun

interrupt

9 ESC with memory operand extending beyond offset

FFFF(H)

No

Segment overrun exception 13 Word memory reference with offset = FFFF(H) or an
attempt to execute past the end of a segment

Yes

0000 OFFSET
OFFSET
ADDRESS

0000
SEGMENT
SELECTOR

ADDER

19 0

015

15 0

20-BIT PHYSICAL
MEMORY ADDRESS

SEGMENT
ADDRESS

FIGURE 6. 80C286 REAL ADDRESS MODE ADDRESS

CALCULATION

80C286

16

Reserved Memory Locations

The 80C286 reserves two fixed areas of memory in real
address mode (see Figure 7); system initialization area and
interrupt table area. Locations from addresses FFFF0(H)
through FFFFF(H) are reserved for system initialization. Initial
execution begins at location FFFF0(H). Locations 00000(H)
through 003FF(H) are reserved for interrupt vectors.

Interrupts

Table 9 shows the interrupt vectors reserved for exceptions
and interrupts which indicate an addressing error. The
exceptions leave the CPU in the state existing before
attempting to execute the failing instruction (except for
PUSH, POP, PUSHA, or POPA). Refer to the next section
on protected mode initialization for a discussion on excep-
tion 8.

Protected Mode Initialization

To prepare the 80C286 for protected mode, the LIDT
instruction is used to load the 24-bit interrupt table base and
16-bit limit for the protected mode interrupt table. This
instruction can also set a base and limit for the interrupt vec-
tor table in real address mode. After reset, the interrupt table
base is initialized to 000000(H) and its size set to 03FF(H).
These values are compatible with 80C86 and 80C88 soft-
ware. LIDT should only be executed in preparation for pro-
tected mode.

Shutdown

Shutdown occurs when a severe error is detected that prevents
further instruction processing by the CPU. Shutdown and halt
are externally signalled via a halt bus operation. They can be
distinguished by A1 HIGH for halt and A1 LOW for shutdown. In
real address mode, shutdown can occur under two conditions:

� Exceptions 8 or 13 happen and the IDT limit does not
include the interrupt vector.

� A CALL INT or PUSH instruction attempts to wrap around
the stack segment when SP is not even.

An NMI input can bring the CPU out of shutdown if the IDT
limit is at least 000F(H) and SP is greater than 0005(H), oth-
erwise shutdown can only be exited via the RESET input.

3H

RESET BOOTSTRAP
PROGRAM JUMP

INTERRUPT POINTER
FOR VECTOR 255

INTERRUPT POINTER
FOR VECTOR 1

INTERRUPT POINTER
FOR VECTOR 0

FFFFFH

FFFF0H

3FFH

3FCH

7H

4H

0H

•
•
•

•
•
•

INITIAL CS:IP VALUE IS F000:FFF0

FIGURE 7. 80C286 REAL ADDRESS MODE INITIALLY

RESERVED MEMORY LOCATIONS

80C286

17

Protected Virtual Address Mode

The 80C286 executes a fully upward-compatible superset of
the 80C86 instruction set in protected virtual address mode
(protected mode). Protected mode also provides memory
management and protection mechanisms and associated
instructions.

The 80C286 enters protected virtual address mode from real
address mode by setting the PE (Protection Enable) bit of
the machine status word with the Load Machine Status Word
(LMSW) instruction. Protected mode offers extended physi-
cal and virtual memory address space, memory protection
mechanisms, and new operations to support operating sys-
tems and virtual memory.

All registers, instructions, and addressing modes described
in the 80C286 Base Architecture section of this Functional
Description remain the same. Programs for the 80C86,
80C88, and real address mode 80C286 can be run in pro-
tected mode; however, embedded constants for segment
selectors are different.

Memory Size

The protected mode 80C286 provides a 1 gigabyte virtual
address space per task mapped into a 16 megabyte physical
address space defined by the address pins A23-A0 and
BHE. The virtual address space may be larger than the
physical address space since any use of an address that
does not map to a physical memory location will cause a
restartable exception.

Memory Addressing

As in real address mode, protected mode uses 32-bit point-
ers, consisting of 16-bit selector and offset components. The
selector, however, specifies an index into a memory resident
table rather than the upper 16-bits of a real memory address.
The 24-bit base address of the desired segment is obtained

from the tables in memory. The 16-bit offset is added to the
segment base address to form the physical address as
shown in Figure 8. The tables are automatically referenced
by the CPU whenever a segment register is loaded with a
selector. All 80C286 instructions which load a segment reg-
ister will reference the memory based tables without addi-
tional software. The memory based tables contain 8 byte
values called descriptors.

Descriptors

Descriptors define the use of memory. Special types of
descriptors also define new functions for transfer of control
and task switching. The 80C286 has segment descriptors for
code, stack and data segments, and system control descrip-
tors for special system data segments and control transfer
operations. Descriptor accesses are performed as locked
bus operations to assure descriptor integrity in multi-proces-
sor systems.

Code and Data Segment Descriptors (S = 1)

Besides segment base addresses, code and data descriptors
contain other segment attributes including segment size (1 to
64K bytes), access rights (read only, read/write, execute only,
and execute/read), and presence in memory (for virtual mem-
ory systems) (See Table 10). Any segment usage violating a
segment attribute indicated by the segment descriptor will pre-
vent the memory cycle and cause an exception or interrupt.

Code and data (including stack data) are stored in two types
of segments: code segments and data segments. Both types
are identified and defined by segment descriptors (S = 1).
Code segments are identified by the executable (E) bit set to
1 in the descriptor access rights byte. The access rights byte
of both code and data segment descriptor types have three
fields in common: present (P) bit, Descriptor Privilege Level
(DPL), and accessed (A) bit. If P = 0, any attempted use of
this segment will cause a not-present exception. DPL speci-
fies the privilege level of the segment descriptor. DPL con-
trols when the descriptor may be used by a task (refer to
privilege discussion below). The A bit shows whether the
segment has been previously accessed for usage profiling, a
necessity for virtual memory systems. The CPU will always
set this bit when accessing the descriptor.

PHYSICAL
ADDRESS

ADDER

MEMORY
OPERAND

SEGMENT
DESCRIPTOR

SEGMENT BASE
ADDRESS

POINTER SELECTOR OFFSET

PHYSICAL MEMORY

SEGMENT

S
E

G
M

E
N

T

D
E

S
C

R
IP

T
IO

N

T
A

B
L

E

023

31 16 15 0

CPU

FIGURE 8. PROTECTED MODE MEMORY ADDRESSING

RESERVED †

ACCESS

RIGHTS BYTE

P DPL S TYPE A BASE 23 - 16

BASE 15 - 0

LIMIT 15 - 0

15

7 0 7

78 0

0

+6

+4

+2

0

+7

+5

+3

+1

† MUST BE SET TO 0 FOR COMPATIBILITY WITH FUTURE UPGRADES

FIGURE 9. CODE OR DATA SEGMENT DESCRIPTOR

80C286

18

TABLE 10. CODE AND DATA SEGMENT DESCRIPTOR FORMATS - ACCESS RIGHTS BYTE DEFINITION

BIT

POSITION NAME FUNCTION

7 Present (P) P = 1 Segment is mapped into physical memory.

P = 0 No mapping to physical memory exits, base and limit are not used.

6 - 5 Descriptor Privilege

Level (DPL)

Segment privilege attribute used in privilege tests.

4 Segment Descriptor (S) S = 1 Code or Data (includes stacks) segment descriptor

S = 0 System Segment Descriptor or Gate Descriptor

3 Executable (E) E = 0 Data segment descriptor type is:

If Data Segment

(S = 1, E = 0)

2 Expansion Direction
(ED)

ED = 0 Expand up segment, offsets must be ≤ limit.

ED = 1 Expand down segment, offsets must be > limit.

1 Writable (W) W = 0 Data segment may not be written into.

W = 1 Data segment may be written into.

Type
Field

Definition

3 Executable (E) E = 1 Code Segment Descriptor type is:

If Code Segment

(S = 1, E = 1)

2 Conforming (C) C = 1 Code segment may only be executed when CPL ≥
DPL and CPL remains unchanged.

1 Readable (R) R = 0 Code segment may not be read.

R = 1 Code segment may be read.

0 Accessed (A) A = 0 Segment has not been accessed.

A = 1 Segment selector has been loaded into segment register or used by selector
test instructions.

80C286

19

Data segments (S = 1, E = 0) may be either read-only or read-
write as controlled by the W bit of the access rights byte.
Read-only (W = 0) data segments may not be written into.
Data segments may grow in two directions, as determined by
the Expansion Direction (ED) bit: upwards (ED = 0) for data
segments, and downwards (ED = 1) for a segment containing
a stack. The limit field for a data segment descriptor is inter-
preted differently depending on the ED bit (see Table 10).

A code segment (S = 1, E = 1) may be execute-only or exe-
cute/read as determined by the Readable (R) bit. Code seg-
ments may never be written into and execute-only code
segments (R = 0) may not be read. A code segment may
also have an attribute called conforming (C). A conforming
code segment may be shared by programs that execute at
different privilege levels. The DPL of a conforming code seg-
ment defines the range of privilege levels at which the seg-
ment may be executed (refer to privilege discussion below).
The limit field identifies the last byte of a code segment.

System Segment Descriptors (S = 0, Type = 1-3)

In addition to code and data segment descriptors, the pro-
tected mode 80C286 defines System Segment Descriptors.
These descriptors define special system data segments
which contain a table of descriptors (Local Descriptor Table
Descriptor) or segments which contain the execution state of
a task (Task State Segment Descriptor).

Table 11 gives the formats for the special system data seg-
ment descriptors. The descriptors contain a 24-bit base
address of the segment and a 16-bit limit. The access byte
defines the type of descriptor, its state and privilege level.
The descriptor contents are valid and the segment is in
physical memory if P = 1. If P = 0, the segment is not valid.
The DPL field is only used in Task State Segment descrip-
tors and indicates the privilege level at which the descriptor
may be used (see Privilege). Since the Local Descriptor
Table descriptor may only be used by a special privileged
instruction, the DPL field is not used. Bit 4 of the access byte
is 0 to indicate that it is a system control descriptor. The type
field specifies the descriptor type as indicated in Table 11.

Gate Descriptors (S = 0, Type = 4-7)

Gates are used to control access to entry points within the
target code segment. The gate descriptors are call gates,
task gates, interrupt gates and trap gates. Gates provide a
level of indirection between the source and destination of the
control transfer. This indirection allows the CPU to automati-
cally perform protection checks and control entry point of the
destination. Call gates are used to change privilege levels
(see Privilege), task gates are used to perform a task switch,
and interrupt and trap gates are used to specify interrupt ser-
vice routines. The interrupt gate disables interrupts (resets
IF) while the trap gate does not.

Table 12 shows the format of the gate descriptors. The
descriptor contains a destination pointer that points to the
descriptor of the target segment and the entry point offset.
The destination selector in an interrupt gate, trap gate, and
call gate must refer to a code segment descriptor. These gate
descriptors contain the entry point to prevent a program from
constructing and using an illegal entry point. Task gates may
only refer to a task state segment. Since task gates invoke a
task switch, the destination offset is not used in the task gate.

Exception 13 is generated when the gate is used if a destina-
tion selector does not refer to the correct descriptor type. The
word count field is used in the call gate descriptor to indicate
the number of parameters (0-31 words) to be automatically
copied from the caller’s stack to the stack of the called routine
when a control transfer changes privilege levels. The word
count field is not used by any other gate descriptor.

The access byte format is the same for all descriptors. P = 1
indicates that the gate contents are valid. P = 0 indicates the
contents are not valid and causes exception 11 if refer-
enced. DPL is the descriptor privilege level and specifies
when this descriptor may be used by a task (refer to privilege
discussion below). Bit 4 must equal 0 to indicate a system
control descriptor. The type field specifies the descriptor type
as indicated in Table 12.

RESERVED †

P DPL 0 TYPE BASE 23 - 16

BASE 15 - 0

LIMIT 15 - 0

15

7 0 7

78 0

0

+6

+4

+2

0

+7

+5

+3

+1

† MUST BE SET TO 0 FOR COMPATIBILITY WITH FUTURE UPGRADES

FIGURE 10. SYSTEM SEGMENT DESCRIPTOR

TABLE 11. SYSTEM SEGMENT DESCRIPTOR FORMAT FIELDS

NAME VALUE DESCRIPTION

TYPE 1 Available Task State Segment (TSS)

2 Local Descriptor Table

3 Busy Task State Segment (TSS)

P 0 Descriptor contents are not valid

1 Descriptor contents are valid

DPL 0-3 Descriptor Privilege Level

BASE 24-Bit

Number

Base Address of special system data

segment in real memory

LIMIT 16-Bit
Number

Offset of last byte in segment

80C286

20

Segment Descriptor Cache Registers

A segment descriptor cache register is assigned to each of
the four segment registers (CS, SS, DS, ES). Segment
descriptors are automatically loaded (cached) into a seg-
ment descriptor cache register (Figure 12) whenever the
associated segment register is loaded with a selector.

Only segment descriptors may be loaded into segment
descriptor cache registers. Once loaded, all references to
that segment of memory use the cached descriptor informa-
tion instead of reaccessing the descriptor. The descriptor
cache registers are not visible to programs. No instructions
exist to store their contents. They only change when a seg-
ment register is loaded.

Selector Fields

A protected mode selector has three fields: descriptor entry
index, local or global descriptor table indicator (TI), and selec-
tor privilege (RPL) as shown in Figure 13. These fields select
one of two memory based tables of descriptors, select the
appropriate table entry and allow high-speed testing of the
selector's privilege attribute (refer to privilege discussion
below).

Local and Global Descriptor Tables

Two tables of descriptors, called descriptor tables, contain all
descriptors accessible by a task at any given time. A descriptor
table is a linear array of up to 8192 descriptors. The upper 13
bits of the selector value are an index into a descriptor table.
Each table has a 24-bit base register to locate the descriptor
table in physical memory and a 16-bit limit register that confine
descriptor access to the defined limits of the table as shown in
Figure 14. A restartable exception (13) will occur if an attempt is
made to reference a descriptor outside the table limits.

One table, called the Global Descriptor table (GDT), con-
tains descriptors available to all tasks. The other table,
called the Local Descriptor Table (LDT), contains descriptors
that can be private to a task. Each task may have its own pri-
vate LDT. The GDT may contain all descriptor types except
interrupt and trap descriptors. The LDT may contain only
segment, task gate, and call gate descriptors. A segment
cannot be accessed by a task if its segment descriptor does
not exist in either descriptor table at the time of access.

TABLE 12. GATE DESCRIPTOR FORMAT FIELD

NAME VALUE DESCRIPTION

TYPE 4 Call Gate

5 Task Gate

6 Interrupt Gate

7 Trap Gate

 P 0 Descriptor Contents are not valid

1 Descriptor Contents are valid

 DPL 0 - 3 Descriptor Privilege Level

WORD
COUNT

0 - 31 Number of words to copy from callers
stack to called procedures stack. Only

used with call gate.

DESTINATION

SELECTOR

 16-Bit

Selector

Selector to the target code segment

(call, interrupt or selector Trap Gate).

Selector to the target task state seg-

ment (Task Gate).

DESTINATION

OFFSET

16-Bit

Offset

Entry point within the target code seg-

ment

RESERVED †

P DPL 0 TYPE

DESTINATION SELECTOR 15 - 0

DESTINATION OFFSET 15 - 0

15

7 0 7

78 0

0

+6

+4

+2

0

+7

+5

+3

+1

† MUST BE SET TO 0 FOR COMPATIBILITY WITH FUTURE UPGRADES

X X X

X X

WORD COUNT
4 - 0

FIGURE 11. GATE DESCRIPTOR

BITS NAME FUNCTION

1 - 0 Requested Privilege Level

(RPL)

Indicates Selector Privilege

Level Desired

2 Table Indicator (TI) TI = 0 Use Global Descrip-

tor Table (GDT)

TI = 1 Use Local Descriptor
Table (LDT)

15 - 3 Index Select Descriptor Entry In

Table

FIGURE 13. SELECTOR FIELDS

PROGRAM VISIBLE

SEGMENT SELECTORS

CS

DS

SS

ES

15 0

SEGMENT REGISTERS

(LOADED BY PROGRAM)

SEGMENT SIZE

SEGMENT PHYSICAL

BASE ADDRESS

ACCESS

RIGHTS

PROGRAM INVISIBLE

47 40 39 16 15 0

SEGMENT DESCRIPTOR CACHE REGISTERS

(AUTOMATICALLY LOADED BY CPU)

FIGURE 12. DESCRIPTOR CACHE REGISTERS

INDEX RPLTI

15 8 7 2 1 0

SELECTOR

80C286

21

The LGDT and LLDT instructions load the base and limit of
the global and local descriptor tables. LGDT and LLDT are
privileged, i.e. they may only be executed by trusted pro-
grams operating at level 0. The LGDT instruction loads a six
byte field containing the 16-bit table limit and 24-bit physical
base address of the Global Descriptor Table as shown in
Figure 15. The LDT instruction loads a selector which refers
to a Local Descriptor Table descriptor containing the base
address and limit for an LDT, as shown in Table 11.

Interrupt Descriptor Table

The protected mode 80C286 has a third descriptor table,
called the Interrupt Descriptor Table (IDT) (see Figure 16),
used to define up to 256 interrupts. It may contain only task
gates, interrupt gates and trap gates. The IDT (Interrupt
Descriptor Table) has a 24-bit physical base and 16-bit limit
register in the CPU. The privileged LlDT instruction loads
these registers with a six byte value of identical form to that
of the LGDT instruction (see Figure 16 and Protected Mode
lnitialization).

References to IDT entries are made via INT instructions, exter-
nal interrupt vectors, or exceptions. The IDT must be at least
256 bytes in size to allocate space for all reserved interrupts.

Privilege

The 80C286 has a four-level hierarchical privilege system
which controls the use of privileged instructions and access
to descriptors (and their associated segments) within a task.
Four-level privilege, as shown in Figure 17, is an extension
of the users/supervisor mode commonly found in minicom-
puters. The privilege levels are numbered 0 through 3. Level
0 is the most privileged level. Privilege levels provide protec-
tion within a task. (Tasks are isolated by providing private
LDT’s for each task.) Operating system routines, interrupt
handlers, and other system software can be included and
protected within the virtual address space of each task using
the four levels of privilege. Each task in the system has a
separate stack for each of its privilege levels.

Tasks, descriptors, and selectors have a privilege level
attribute that determines whether the descriptor may be
used. Task privilege affects the use of instructions and
descriptors. Descriptor and selector privilege only affect
access to the descriptor.

CPU

GDT LIMIT

GDT BASE

24-BIT PHYS AD

LDT

DESCR

SELECTOR

LDT LIMIT

LDT BASE
24-BIT PHYS AD

PROGRAM INVISIBLE
(AUTOMATICALLY

LOADED
FROM LDT DESCR

WITHIN GDT)

GDT

CURRENT
LDT

IN
C

R
E

A
S

IN
G

M
E

M
O

R
Y

A
D

D
R

E
S

S

MEMORY

LDT1

LDTn

15 0

0

015

23

23

15

FIGURE 14. LOCAL AND GLOBAL DESCRIPTOR TABLE

DEFINITION

RESERVED †

BASE 15 - 0

LIMIT 15 - 0

15

7 0 7

78 0

0

+4

+2

0

+5

+3

+1

† MUST BE SET TO 0 FOR COMPATIBILITY WITH FUTURE UPGRADES

BASE 23 - 16

FIGURE 15. GLOBAL DESCRIPTOR TABLE AND INTERRUPT

DESCRlPTOR TABLE DATA TYPE

IDT LIMIT

IDT BASE

INTERRUPT
DESCRIPTOR
TABLE

MEMORY

0

15

23

0

GATE FOR
INTERRUPT #n

CPU

GATE FOR
INTERRUPT #1

GATE FOR
INTERRUPT #n-1

GATE FOR
INTERRUPT #0

IN
C

R
E

A
S

IN
G

M
E

M
O

R
Y

A
D

D
R

E
S

S

(IDT)

FIGURE 16. INTERRUPT DESCRIPTOR TABLE DEFINITION

APPLICATIONS

OS EXTENSIONS

SYSTEM
SERVICES

KERNAL
PL = 0
MOST

PRIVILEGED

CPU
ENFORCED
SOFTWARE
INTERFACES

HIGH SPEED
OPERATING
SYSTEM
INTERFACE

PL = 1

PL = 2

PL = 3

NOTE: PL becomes numerically lower as privilege level increases.

FIGURE 17. HIERARCHICAL PRIVILEGE LEVELS

80C286

22

Task Privilege

A task always executes at one of the four privilege levels.
The task privilege level at any specific instant is called the
Current Privilege Level (CPL) and is defined by the lower
two bits of the CS register. CPL cannot change during exe-
cution in a single code segment. A task's CPL may only be
changed by control transfers through gate descriptors to a
new code segment (See Control Transfer). Tasks begin exe-
cuting at the CPL value specified by the code segment
selector within TSS when the task is initiated via a task
switch operation (See Figure 18). A task executing at Level 0
can access all data segments defined in the GDT and the
task's LDT and is considered the most trusted level. A task
executing a Level 3 has the most restricted access to data
and is considered the least trusted level.

Descriptor Privilege

Descriptor privilege is specified by the Descriptor Privilege
Level (DPL) field of the descriptor access byte. DPL specifies
the least trusted task privilege level (CPL) at which a task may
access the descriptor. Descriptors with DPL = 0 are the most
protected. Only tasks executing at privilege level 0 (CPL = 0)
may access them. Descriptors with DPL = 3 are the least pro-
tected (i.e. have the least restricted access) since tasks can
access them when CPL = 0, 1, 2, or 3). This rule applies to all
descriptors, except LDT descriptors.

Selector Privilege

Selector privilege is specified by the Requested Privilege
Level (RPL) field in the least significant two bits of a selector.
Selector RPL may establish a less trusted privilege level
than the current privilege level for the use of a selector. This
level is called the task's effective privilege level (EPL). RPL
can only reduce the scope of a task's access to data with
this selector. A task's effective privilege is the numeric maxi-
mum of RPL and CPL. A selector with RPL = 0 imposes no
additional restriction on its use while a selector with RPL = 3
can only refer to segments at privilege Level 3 regardless of
the task's CPL. RPL is generally used to verify that pointer

parameters passed to a more trusted procedure are not
allowed to use data at a more privileged level than the caller
(refer to pointer testing instructions).

Descriptor Access and Privilege Validation

Determining the ability of a task to access a segment
involves the type of segment to be accessed, the instruction
used, the type of descriptor used and CPL, RPL, and DPL.
The two basic types of segment accesses are control trans-
fer (selectors loaded into CS) and data (selectors loaded into
DS, ES or SS).

Data Segment Access

Instructions that load selectors into DS and ES must refer to
a data segment descriptor or readable code segment
descriptor. The CPL of the task and the RPL of the selector
must be the same as or more privileged (numerically equal
to or lower than) than the descriptor DPL. In general, a task
can only access data segments at the same or less privi-
leged levels than the CPL or RPL (whichever is numerically
higher) to prevent a program from accessing data it cannot
be trusted to use.

An exception to the rule is a readable conforming code seg-
ment. This type of code segment can be read from any privi-
lege level.

If the privilege checks fail (e.g. DPL is numerically less than
the maximum of CPL and RPL) or an incorrect type of
descriptor is referenced (e.g. gate descriptor or execute only
code segment) exception 13 occurs. If the segment is not
present, exception 11 is generated.

Instructions that load selectors into SS must refer to data
segment descriptors for writable data segments. The
descriptor privilege (DPL) and RPL must equal CPL. All
other descriptor types or a privilege level violation will cause
exception 13. A not present fault causes exception 12.

TABLE 13. DESCRlPTOR TYPES USED FOR CONTROL TRANSFER

CONTROL TRANSFER TYPES OPERATION TYPES

DESCRIPTOR

REFERENCED

DESCRIPTOR

TABLE

Intersegment within the same privilege levels JMP, CALL, RET, lRET (Note 4) Code Segment GDT/LDT

Intersegment to the same or higher privilege level interrupt

within task may change CPL

CALL Call Gate GDT/LDT

Interrupt Instruction, Exception

External Interrupt

Trap or Interrupt Gate lDT

Intersegment to a lower privilege level (changes task CPL) RET, IRET (Note 4) Code Segment GDT/LDT

Task Switch CALL, JMP Task State Segment GDT

CALL, JMP Task Gate GDT/LDT

lRET (Note 5)

Interrupt Instruction, Exception

External Interrupt

Task Gate IDT

NOTES:

4. NT (Nested Task bit of flag word) = 0

5. NT (Nested Task bit of flag word) = 1

80C286

23

Control Transfer

Four types of control transfer can occur when a selector is
loaded into CS by a control transfer operation (see Table
13). Each transfer type can only occur if the operation which
loaded the selector references the correct descriptor type.
Any violation of these descriptor usage rules (e.g. JMP
through a call gate or RET to a Task State Segment) will
cause exception 13.

The ability to reference a descriptor for control transfer is
also subject to rules of privilege. A CALL or JUMP instruction
may only reference a code segment descriptor with DPL
equal to the task CPL or a conforming segment with DPL of
equal or greater privilege than CPL. The RPL of the selector
used to reference the code descriptor must have as much
privilege as CPL.

RET and IRET instructions may only reference code seg-
ment descriptors with descriptor privilege equal to or less
privileged than the task CPL. The selector loaded into CS is
the return address from the stack. After the return, the selec-
tor RPL is the task's new CPL. If CPL changes, the old stack
pointer is popped after the return address.

When a JMP or CALL references a Task State Segment
descriptor, the descriptor DPL must be the same or less priv-
ileged than the task's CPL. Reference to a valid Task State
Segment descriptor causes a task switch (see Task Switch
Operation). Reference to a Task State Segment descriptor
at a more privileged level than the task's CPL generates
exception 13.

When an instruction or interrupt references a gate descrip-
tor, the gate DPL must have the same or less privilege than
the task CPL. If DPL is at a more privileged level than CPL,
exception 13 occurs. If the destination selector contained in
the gate references a code segment descriptor, the code
segment descriptor DPL must be the same or more privi-
leged than the task CPL. If not, Exception 13 is issued. After
the control transfer, the code segment descriptors DPL is the
task's new CPL. If the destination selector in the gate refer-
ences a task state segment, a task switch is automatically
performed (see Task Switch Operation).

The privilege rules on control transfer require:

� JMP or CALL direct to a code segment (code segment
descriptor) can only be a conforming segment with DPL of
equal or greater privilege than CPL or a non-conforming
segment at the same privilege level.

� Interrupts within the task, or calls that may change privilege
levels, can only transfer control through a gate at the same
or a less privileged level than CPL to a code segment at the
same or more privileged level than CPL.

� Return instructions that don't switch tasks can only return
control to a code segment at the same or less privileged
level.

� Task switch can be performed by a call, jump or interrupt
which references either a task gate or task state segment at
the same or less privileged level.

Privilege Level Changes

Any control transfer that changes CPL within the task,
causes a change of stacks as part of the operation. Initial
values of SS:SP for privilege levels 0, 1, and 2 are kept in
the task state segment (refer to Task Switch Operation).
During a JMP or CALL control transfer, the new stack pointer
is loaded into the SS and SP registers and the previous
stack pointer is pushed onto the new stack.

When returning to the original privilege level, its stack is
restored as part of the RET or IRET instruction operation.
For subroutine calls that pass parameters on the stack and
cross privilege levels, a fixed number of words, as specified
in the gate, are copied from the previous stack to the current
stack. The inter-segment RET instruction with a stack adjust-
ment value will correctly restore the previous stack pointer
upon return.

Protection

The 80C286 includes mechanisms to protect critical instruc-
tions that effect the CPU execution state (e.g. HLT) and
code or data segments from improper usage. These protec-
tion mechanisms are grouped into three forms:

� Restricted usage of segments (e.g. no write allowed to
read-only data segments). The only segments available for
use are defined by descriptors in the Local Descriptor Table
(LDT) and Global Descriptor Table (GDT).

� Restricted access to segments via the rules of privilege and
descriptor usage.

� Privileged instructions or operations that may only be exe-
cuted at certain privilege levels as determined by the CPL
and I/O Privilege Level (lOPL). The lOPL is defined by bits
14 and 13 of the flag word.

These checks are performed for all instructions and can be
split into three categories: segment load checks (Table 14),
operand reference checks (Table 15), and privileged instruc-
tion checks (Table 16). Any violation of the rules shown will
result in an exception. A not-present exception related to the
stack segment causes exception 12.

TABLE 14. SEGMENT REGISTER LOAD CHECKS

ERROR DESCRIPTION

 EXCEPTION

NUMBER

Descriptor table limit exceeded 13

Segment descriptor not-present 11 or 12

Privilege rules violated 13

Invalid descriptor/segment type segment register
load:

- Read only data segment load to SS

- Special control descriptor load to DS, ES, SS
- Execute only Segment load to DS, ES, SS

- Data segment load to CS

- Read/Execute code segment load SS

13

80C286

24

The lRET and POPF instructions do not perform some of
their defined functions if CPL is not of sufficient privilege
(numerically small enough). Precisely these are:

� The IF bit is not changed if CPL is greater than IOPL.

� The lOPL field of the flag word is not changed if CPL is
greater than 0.

No exceptions or other indication are given when these con-
ditions occur.

Exceptions

The 80C286 detects several types of exceptions and inter-
rupts in protected mode (see Table 17). Most are restartable
after the exceptional condition is removed. Interrupt handlers
for most exceptions can read an error code, pushed on the
stack after the return address, that identifies the selector
involved (0 if none). The return address normally points to
the failing instruction including all leading prefixes. For a pro-
cessor extension segment overrun exception, the return

address will not point at the ESC instruction that caused the
exception; however, the processor extension registers may
contain the address of the failing instruction.

These exceptions indicate a violation to privilege rules or
usage rules has occurred. Restart is generally not attempted
under those conditions.

All these checks are performed for all instructions and can
be split into three categories: segment load checks (Table
14), operand reference checks (Table 15), and privileged
instruction checks (Table 16). Any violation of the rules
shown will result in an exception. A not-present exception
causes exception 11 or 12 and is restartable.

SPECIAL OPERATIONS

Task Switch Operation

The 80C286 provides a built-in task switch operation which
saves the entire 80C286 execution state (registers, address
space, and a link to the previous task), loads a new execution
state, and commences execution in the new task. Like gates,
the task switch operation is invoked by executing an inter-seg-
ment JMP or CALL instruction which refers to a Task State
Segment (TSS) or task gate descriptor in the GDT or LDT. An
INT instruction, exception, or external interrupt may also
invoke the task switch operation by selecting a task gate
descriptor in the associated IDT descriptor entry.

The TSS descriptor points at a segment (see Figure 18) con-
taining the entire 80C286 execution state while a task gate
descriptor contains a TSS selector. The limit field of the
descriptor must be greater than 002B(H).

Each task must have a TSS associated with it. The current
TSS is identified by a special register in the 80C286 called
the Task Register (TR). This register contains a selector
referring to the task state segment descriptor that defines
the current TSS. A hidden base and limit register associated
with TR are loaded whenever TR is loaded with a new selec-
tor. The IRET instruction is used to return control to the task
that called the current task or was interrupted. Bit 14 in the
flag register is called the Nested Task (NT) bit. It controls the

TABLE 15. OPERAND REFERENCE CHECKS

ERROR DESCRIPTION

 EXCEPTION

 NUMBER

Write into code segment 13

Read from execute-only code segment 13

Write to read-only data segment 13

Segment limit exceeded (See Note) 12 or 13

NOTE: Carry out in offset calculations is ignored.

TABLE 16. PRIVILEGED INSTRUCTION CHECKS

ERROR DESCRIPTION

 EXCEPTION

 NUMBER

CPL ≠ 0 when executing the following instructions:

LIDT, LLDT, LGDT, LTR, LMSW, CTS, HLT

13

CPT > IOPL when executing the following

instructions:
INS, IN, OUTS, OUT, STI, CLI, LOCK

13

TABLE 17. PROTECTED MODE EXCEPTIONS

INTERRUPT

VECTOR FUNCTION

RETURN ADDRESS

AT FALLING

INSTRUCTION?

 ALWAYS

RESTARTABLE?

ERROR CODE

ON STACK?

8 Double exception detected Yes No (Note 7) Yes

9 Processor extension segment overrun No No (Note 7) No

10 Invalid task state segment Yes Yes Yes

11 Segment not present Yes Yes Yes

12 Stack segment overrun or stack segment not present Yes Yes (Note 6) Yes

13 General protection Yes No (Note 7) Yes

NOTES:

6. When a PUSHA or POPA instruction attempts to wrap around the stack segment, the machine state after the exception will not be restartable

because stack segment wrap around is not permitted. This condition is identified by the value of the saved SP being either 0000(H), 0001(H),
FFFE(H), or FFFF(H).

7. These exceptions indicate a violation to privilege rules or usage rules has occurred. Restart is generally not attempted under those conditions.

80C286

25

function of the IRET instruction. If NT = 0, the IRET instruc-
tion performs the regular current task by popping values off
the stack; when NT = 1, IRET performs a task switch opera-
tion back to the previous task.

When a CALL, JMP, or INT instruction initiates a task switch,
the old (except for case of JMP) and new TSS will be
marked busy and the back link field of the new TSS set to
the old TSS selector. The NT bit of the new task is set by
CALL or INT initiated task switches. An interrupt that does
not cause a task switch will clear NT. NT may also be set or
cleared by POPF or IRET instructions.

The task state segment is marked busy by changing the
descriptor type field from Type 1 to Type 3. Use of a selec-
tor that references a busy task state segment causes
Exception 13.

Processor Extension Context Switching

The context of a processor extension is not changed by the
task switch operation. A processor extension context need
only be changed when a different task attempts to use the
processor extension (which still contains the context of a pre-
vious task). The 80C286 detects the first use of a processor
extension after a task switch by causing the processor exten-
sion not present exception (7). The interrupt handler may then
decide whether a context change is necessary.

Whenever the 80C286 switches tasks, it sets the Task
Switched (TS) bit of the MSW. TS indicates that a proces-
sor extension context may belong to a different task than
the current one. The processor extension not present
exception (7) will occur when attempting to execute an
ESC or WAIT instruction if TS = 1 and a processor exten-
sion is present (MP = 1 in MSW).

Pointer Testing Instructions

The 80C286 provides several instructions to speed pointer
testing and consistency checks for maintaining system integ-
rity (see Table 18). These instructions use the memory man-
agement hardware to verify that a selector value refers to an

appropriate segment without risking an exception. A condition
flag (ZF) indicates whether use of the selector or segment will
cause an exception.

Double Fault and Shutdown

If two separate exceptions are detected during a single
instruction execution, the 80C286 performs the double fault
exception (8). If an exception occurs during processing of
the double fault exception, the 80C286 will enter shutdown.
During shutdown no further instructions or exceptions are
processed. Either NMI (CPU remains in protected mode) or
RESET (CPU exits protected mode) can force the 80C286
out of shutdown. Shutdown is externally signalled via a
HALT bus operation with A1 LOW.

Protected Mode lnitialization

The 80C286 initially executes in real address mode after
RESET. To allow initialization code to be placed at the top of
physical memory. A23-20 will be HIGH when the 80C286
performs memory references relative to the CS register until
CS is changed. A23-20 will be zero for references to the DS,
ES, or SS segments. Changing CS in real address mode will
force A23-20 LOW whenever CS is used again. The initial
CS:lP value of F000:FFF0 provides 64K bytes of code space
for initialization code without changing CS.

Protected mode operation requires several registers to be
initialized. The GDT and IDT base registers must refer to a
valid GDT and IDT. After executing the LMSW instruction to
set PE, the 80C286 must immediately execute an intraseg-
ment JMP instruction to clear the instruction queue of
instructions decoded in real address mode.

To force the 80C286 CPU registers to match the initial pro-
tected mode state assumed by software, execute a JMP
instruction with a selector referring to the initial TSS used in
the system. This will load the task register, local descriptor
table register, segment registers and initial general register
state. The TR should point at a valid TSS since any task
switch operation involves saving the current task state.

TABLE 18. 80C286 POINTER TEST INSTRUCTIONS

INSTRUCTION OPERANDS FUNCTION

ARPL Selector,

Register

Adjust Requested Privilege Level: adjusts the RPL of the selector to the numeric maximum of

current selector RPL value and the RPL value in the register. Set zero flag if selector RPL was
changed by ARPL.

VERR Selector VERify for Read: sets the zero flag if the segment referred to by the selector can be read.

VERW Selector VERify for Write: sets the zero flag if the segment referred to by the selector can be written.

LSL Register,

Selector

Load Segment Limit: reads the segment limit into the register if privilege rules and descriptor type

allow. Set zero flag if successful.

LAR Register,

Selector

Load Access Rights: reads the descriptor access rights byte into the register if privilege rules al-

low. Set zero flag if successful.

80C286

	Contact us

