imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

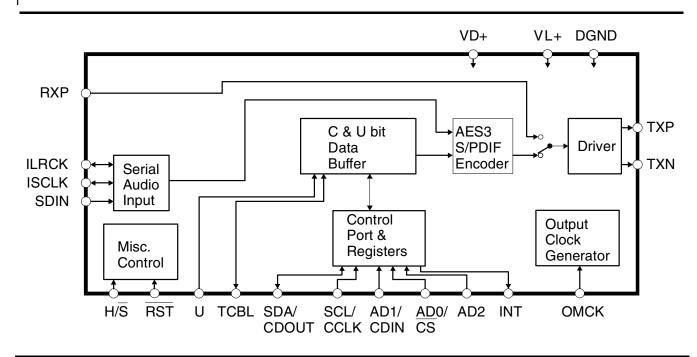
CS8405A

96 kHz Digital Audio Interface Transmitter

Features

- Complete EIAJ CP1201, IEC-60958, AES3, S/PDIF-compatible Transmitter
- +5.0 V Digital Supply (VD+)
- +3.3 V or 5.0 V Digital Interface (VL+)
- On-chip channel status and user bit buffer memories allow block-sized updates.
- Flexible 3-wire Serial Digital Audio Input Port
- Up to 96 kHz Frame Rate
- Microcontroller Write Access to Channel Status and User Bit Data
- On-chip Differential Line Driver
- Generates CRC Codes and Parity Bits
- Standalone Mode Allows use Without a Microcontroller

General Description


The CS8405A is a monolithic CMOS device which encodes and transmits audio data according to the AES3, IEC60958, S/PDIF, or EIAJ CP1201. The CS8405A accepts audio and digital data, which is then multiplexed, encoded, and driven onto a cable.

The audio data is input through a configurable, 3-wire input port. The channel status and user bit data are input through an SPI or I²C microcontroller port, and may be assembled in block-sized buffers. For systems with no microcontroller, a standalone mode allows direct access to channel status and user bit data pins.

Target applications include A/V Receivers, CD-R, DVD receivers, digital mixing consoles, effects processors, set-top boxes, and computer or automotive audio systems.

ORDERING INFORMATION

CS8405A-CS	28-pin SOIC	-10 to +70°C
CS8405A-CZ	28-pin TSSOP	-10 to +70°C
CS8405A-CZZ, Lead Free	28-pin TSSOP	-10 to +70°C
CS8405A-IS	28-pin SOIC	-40 to +85°C
CS8405A-IZ	28-pin TSSOP	-40 to +85°C
CDB8415A	Evaluation Boar	d

TABLE OF CONTENTS

1. CHARACTERISTICS AND SPECIFICATIONS	
SPECIFIED OPERATING CONDITIONS	
ABSOLUTE MAXIMUM RATINGS	
DC ELECTRICAL CHARACTERISTICS	
DIGITAL INPUT CHARACTERISTICS	
DIGITAL INTERFACE SPECIFICATIONS	
TRANSMITTER CHARACTERISTICS	
SWITCHING CHARACTERISTICS	
SWITCHING CHARACTERISTICS - SERIAL AUDIO PORTS	
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI MODE	
SWITCHING CHARACTERISTICS - CONTROL PORT - I ² C MODE	9
2. TYPICAL CONNECTION DIAGRAM	10
3. GENERAL DESCRIPTION	
3.1 AES3 and S/PDIF Standards Documents	11
4. THREE-WIRE SERIAL INPUT AUDIO PORT	11
5. AES3 TRANSMITTER	13
5.1 Transmitted Frame and Channel Status Boundary Timing	13
5.2 TXN and TXP Drivers	13
5.3 Mono Mode Operation	13
6. CONTROL PORT DESCRIPTION AND TIMING	15
6.1 SPI Mode	15
6.2 I ² C Mode	15
6.3 Interrupts	16
7. CONTROL PORT REGISTER SUMMARY	17
7.1 Memory Address Pointer (MAP)	17
8. CONTROL PORT REGISTER BIT DEFINITIONS	18
8.1 Control 1 (01h)	18
8.2 Control 2 (02h)	18
8.3 Data Flow Control (03h)	19
8.4 Clock Source Control (04h)	19
8.5 Serial Audio Input Port Data Format (05h)	20
8.6 Interrupt 1 Status (07h) (Read Only)	21
8.7 Interrupt 2 Status (08h) (Read Only)	21
8.8 Interrupt 1 Mask (09h)	21
8.9 Interrupt 1 Mode MSB (0Ah) and Interrupt 1 Mode LSB (0Bh)	22
8.10 Interrupt 2 Mask (0Ch)	
8.11 Interrupt 2 Mode MSB (0Dh) and Interrupt Mode 2 LSB (0Eh)	22
8.12 Channel Status Data Buffer Control (12h)	23
8.13 User Data Buffer Control (13h)	23
8.14 Channel Status bit or User bit Data Buffer (20h - 37h)	24
8.15 CS8405A I.D. and Version Register (7Fh) (Read Only)	24
9. PIN DESCRIPTION - SOFTWARE MODE	
10. HARDWARE MODE	27
10.1 Channel Status, User and Validity Data	27
10.2 Serial Audio Port Formats	27
11. PIN DESCRIPTION - HARDWARE MODE	29
12. APPLICATIONS	31
12.1 Reset, Power Down and Start-up	
12.2 ID Code and Revision Code	31
12.3 Power Supply, Grounding, and PCB layout	31
12.4 Synchronization of Multiple CS8405As	
13. PACKAGE DIMENSIONS	

14. APPENDIX A: EXTERNAL AES3/SPDIF/IEC60958 TRANSMITTER AND RECEIVE	R COMPO-
NENTS	34
14.1 AES3 Transmitter External Components	
14.2 Isolating Transformer Requirements	
15. APPENDIX B: CHANNEL STATUS AND USER DATA BUFFER MANAGEMENT .	35
15.1 AES3 Channel Status(C) Bit Management	35
15.1.1 Accessing the E buffer	35
15.1.2 Serial Copy Management System (SCMS)	
15.1.3 Channel Status Data E Buffer Access	
15.2 AES3 User (U) Bit Management	
15.2.1 Mode 1: Transmit All Zeros	
15.2.2 Mode 2: Block Mode	
16. REVISION HISTORY	37

LIST OF FIGURES

Figure 1. Audio Port Master Mode Timing	. 7
Figure 2. Audio Port Slave Mode and Data Input Timing	. 7
Figure 3. SPI Mode timing	. 8
Figure 4. I ² C Mode timing	. 9
Figure 5. Recommended Connection Diagram for Software Mode 1	10
Figure 6. Serial Audio Input Example Formats 1	12
Figure 7. AES3 Transmitter Timing for C, U, and V Pin Input Data 1	14
Figure 8. Control Port Timing in SPI Mode 1	15
Figure 9. Control Port Timing in I ² C Mode 1	16
Figure 10. Hardware Mode	27
Figure 11. Professional Output Circuit	34
Figure 12. Consumer Output Circuit	34
Figure 13. TTL/CMOS Output Circuit	34
Figure 14. Channel Status Data Buffer Structure	35
Figure 15. Flowchart for Writing the E Buffer	35

LIST OF TABLES

Table 1. Control Register Map Summary	17
Table 2. Hardware Mode COPY/C and ORIG pin functions	27
Table 3. Hardware Mode Serial Audio Port Format Selection	28
Table 4. Equivalent Register Settings of Serial Audio Input Formats Available in Hardware Me	ode28
Table 5. Revision History	37

1. CHARACTERISTICS AND SPECIFICATIONS

(All Min/Max characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical performance characteristics and specifications are derived from measurements taken at nominal supply voltages and $T_A = 25^{\circ}$ C.)

SPECIFIED OPERATING CONDITIONS (DGND = 0 V, all voltages with respect to 0 V)

Parameter	Symbol	Min	Тур	Max	Units
Power Supply Voltage	VD+	4.5	5.0	5.5	V
(Note 1	VL+	2.85	3.3 or 5.0	5.5	V
Ambient Operating Temperature: '-CS' & '-CZ '-IS' & '-IZ	/\	-10 -40	-	+70 +85	°C

Notes: 1. I^2C protocol is supported only in VL+ = 5.0 V mode.

ABSOLUTE MAXIMUM RATINGS (DGND = 0 V; all voltages with respect to 0 V. Operation beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.)

Parameter		Symbol	Min	Max	Units
Power Supply Voltage		VD+,VL+	-	6.0	V
Input Current, Any Pin Except Supplies	(Note 2)	l _{in}	-	±10	mA
Input Voltage		V _{in}	-0.3	(VL+) + 0.3	V
Ambient Operating Temperature (power applied)		Τ _Α	-55	125	°C
Storage Temperature		T _{stg}	-65	150	°C

Notes: 2. Transient currents of up to 100 mA will not cause SCR latch-up.

DC ELECTRICAL CHARACTERISTICS (DGND = 0 V; all voltages with respect to 0 V.)

Parameters		Symbol	Min	Тур	Max	Units
Power-down Mode (Note 3)			I.			
Supply Current in power down	VD+		-	20	-	μA
	VL+ = 3.3 V		-	60	-	μA
	VL+ = 5.0 V		-	60	-	μA
Normal Operation (Note 4)			•			
Supply Current at 48 kHz frame rate	VD+		-	6.3	-	mA
	VL+ = 3.3 V		-	30.1	-	mA
	VL+ = 5.0 V		-	46.5	-	mA
Supply Current at 96 kHz frame rate	VD+		-	6.6	-	mA
	VL+ = 3.3 V		-	44.8	-	mA
	VL+ = 5.0 V		-	76.6	-	mA

Notes: 3. Power Down Mode is defined as $\overline{RST} = LO$ with all clocks and data lines held static.

4. Normal operation is defined as $\overline{RST} = HI$.

DIGITAL INPUT CHARACTERISTICS

Parameters	Symbol	Min	Тур	Max	Units
Input Leakage Current	l _{in}	-	±1	±10	μA

DIGITAL INTERFACE SPECIFICATIONS (DGND = 0 V; all voltages with respect to 0 V.)

Parameters	Symbol	Min	Мах	Units
High-Level Output Voltage (I _{OH} = -3.2 mA), except TXP/TXN	V _{OH}	(VL+) - 1.0	-	V
Low-Level Output Voltage (I _{OL} = 3.2 mA), except TXP/TXN	V _{OL}	-	0.4	V
High-Level Output Voltage, TXP, TXN (23 mA at VL+ = 5.0 V) (15.2 mA at VL+ = 3.3 V)		(VL+) - 0.7 (VL+) - 0.7	-	V V
Low-Level Output Voltage, TXP, TXN (23 mA at VL+ = 5.0 V) (15.2 mA at VL+ = 3.3 V)		-	0.7 0.7	V V
High-Level Input Voltage	V _{IH}	2.0	(VL+) + 0.3	V
Low-Level Input Voltage (Note 5)	V_{IL}	-0.3	0.4/0.8	V

Notes: 5. At 5.0 V mode, $V_{IL} = 0.8$ V (Max), at 3.3 V mode, $V_{IL} = 0.4$ V (Max).

TRANSMITTER CHARACTERISTICS

Parameters		Symbol	Min	Тур	Max	Units
TXP Output Resistance	VL+ = 5.0 V	R _{TXP}	-	26	-	Ω
	VL+ = 3.3 V		-	40	-	Ω
TXN Output Resistance	VL+ = 5.0 V	R _{TXN}	-	26	-	Ω
	VL+ = 3.3 V		-	40	-	Ω

SWITCHING CHARACTERISTICS

(Inputs: Logic 0 = 0 V, Logic 1 = VL+; $C_L = 20$ pF)

Parameter	Symbol	Min	Тур	Max	Units
RST pin Low Pulse Width		200	-	-	μs
OMCK Frequency for OMCK = 512 * Fso		4.1	-	55.3	MHz
OMCK Low and High Width for OMCK = 512 * Fso		7.2	-	-	ns
OMCK Frequency for OMCK = 384 * Fso		3.1	-	41.5	MHz
OMCK Low and High Width for OMCK = 384 * Fso		10.8	-	-	ns
OMCK Frequency for OMCK = 256 * Fso		2.0	-	27.7	MHz
OMCK Low and High Width for OMCK = 256 * Fso		14.4	-	-	ns
Frame Rate		8.0	-	108.0	kHz
AES3 Transmitter Output Jitter		-	-	1	ns

SWITCHING CHARACTERISTICS - SERIAL AUDIO PORTS

(Inputs: Logic 0 = 0 V, Logic 1 = VL+; C_L = 20 pF)

Parameter		Symbol	Min	Тур	Max	Units
SDIN Setup Time Before ISCLK Active Edge	(Note 6)	t _{ds}	20	-	-	ns
SDIN Hold Time After ISCLK Active Edge	(Note 6)	t _{dh}	20	-	-	ns
Master Mode	·					
OMCK to ISCLK active edge delay	(Note 6)	t _{smd}	0	-	10	ns
OMCK to ILRCK delay	(Note 7)	t _{lmd}	0	-	10	ns
ISCLK and ILRCK Duty Cycle			-	50	-	%
Slave Mode						
ISCLK Period	(Note 8)	t _{sckw}	36	-	-	ns
ISCLK Input Low Width		t _{sckl}	14	-	-	ns
ISCLK Input High Width		t _{sckh}	14	-	-	ns
ISCLK Active Edge to ILRCK Edge	(Note 6,7,9)	t _{lrckd}	20	-	-	ns
ILRCK Edge Setup Before ISCLK Active Edge	(Note 6,7,10)	t _{lrcks}	20	-	-	ns

Notes: 6. The active edge of ISCLK is programmable.

- 7. The polarity of ILRCK is programmable.
- 8. No more than 128 SCLK per frame.
- 9. Prevents the previous ISCLK edge from being interpreted as the first one after ILRCK has changed.
- 10. This setup time ensures that this ISCLK edge is interpreted as the first one after ILRCK has changed

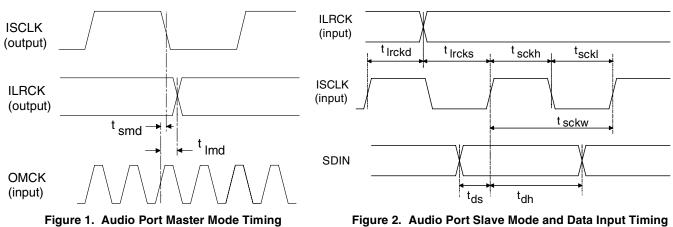


Figure 2. Audio Port Slave Mode and Data Input Timing

SWITCHING CHARACTERISTICS - CONTROL PORT - SPI MODE

(Inputs: Logic 0 = 0 V, Logic 1 = VL+; $C_L = 20$ pF)

Parameter		Symbol	Min	Тур	Мах	Units
CCLK Clock Frequency	(Note 11)	f _{sck}	0	-	6.0	MHz
CS High Time Between Transmissions		t _{csh}	1.0	-	-	μs
CS Falling to CCLK Edge		t _{css}	20	-	-	ns
CCLK Low Time		t _{scl}	66	-	-	ns
CCLK High Time		t _{sch}	66	-	-	ns
CDIN to CCLK Rising Setup Time		t _{dsu}	40	-	-	ns
CCLK Rising to DATA Hold Time	(Note 12)	t _{dh}	15	-	-	ns
CCLK Falling to CDOUT Stable		t _{pd}	-	-	50	ns
Rise Time of CDOUT		t _{r1}	-	-	25	ns
Fall Time of CDOUT		t _{f1}	-	-	25	ns
Rise Time of CCLK and CDIN	(Note 13)	t _{r2}	-	-	100	ns
Fall Time of CCLK and CDIN	(Note 13)	t _{f2}	-	-	100	ns

- Notes: 11. If Fs is lower than 46.875 kHz, the maximum CCLK frequency should be less than 128 Fs. This is dictated by the timing requirements necessary to access the Channel Status and User Bit buffer memory. Access to the control register file can be carried out at the full 6 MHz rate. The minimum allowable input sample rate is 8 kHz, so choosing CCLK to be less than or equal to 1.024 MHz should be safe for all possible conditions.
 - 12. Data must be held for sufficient time to bridge the transition time of CCLK.
 - 13. For f_{sck} < 1 MHz.

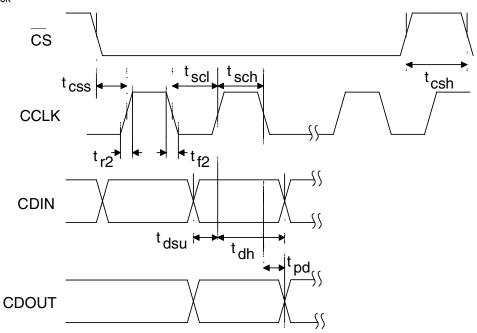


Figure 3. SPI Mode timing

SWITCHING CHARACTERISTICS - CONTROL PORT - I²C MODE

(Note 14, Inputs: Logic 0 = 0 V, Logic 1 = VL+; C_L = 20 pF)

Parameter	Symbol	Min	Тур	Мах	Units
SCL Clock Frequency	f _{scl}	-	-	100	kHz
Bus Free Time Between Transmissions	t _{buf}	4.7	-	-	μs
Start Condition Hold Time (prior to first clock pulse)	t _{hdst}	4.0	-	-	μs
Clock Low Time	t _{low}	4.7	-	-	μs
Clock High Time	t _{high}	4.0	-	-	μs
Setup Time for Repeated Start Condition	t _{sust}	4.7	-	-	μs
SDA Hold Time from SCL Falling (Note 15)	t _{hdd}	0	-	-	μs
SDA Setup Time to SCL Rising	t _{sud}	250	-	-	ns
Rise Time of Both SDA and SCL Lines	t _r	-	-	25	ns
Fall Time of Both SDA and SCL Lines	t _f	-	-	25	ns
Setup Time for Stop Condition	t _{susp}	4.7	-	-	μs

Notes: 14. I²C protocol is supported only in VL+ = 5.0 V mode.

15. Data must be held for sufficient time to bridge the 300 ns transition time of SCL.

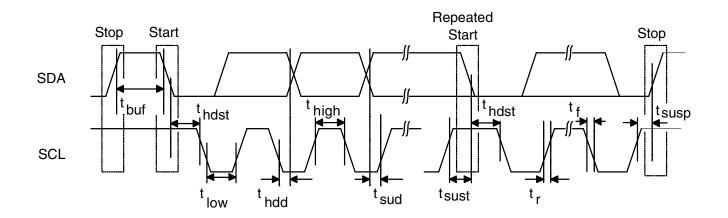


Figure 4. I²C Mode timing

CS8405A

2. TYPICAL CONNECTION DIAGRAM

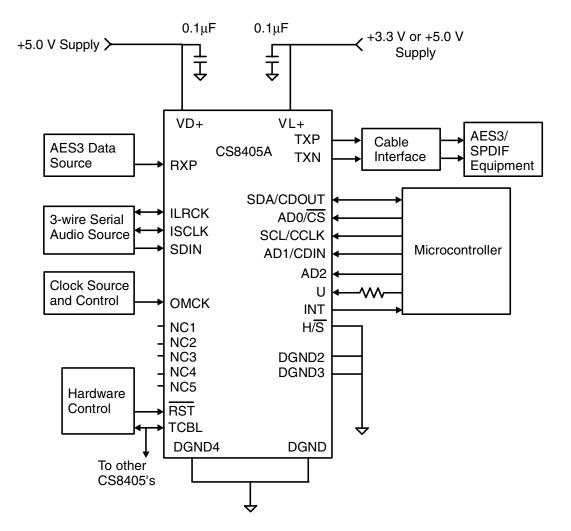


Figure 5. Recommended Connection Diagram for Software Mode

3. GENERAL DESCRIPTION

The CS8405A is a monolithic CMOS device which encodes and transmits audio data according to the AES3, IEC60958, S/PDIF, and EIAJ CP1201 interface standards. The CS8405A accepts audio, channel status and user data, which is then multiplexed, encoded, and driven onto a cable.

The audio data is input through a configurable, 3-wire input port. The channel status bits and user bit data are input through an SPI or I²C Mode microcontroller port and may be assembled in separate block sized buffers.

For systems with no microcontroller, a stand alone mode allows direct access to channel status and user data input pins.

Target applications include CD-R, DAT, DVD, MD and VTR equipment, mixing consoles, digital audio transmission equipment, high quality A/D converters, effects processors, set-top TV boxes, and computer audio systems.

Figure 5 shows the supply and external connections to the CS8405A when configured for operation with a microcontroller.

3.1 AES3 and S/PDIF Standards Documents

This data sheet assumes that the user is familiar with the AES3 and S/PDIF data formats. It is advisable to have current copies of the AES3 and IEC60958 specifications on hand for easy reference.

The latest AES3 standard is available from the Audio Engineering Society or ANSI at www.aes.org or www.ansi.org. Obtain the latest IEC60958 standard from ANSI or from the International Electrotechnical Commission at www.iec.ch. The latest EIAJ CP-1201 standard is available from the Japanese Electronics Bureau.

Crystal Application Note 22: *Overview of Digital Audio Interface Data Structures* contains a useful

tutorial on digital audio specifications, but it should not be considered a substitute for the standards.

The paper An Understanding and Implementation of the SCMS Serial Copy Management System for Digital Audio Transmission, by Clifton Sanchez, is an excellent tutorial on SCMS. It is available from the AES as preprint 3518.

4.THREE-WIRE SERIAL INPUT AUDIO PORT

A 3-wire serial audio input port is provided. The interface format can be adjusted to suit the attached device through the control registers. The following parameters are adjustable:

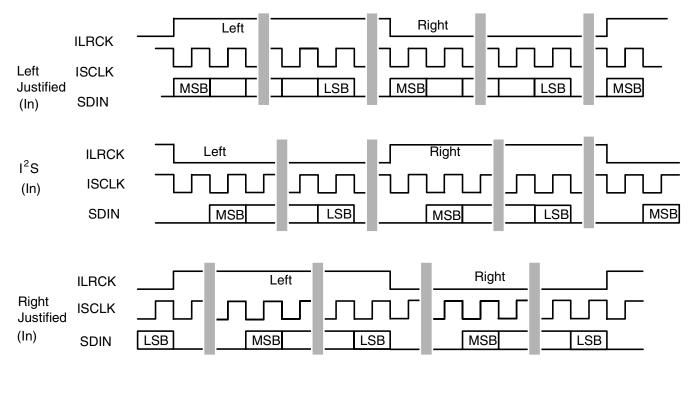

- Master or slave
- Serial clock frequency
- Audio data resolution
- Left or right justification of the data relative to left/right clock
- Optional one-bit cell delay of the first data bit
- Polarity of the bit clock
- Polarity of the left/right clock. (By setting the appropriate control bits, many formats are possible).

Figure 6 shows a selection of common input formats with the corresponding control bit settings.

In master mode, the left/right clock and the serial bit clock are outputs, derived from the OMCK input pin master clock.

In slave mode, the left/right clock and the serial bit clock are inputs. The left/right clock must be synchronous to the OMCK master clock, but the serial bit clock can be asynchronous and discontinuous if required. The left/right clock should be continuous, but the duty cycle can be less than the specified typical value of 50% if enough serial clocks are present in each phase to clock all the data bits.

	SIMS*	SISF*	SIRES[1:0]*	SIJUST*	SIDEL*	SISPOL*	SILRPOL*
Left Justified	Х	Х	00+	0	0	0	0
l²S	Х	Х	00+	0	1	0	1
Right Justified	Х	Х	XX	1	0	0	0

X = don't care to match format, but does need to be set to the desired setting

+ I²S can accept an arbitrary number of bits, determined by the number of ISCLK cycles

* See Serial Input Port Data Format Register Bit Descriptions for an explanation of the meaning of each bit

Figure 6. Serial Audio Input Example Formats

5. AES3 TRANSMITTER

The CS8405A includes an AES3 digital audio transmitter. A comprehensive buffering scheme provides write access to the channel status and user data. This buffering scheme is described in "Appendix B: Channel Status and User Data Buffer Management" on page 35.

The AES3 transmitter encodes and transmits audio and digital data according to the AES3, IEC60958 (S/PDIF), and EIAJ CP-1201 interface standards. Audio and control data are multiplexed together and bi-phase mark encoded. The resulting bit stream is driven to an output connector either directly or through a transformer. The transmitter is clocked from the clock input pin, OM-K. If OMCK is asynchronous to the data source, an interrupt bit (TSLIP) is provided that will go high every time a data sample is dropped or repeated. Be aware that the pattern of slips does not have hysteresis and so the occurrence of the interrupt condition is not deterministic.

The channel status (C) and user (U) bits in the transmitted data stream are taken from storage areas within the CS8405A. The user can manually access the internal storage or configure the CS8405A to run in one of several automatic modes. "Appendix B: Channel Status and User Data Buffer Management" on page 35 provides detailed descriptions of each automatic mode and describes methods of manually accessing the storage areas. The transmitted user bit data can optionally be input through the U pin, under the control of a control port register bit. Figure 7 shows the timing requirements for inputting U data through the U pin.

5.1 Transmitted Frame and Channel Status Boundary Timing

The TCBL pin is used to control or indicate the start of transmitted channel status block boundaries and may be an input or an output.

In some applications, it may be necessary to control the precise timing of the transmitted AES3 frame boundaries. This may be achieved in two ways:

a) With TCBL set to input, driving TCBL high for >3 OMCK clocks will cause a frame start, as well as a new channel status block start. b) If the serial audio input port is in slave mode and TCBL is set to output, the start of the A channel sub-frame will be aligned with the leading edge of ILRCK.

5.2 TXN and TXP Drivers

The line drivers are low skew, low impedance, differential outputs capable of driving cables directly. Both drivers are set to ground during reset (RST =low), when no AES3 transmit clock is provided, and optionally under the control of a register bit. The CS8405A also allows immediate muting of the AES3 transmitter audio data through a control register bit.

External components are used to terminate and isolate the external cable from the CS8405A. These components are detailed in "Appendix A: External AES3/SPDIF/IEC60958 Transmitter and Receiver Components" on page 34.

5.3 Mono Mode Operation

An AES3 stream may be used in more than one way to transmit 96 kHz sample rate data. One method is to double the frame rate of the current format. This results in a stereo signal with a sample rate of 96 kHz, carried over a single twisted pair cable. An alternate method is implemented using the two sub-frames in a 48 kHz frame rate AES3 signal to carry consecutive samples of a mono signal, resulting in a 96 kHz sample rate stream. This allows older equipment, whose AES3 transmitters and receivers are not rated for 96 kHz frame rate operation, to handle 96 kHz sample rate information. In this "mono mode", two AES3 cables are needed for stereo data transfer. The CS8405A offers mono mode operation. The CS8405A is set to mono mode by the MMT control bit.

In mono mode, the input port will run at the audio sample rate (Fs), while the AES3 transmitter frame rate will be at Fs/2. Consecutive left or right channel serial audio data samples may be selected for transmission on the A and B sub-frames, and the channel status block transmitted is also selectable.

Using mono mode is only necessary if the incoming audio sample rate is already at 96 kHz and contains both left and right audio data words. The "mono mode" AES3 output stream may also be achieved by keeping the CS8405A in normal

stereo mode, and placing consecutive audio samples in the left and right positions in an incoming 48 kHz word rate data stream.

	Tth									-
In or Out VLRCK	Tsetup		Thold							
VCU Input		VCU[0]	Y	VCU[1]	V	CU[2]	VCU[3]	VCU[4]
SDIN Input	Data [4]		Data [5]		Data [6]		Data [7]		Data [8]	
TXP(N) Output	Z Data [0]	Y	Data [1]	X	Data [2]	Y	Data [3]	X	Data [4]	★ _
TCBL	Tth		AES3 T	ransmit	ter in Stereo mo	ode		Thol	up => 7.5% AES3 d = 0 30MCK if TCB	
VLRCK										
U Input				U[0]				U[2]		
SDIN Input	Data [4]		Data [5]		Data [6]		Data [7]		Data [8]]
TXP(N) Output	Ζ	Data [0]	*	Y	Dat	a [2]*		_ / X	Data [4]	*
Output	* Assume MM	TLR = 0								
TXP(N)	Z	Data [1] ³	*	Y	Data	a [3]*		X	Data [5] ³	k
Output	* Assume MM	TLR = 1	AES3 T	ransmit	ter in Mono mo	de		Thol	up => 15% AES3 d = 0 3OMCK if TCB	
	CK is a virtual v CK duty cycle is		ck, which ma	y not e	xist, and is use	ed to i	illustrate the			•

In stereo mode, VLRCK frequency = AES3 frame rate. In mono mode, ALRCK frequency = 2xAES3 frame rate. If the serial audio input port is on slave mode and TCBL is an output, then VLRCK=ILRCK if SILRPOL=0 and VLRCK= ILRCK if SILRPOL =1.

If the serial audio input port is in master mode and TCBL is an input, then VLRCK=ILRCK if SILRPOL=0 and VLRCK= $\overline{\text{ILRCK}}$ if SILRPOL =1.

6. CONTROL PORT DESCRIPTION AND TIMING

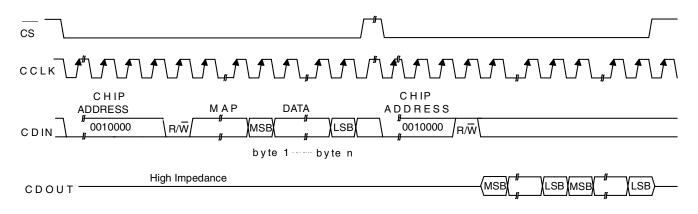
The control port is used to access the registers, allowing the CS8405A to be configured for the desired operational modes and formats. In addition, Channel Status and User data may be read and written through the control port. The operation of the control port may be completely asynchronous with respect to the audio sample rate.

The control port has two modes: SPI and I²C, with the CS8405A acting as a slave device. SPI mode is selected if there is a high to low transition on the AD0/CS pin after the RST pin has been brought high. I²C mode is selected by connecting the AD0/CS pin to VL+ or DGND, thereby permanently selecting the desired AD0 bit address state.

6.1 SPI Mode

In SPI mode, \overline{CS} is the CS8405A chip select signal, CCLK is the control port bit clock (input into the CS8405A from the microcontroller); CDIN is the input data line from the microcontroller; and CDOUT is the output data line to the microcontroller. Data is clocked in on the rising edge of CCLK and out on the falling edge.

Figure 8 shows the operation of the control port in SPI mode. To write to a register, bring \overline{CS} low. The first seven bits on CDIN form the chip address and must be 0010000. The eighth bit is a read/write indicator (R/W), which should be low to write. The next eight bits form the Memory Address Pointer (MAP), which is set to the address of the register


that is to be updated. The next eight bits are the data which will be placed into the register designated by the MAP. During writes, the CDOUT output stays in the Hi-Z state. It may be externally pulled high or low with a 47 k Ω resistor, if desired.

There is a MAP auto increment capability, enabled by the INCR bit in the MAP register. If INCR is a zero, the MAP will stay constant for successive read or writes. If INCR is set to a 1, then the MAP will auto increment after each byte is read or written, allowing block reads or writes of successive registers.

To read a register, the MAP has to be set to the correct address by executing a partial write cycle which finishes (CS high) immediately after the MAP byte. The MAP auto increment bit (INCR) may be set or not, as desired. To begin a read, bring CS low, send out the chip address and set the read/write bit (R/W) high. The next falling edge of CCLK will clock out the MSB of the addressed register (CDOUT will leave the high impedance state). If the MAP auto increment bit is set to 1, the data for successive registers will appear consecutively.

6.2 I²C Mode

In I²C Mode, SDA is a bidirectional data line. Data is clocked into and out of the part by the clock, SCL, with the clock to data relationship as shown in Figure 9. There is no \overline{CS} pin. Each individual CS8405A is given a unique address. Pins AD0, AD1, and AD2 form the three least significant bits

MAP = Memory Address Pointer, 8 bits, MSB first

Figure 8. Control Port Timing in SPI Mode

of the chip address, and should be connected to VL+ or DGND as desired. The upper four bits of the seven-bit address field are fixed at 0010. To communicate with a CS8405A, the chip address field, which is the first byte sent to the CS8405A, should match 0010 followed by the settings of AD2, AD1, and AD0. The eighth bit of the address is the R/W bit. If the operation is a write, the next byte is the Memory Address Pointer (MAP) which selects the register to be read or written. If the operation is a read, the contents of the register pointed to by the MAP will be output. Setting the auto increment bit in MAP allows successive reads or writes of consecutive registers. Each byte is separated by an acknowledge bit, ACK, which is output from the CS8405A after each input byte is read. The ACK bit is input to the CS8405A from the microcontroller after each transmitted byte. I²C mode is supported only with VL + = 5.0 V.

6.3 Interrupts

The CS8405A has a comprehensive interrupt capability. The INT output pin is intended to drive the interrupt input pin on the host microcontroller. The INT pin may be set to be active low, active high or active low with no active pull-up transistor. This last mode is used for active low, wired-OR hook-ups, with multiple peripherals connected to the microcontroller interrupt input pin.

Many conditions can cause an interrupt, as listed in the interrupt status register descriptions. Each source may be masked off by a bit in the mask registers. In addition, each source may be set to rising edge, falling edge, or level sensitive. Combined with the option of level sensitive or edge sensitive modes within the microcontroller, many different set-ups are possible, depending on the needs of the equipment designer.

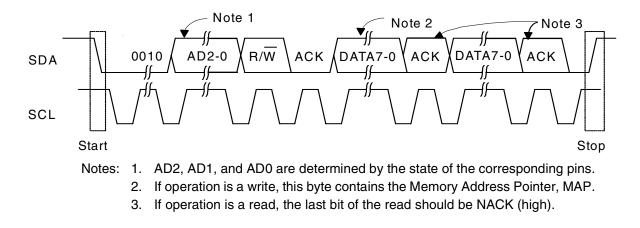


Figure 9. Control Port Timing in I²C Mode

7. CONTROL PORT REGISTER SUMMARY

Addr (HEX)	Function	7	6	5	4	3	2	1	0
00	Reserved	0	0	0	0	0	0	0	0
01	Control 1	0	VSET	0	MUTEAES	0	INT1	INT0	TCBLD
02	Control 2	0	0	0	0	0	MMT	MMCST	MMTLR
03	Data Flow Control	0	TXOFF	AESBP	0	0	0	0	0
04	Clock Source Control	0	RUN	CLK1	CLK0	0	0	0	0
05	Serial Input Format	SIMS	SISF	SIRES1	SIRES0	SIJUST	SIDEL	SISPOL	SILRPOL
06	Reserved	0	0	0	0	0	0	0	0
07	Interrupt 1 Status	TSLIP	0	0	0	0	0	EFTC	0
08	Interrupt 2 Status	0	0	0	0	0	EFTU	0	0
09	Interrupt 1 Mask	TSLIPM	0	0	0	0	0	EFTCM	0
0A	Interrupt 1 Mode (MSB)	TSLIP1	0	0	0	0	0	EFTC1	0
0B	Interrupt 1 Mode (LSB)	TSLIP0	0	0	0	0	0	EFTC0	0
0C	Interrupt 2 Mask	0	0	0	0	0	EFTUM	0	0
0D	Interrupt 2 Mode (MSB)	0	0	0	0	0	EFTU1	0	0
0E	Interrupt 2 Mode (LSB)	0	0	0	0	0	EFTU0	0	0
0F-11	Reserved	0	0	0	0	0	0	0	0
12	CS Data Buffer Control	0	0	BSEL	0	0	EFTCI	CAM	0
13	U Data Buffer Control	0	0	0	UD	UBM1	UBM0	0	EFTUI
14-1F	Reserved	0	0	0	0	0	0	0	0
20-37	C or U Data Buffer								
7F	ID and Version	ID3	ID2	ID1	ID0	VER3	VER2	VER1	VER0

Table 1. Control Register Map Summary

7.1 MEMORY ADDRESS POINTER (MAP)

7	6	5	4	3	2	1	0
INCR	MAP6	MAP5	MAP4	MAP3	MAP2	MAP1	MAP0

INCR - Auto Increment Address Control Bit

Default = '0'

0 - Disable

1 - Enable

MAP6:MAP0 - Register Address

Note: Reserved registers must not be written to during normal operation. Some reserved registers are used for test modes, which can completely alter the normal operation of the CS8405A.

8. CONTROL PORT REGISTER BIT DEFINITIONS

8.1 Control 1 (01h)

7	6	5	4	3	2	1	0
0	VSET	0	MUTEAES	0	INT1	INT0	TCBLD

VSET - Transmitted Validity bit level

Default = '0'

- 0 Indicates data is valid, linear PCM audio data
- 1 Indicates data is invalid or not linear PCM audio data
- MUTEAES Mute control for the AES transmitter output

Default = '0'

- 0 Not Muted
- 1 Muted

INT1:0 - Interrupt output pin (INT) control

Default = '00'

- 00 Active high; high output indicates interrupt condition has occurred
- 01 Active low, low output indicates an interrupt condition has occurred
- 10 Open drain, active low. Requires an external pull-up resistor on the INT pin.
- 11 Reserved

TCBLD - Transmit Channel Status Block pin (TCBL) direction specifier

Default = '0'

- 0 TCBL is an input
- 1 TCBL is an output

8.2 Control 2 (02h)

7	6	5	4	3	2	1	0
0	0	0	0	0	MMT	MMTCS	MMTLR

MMT - Select AES3 transmitter mono or stereo operation

Default = '0'

- 0 Normal stereo operation
- Output either left or right channel inputs into consecutive subframe outputs (mono mode, left or right is determined by MMTLR bit)

MMTCS - Select A or B channel status data to transmit in mono mode

Default = '0'

- 0 Use channel A CS data for the A subframe and use channel B CS data for the B subframe
- 1 Use the same CS data for both the A and B subframe outputs. If MMTLR = 0, use the left channel CS data. If MMTLR = 1, use the right channel CS data.

MMTLR - Channel Selection for AES Transmitter mono mode

Default = '0'

0 - Use left channel input data for consecutive subframe outputs1- Use right channel input data for consecutive subframe outputs

8.3 Data Flow Control (03h)

7	6	5	4	3	2	1	0
0	TXOFF	AESBP	0	0	0	0	0

The Data Flow Control register configures the flow of audio data. The output data should be muted prior to changing bits in this register to avoid transients.

TXOFF - AES3 Transmitter Output Driver Control

Default = '0

- 0 AES3 transmitter output pin drivers normal operation
- 1 AES3 transmitter output pin drivers drive to 0 V.

AESBP - AES3 bypass mode selection

Default = '0'

0 - Normal operation

1 - Connect the AES3 transmitter driver input directly to the RXP pin, which becomes a normal TTL threshold digital input. The OMCK clock must be present for the bypass mode to work.

8.4 Clock Source Control (04h)

7	6	5	4	3	2	1	0
0	RUN	CLK1	CLK0	0	0	0	0

This register configures the clock sources of various blocks. In conjunction with the Data Flow Control register, various Receiver/Transmitter/Transceiver modes may be selected.

RUN - Controls the internal clocks, allowing the CS8405A to be placed in a "powered down" low current consumption, state.

Default = '0'

- 0 Internal clocks are stopped. Internal state machines are reset. The fully static control port registers are operational, allowing registers to be read or changed. Reading and writing the U and C data buffers is not possible. Power consumption is low.
- Normal part operation. This bit must be set to 1 to allow the CS8405A to begin operation. All input clocks should be stable in frequency and phase when RUN is set to 1.

CLK1:0 - Output master clock (OMCK) input frequency to output sample rate (Fs) ratio selector. If these bits are changed during normal operation, then always stop the CS8405A first (RUN = 0), write the new value, then start the CS8405A (RUN = 1).

Default = '00'

- 00 OMCK frequency is 256*Fs
- 01 OMCK frequency is 384*Fs
- 10 OMCK frequency is 512*Fs
- 11 Reserved

8.5 Serial Audio Input Port Data Format (05h)

7	6	5	4	3	2	1	0
SIMS	SISF	SIRES1	SIRES0	SIJUST	SIDEL	SISPOL	SILRPOL

SIMS - Master/Slave Mode Selector

Default = '0'

- 0 Serial audio input port is in slave mode
- 1 Serial audio input port is in master mode
- SISF ISCLK frequency (for master mode)

Default = '0'

- 0 64*Fs
- 1 128*Fs

SIRES1:0 - Resolution of the input data, for right-justified formats

Default = '00'

- 00 24-bit resolution
- 01 20-bit resolution
- 10 16-bit resolution
- 11 Reserved

SIJUST - Justification of SDIN data relative to ILRCK

Default = '0'

- 0 Left-justified
- 1 Right-justified
- SIDEL Delay of SDIN data relative to ILRCK, for left-justified data formats

Default = '0'

0 - MSB of SDIN data occurs in the first ISCLK period after the ILRCK edge (left justified mode)
1 - MSB of SDIN data occurs in the second ISCLK period after the ILRCK edge (l²S mode)

SISPOL - ISCLK clock polarity

Default = '0'

- 0 SDIN sampled on rising edges of ISCLK
- 1 SDIN sampled on falling edges of ISCLK

SILRPOL - ILRCK clock polarity

Default = '0'

- 0 SDIN data is for the left channel when ILRCK is high
- 1 SDIN data is for the right channel when ILRCK is high

8.6 Interrupt 1 Status (07h) (Read Only)

7	6	5	4	3	2	1	0
TSLIP	0	0	0	0	0	EFTC	0

For all bits in this register, a "1" means the associated interrupt condition has occurred at least once since the register was last read. A "0" means the associated interrupt condition has NOT occurred since the last reading of the register. Reading the register resets all bits to 0, unless the interrupt mode is set to level and the interrupt source is still true. Status bits that are masked off in the associated mask register will always be "0" in this register. This register defaults to 00h.

TSLIP - AES3 transmitter source data slip interrupt

In data flows where OMCK, which clocks the AES3 transmitter, is asynchronous to the data source, this bit will go high every time a data sample is dropped or repeated. When TCBL is an input, this bit will go high on receipt of a new TCBL signal.

EFTC - E to F C-buffer transfer interrupt.

The source for this bit is true during the E to F buffer transfer in the C bit buffer management process.

8.7 Interrupt 2 Status (08h) (Read Only)

7	6	5	4	3	2	1	0
0	0	0	0	0	EFTU	0	0

For all bits in this register, a "1" means the associated interrupt condition has occurred at least once since the register was last read. A "0" means the associated interrupt condition has NOT occurred since the last reading of the register. Reading the register resets all bits to 0, unless the interrupt mode is set to level and the interrupt source is still true. Status bits that are masked off in the associated mask register will always be "0" in this register. This register defaults to 00h.

EFTU - E to F U-buffer transfer interrupt. (Block Mode only)

The source of this bit is true during the E to F buffer transfer in the U bit buffer management process.

8.8 Interrupt 1 Mask (09h)

7	6	5	4	3	2	1	0
TSLIPM	0	0	0	0	0	EFTCM	0

The bits of this register serve as a mask for the Interrupt 1 register. If a mask bit is set to 1, the error is unmasked, meaning that its occurrence will affect the INT pin and the status register. If a mask bit is set to 0, the error is masked, meaning that its occurrence will not affect the INT pin or the status register. The bit positions align with the corresponding bits in Interrupt 1 register. This register defaults to 00h.

8.9 Interrupt 1 Mode MSB (0Ah) and Interrupt 1 Mode LSB (0Bh)

7	6	5	4	3	2	1	0
TSLIP1	0	0	0	0	0	EFTC1	0
TSLIP0	0	0	0	0	0	EFTC0	0

The two Interrupt Mode registers form a 2-bit code for each Interrupt Register 1 function. There are three ways to set the INT pin active in accordance with the interrupt condition. In the Rising edge active mode, the INT pin becomes active on the arrival of the interrupt condition. In the Falling edge active mode, the INT pin becomes active on the removal of the interrupt condition. In Level active mode, the INT pin becomes active during the interrupt condition. Be aware that the active level (Actice High or Low) only depends on the INT[1:0] bits. These registers default to 00.

- 00 Rising edge active
- 01 Falling edge active
- 10 Level active
- 11 Reserved

8.10 Interrupt 2 Mask (0Ch)

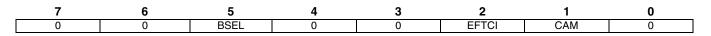
7	6	5	4	3	2	1	0
0	0	0	0	0	EFTUM	0	0

The bits of this register serve as a mask for the Interrupt 2 register. If a mask bit is set to 1, the error is unmasked, meaning that its occurrence will affect the INT pin and the status register. If a mask bit is set to 0, the error is masked, meaning that its occurrence will not affect the INT pin or the status register. The bit positions align with the corresponding bits in Interrupt 2 register. This register defaults to 00h.

8.11 Interrupt 2 Mode MSB (0Dh) and Interrupt Mode 2 LSB (0Eh)

7	6	5	4	3	2	1	0
0	0	0	0	0	EFTU1	0	0
0	0	0	0	0	EFTU0	0	0

The two Interrupt Mode registers form a 2-bit code for each Interrupt Register 1 function. There are three ways to set the INT pin active in accordance with the interrupt condition. In the Rising edge active mode, the INT pin becomes active on the arrival of the interrupt condition. In the Falling edge active mode, the INT pin becomes active on the removal of the interrupt condition. In Level active mode, the INT pin becomes active during the interrupt condition. Be aware that the active level (Active High or Low) only depends on the INT[1:0] bits. These registers default to 00.


- 00 Rising edge active
- 01 Falling edge active

10 - Level active

11 - Reserved

8.12 Channel Status Data Buffer Control (12h)

BSEL - Selects the data buffer register addresses to contain User data or Channel Status data Default = '0'

- 0 Data buffer address space contains Channel Status data
- 1 Data buffer address space contains User data
- Note: There are separate complete buffers for the Channel Status and User bits. This control bit determines which buffer appears in the address space.

EFTCI - E to F C-data buffer transfer inhibit bit.

Default = '0'

- 0 Allow C-data E to F buffer transfers
- 1 Inhibit C-data E to F buffer transfers
- CAM C-data buffer control port access mode bit

Default = '0'

- 0 One byte mode
- 1 Two byte mode
- 8.13 User Data Buffer Control (13h)

7	6	5	4	3	2	1	0
0	0	0	UD	UBM1	UBM0	0	EFTUI

UD - User bit data source specifier

Default = '0'

- 0 The U pin is an input. The User bit data is latched in on both rising and falling edges of OLRCK. This setting also chooses the U pin as the source for transmitted U data.
- 1 Sets the U data buffer as the source of transmitted U data. The U pin also becomes an indeterminate output.

UBM1:0 - Sets the operating mode of the AES3 User bit manager

Default = '00'

- 00 Transmit all zeros mode
- 01 Block mode
- 10 Reserved
- 11 Reserved

EFTUI - E to F U-data buffer transfer inhibit bit (valid in block mode only).

Default = '0'

- 0 Allow U-data E to F buffer transfers
- 1 Inhibit U-data E to F buffer transfer

8.14 Channel Status bit or User bit Data Buffer (20h - 37h)

Either the channel status data buffer E or the separate user bit data buffer E (provided UBM bits are set to block mode) is accessible through these register addresses.

8.15 CS8405A I.D. and Version Register (7Fh) (Read Only)

7	6	5	4	3	2	1	0
ID3	ID2	ID1	ID0	VER3	VER2	VER1	VER0

ID3:0 - ID code for the CS8405A. Permanently set to 0110 VER3:0 - CS8405A revision level. Revision A is coded as 0001

9. PIN DESCRIPTION - SOFTWARE MODE

SDA / CDOUT	1 •	28	SCL / CCLK
AD0 / CS	2	27	AD1 / CDIN
AD2	3	26	ТХР
RXP	4	25	TXN
DGND2	5	24	H/S
VD+	6	23	VL+
DGND4	7	22	DGND
DGND3	8	21	OMCK
RST	9	20	U
NC1	10	19	INT
NC2	11	18	NC5
ILRCK	12	17	NC4
ISCLK	13	16	NC3
SDIN	14	15	TCBL

ОМСК	21	Master Clock (Input) - The frequency must be 256x, 384x, or 512x the sample rate.
ТХР	26	are pulled low while the CS8405A is in the reset state.
TXN	25	Differential Line Drivers (Output) - These pins transmit biphase encoded data. The drivers
H/S	24	Hardware/Software Control Mode Select (<i>Input</i>) -Determines the method of controlling the operation of the CS8405A, and the method of accessing Channel Status and User bit data. In software mode, device control and CS and U data access is primarily through the control port, using a microcontroller. Hardware mode provides an alternate mode of operation, and access to CS and U data is provided by dedicated pins. This pin should be permanently tied to VL+ or DGND.
RST	9	Reset (<i>Input</i>) - When $\overline{\text{RST}}$ is low, the CS8405A enters a low power mode and all internal states are reset. On initial power up, $\overline{\text{RST}}$ must be held low until the power supply is stable, and all input clocks are stable in frequency and phase. This is particularly true in hardware mode with multiple CS8405A devices, where synchronization between devices is important.
DGND4	7	
DGND3	8	
DGND2	5	· · · · -
DGND	22	Ground (Input) - Ground for I/O and core logic.
VL+	23	Logic Power (Input) - Input/Output power supply. Typically +3.3 V or +5.0 V.
VD+	6	Digital Power (Input) - Digital core power supply. Typically +5.0 V.