mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Current Transducers CT 0.1 .. 0.4-P

For the electronic measurement of small currents: AC,DC, mixed, with a galvanic isolation between the primary circuit and the secondary circuit.

Electr	ical data			
Primary nom current rms I _{PN} (mA)	inal Primary current, measuring range I _{PM} (mA)	Туре	RoH date	S since e code
100	± 200	CT 0.1-P	46	6129
200	± 400	CT 0.2-P	46054	
400	± 800	CT 0.4-P	46	6234
V _c	Supply voltage (± 5 %)		± 15	V
I _c	Current consumption		± 45	mA
R _{IS}	Isolation resistance @ 500 VDC			MΩ
Vout	Output voltage (Analog) @ $\pm I_{PN} R_{I} = 10k\Omega T_{A} = 25^{\circ}C$			V
R _{OUT}	Output internal resistance	,	< 51	Ω
R	Load resistance		≥ 10	kΩ
	Capacitive loading			nF
Accuracy-Dynamic performance data				
Х	Accuracy (excluding offset) @ I_{PN} T_{A} =	= 25°C, R , = 10kΩ	< ± 1	%of I _{PN}
ε.	Linearity error $(0 \pm I_{PN})$	L	< ± 0.5	%of I _{PN}
TCV	Temperature coefficient of V_{OUT} (of re	ading)	< ± 0.05	%/K
V _{OE}	Electrical offset voltage $(I_{P} = 0, T_{A} =$	25°C	< ± 100	mV
V _{OH}	Hysteresis offset voltage			
0	$\emptyset I = 0$ after an excursion of 1 x	1	< + 2	mV

	@ $I_p = 0$; after an excursion of 1 x I_{pN}		< ± 2	mv
	(a) $I_{p} = 0$; after an excursion of 100 x I_{pN}		< ± 20	mV
TCV	Temperature coefficient of V _{OF} @ -20+85°C	CT 0.1-P	< ± 8	mV/K
		CT 0.2-P	< ± 4	mV/K
		CT 0.4-P	< ± 2	mV/K
t	Response time to 80% of I _{PN} step		≤ 20	ms
	90% of I _{PN} step		≤ 60	ms
BW	Frequency bandwidth (- 3 dB)	CT 0.1-P	DC 40.	.7000Hz
		CT 0.2-P	DC 40	11000Hz
		CT 0.4-P	DC 40	18000Hz

			20		
General data					
T _A	Ambient operating temperature		- 20 + 85	°C	
T _s	Ambient storage temperature		- 25 + 85	°C	
dCp	Creepage distance		> 5.5	mm	
dCl	Clearance distance		> 5.5	mm	
CTI	Comparative tracking index (Group IIIa)		> 220		
m	Mass		25	g	
	Standards		EN 50178:	1997	

<u>Notes</u>: Performance data are given for steady phase of the transducer. Transitory period after power on lasts typically less than 2 min. Please refer to characterization report for details.

Please don't put the high voltage between the secondary pins and fixing pins. If it must be so, don't exceed the 2.5 kV between these pins with the maximum isolation distance.

```
I_{PN} = \pm 100..400 \text{ mA}
V_{OUT} = \pm 5 \text{ V}
```


Features

- DC & AC earth leakage current transducer using a flux-gate principle
- PCB mounting
- ±15V power supply
- ±5V output @ I_{PN}
- Isolated plastic case recognized according to UL94-V0.

Advantages

- Small size
- Bandwidth :
- DC and 40 up to 7..18 kHz • Response time better than 60 ms
- Cost effective, compact alternative to classical RCDs (Residual Current Device)

Applications

- Earth leakage detection in transformerless solar inverters
- 1st human contact protection of PV arrays
- Failure detection in power sources
- Symmetrical fault detection (e.g. after motor inverter)
- Current leakage detection in stacked DC sources
- Single phase or three phase differential current measurement up to ±30A per wire (DC or AC)

Application domain

Industrial

copyright protected

Page 1/3 www.lem.com

Current Transducer CT 0.1 .. 0.4-P

Is	olation characteristics		
V _b	Rated isolation voltage rms with IEC 61010-1 standard and following conditions - Single insulation - Over voltage category III - Pollution degree 2 - Heterogeneous field	150	V rms
V _b	Rated isolation voltage rms with EN 50178 standard and following conditions - Reinforced insulation - Over voltage category III - Pollution degree 2 - Heterogeneous field	250	V rms
V _d	Rms voltage for AC isolation test, 50 Hz, 1 min	2.5	kV
٧	Partial discharge extinction voltage rms @ 10pC	> 1.2	kV
Ŷ	Impulse withstand voltage 1.2/50µs	6	kV
	If insulated cable is used for the primary circuit, the voltage category could be improved with the following Cable insulation (primary) Category	table :	

	 .,	0,
HAR 03		300V CAT III
HAR 05		400V CAT III
HAR 07		500V CAT III

Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution! Risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions CT 0.1 .. 0.4-P (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

General tolera	ance	=	± 1 mn	n
(Unless other	wise specified	in the a	above	drawings.)

- Aperture for primary conductor Ø11 mm
 Connection of secondary 4 pins 0.7
 - Connection of secondary4 pins 0.7 x 0.7 mm²Recommended PCB hole1.2 mm
 - 2 pins Ø2 mm

2.2 mm

PCB fixation
 Recommended PCB hole

Remarks

- + $\mathbf{V}_{_{OUT}}$ is positive when $\mathbf{I}_{_{\mathrm{P}}}$ flows in the direction of the arrow.
- This transducer induces into the primary circuit a square wave of 500Hz. This voltage can induce an AC current in the primary if the primary impedance is low.
- Primary impedance $\geq 10\Omega$ CT 0.1-P CT 0.2-P CT 0.4-P $V_{_{OUT}}$ by induced current $\leq \pm 0.8\% \leq \pm 0.5\% \leq \pm 0.3\%$ of $I_{_{PN}}$
- Temperature of the primary conductor should not exceed 100°C.