

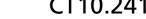
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832


Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

C-Series

POWER SUPPLY

- 3AC 380-480V Wide-range Input
- 2 or 3-Phase Operation Possible
- Width only 62mm
- Efficiency up to 92.9% Due to Synchronous Rectifier
- **Excellent Partial Load Efficiency**
- 20% Output Power Reserves
- Easy fuse tripping Due to High Overload Current
- Input -Transient Blanking Circuit Included
- Minimal Inrush Current Surge
- Three Input Fuses Included
- Current Sharing Feature for Parallel Use
- Full Power Between -25°C and +60°C
- 3 Year Warranty

GENERAL DESCRIPTION

The Dimension C-Series are cost optimized power supplies without compromising quality, reliability and performance. The C-Series is part of the DIMENSION power supply family. The most outstanding features of CT10.241 are the high efficiency, electronic inrush current limitation, active input transient filter and wide operational temperature range. The small size is achieved by a synchronous rectification and further technological design details.

The C-Series includes all the essential basic functions. The devices have a power reserve of 20% included, which may even be used continuously at temperatures up to +45°C. Additionally, the CT10.241 can deliver 3 times the nominal output current for 10ms which helps to trip fuses on faulty output branches.

SHORT-FORM DATA

Output voltage	DC 24V		
Adjustment range	24-28V		
Output current	10 – 8.6A	ambient <60°C	
	12 – 10.3A	ambient <45°C	
Output power	240W	ambient <60°C	
	288W	ambient <45°C	
Output ripple	< 50mVpp	20Hz to 20MHz	
Input voltage	AC 380-480V	-15%/+20%	
Mains frequency	50-60Hz	±6%	
AC Input current	0.7 / 0.6A	at 3x400 / 480Vac	
Power factor	0.53 / 0.52	at 3x400 / 480Vac	
AC Inrush current	typ. 4A peak		
Efficiency	92.8 / 92.9%	at 3x400 / 480Vac	
Losses	18.6 / 18.3W	at 3x400 / 480Vac	
Temperature range	-25°C to +70°C	operational	
Derating	6W/°C	+60 to +70°C	
Hold-up time	typ. 34 / 54ms	at 3x400 / 480Vac	
Dimensions	62x124x117mm	WxHxD	

ORDER NUMBERS

Power Supply CT10.241 24-28V Standard unit Accessory ZM1.WALL Wall mount bracket ZM13.SIDE Side mount bracket YRM2.DIODE Decoupling module UF20.241 **Buffer unit**

MARKINGS

Jan. 2010 / Rev. 1.3 DS-CT10.241-EN

C-Series

INDEX

		Page		Page
1.	Intended Use	3	20. Used Substances	14
2.	Installation Requirements	3	21. Physical Dimensions and Weight	15
3.	AC-Input	4	22. Accessories	
4.	DC-Input		23. Application Notes	17
5.	Input Inrush Current	5	23.1. Peak Current Capability	17
6.	Output	6	23.2. Back-feeding Loads	17
7.	Hold-up Time		23.3. Charging of Batteries	18
8.	Efficiency and Power Losses	8	23.4. Output Circuit Breakers	18
9.	Functional Diagram	9	23.5. External Input Protection	19
10.	Front Side and User Elements	9	23.6. Using only 2 Legs of a 3-Phase System	19
11.	Terminals and Wiring	10	23.7. Inductive and Capacitive Loads	20
12.	Reliability	10	23.8. Parallel Use to Increase Output Power	20
	EMC		23.9. Parallel Use for Redundancy	20
14.	Environment	12	23.10. Daisy Chaining of Outputs	21
15.	Protection Features	13	23.11. Series Operation	21
16.	Safety Features	13	23.12. Use in a Tightly Sealed Enclosure	21
17.	Dielectric Strength	13	23.13. Mounting Orientations	22
18.	Approvals	14	-	
19.	Fulfilled Standards	14		

The information presented in this document is believed to be accurate and reliable and may change without notice.

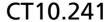
TERMINOLOGY AND ABREVIATIONS

PE and 🕀 symbol PE is the abbreviation for **P**rotective **E**arth and has the same meaning as the symbol \$. Earth, Ground This document uses the term "earth" which is the same as the U.S. term "ground".

T.b.d. To be defined, value or description will follow later.

AC 400V A figure displayed with the AC or DC before the value represents a nominal voltage with

standard tolerances (usually ±15%) included.


E.g.: DC 12V describes a 12V battery disregarding whether it is full (13.7V) or flat (10V)

400Vac A figure with the unit (Vac) at the end is a momentary figure without any additional

tolerances included.

50Hz vs. 60Hz As long as not otherwise stated, AC 380V and AC 400V parameters are valid at 50Hz and AC

480V parameters are valid at 60Hz mains frequency.

DIMENSION

C-Series

24V, 10A, THREE PHASE INPUT

1. INTENDED USE

This device is designed for installation in an enclosure and is intended for the general use such as in industrial control, office, communication, and instrumentation equipment.

Do not use this power supply in aircrafts, trains and nuclear equipment where malfunction may cause severe personal injury or threaten human life.

This device is designed for use in non-hazardous, ordinary or unclassified locations. Do not use in hazardous location

2. Installation Requirements

This device may only be installed and put into operation by qualified personnel.

This device does not contain serviceable parts. The tripping of an internal fuse (if included) is caused by an internal defect.

If damage or malfunction should occur during installation or operation, immediately turn power off and send unit to the factory for inspection.

Mount the unit on a DIN-rail so that the output terminals are located on top and input terminal on the bottom. For other mounting orientations see de-rating requirements in this document.

This device is designed for convection cooling and does not require an external fan. Do not obstruct airflow and do not cover ventilation grid (e.g. cable conduits) by more than 30%!

Keep the following installation clearances: 40mm on top, 20mm on the bottom, 5mm on the left and right sides are recommended when the device is loaded permanently with more than 50% of the rated power. Increase this clearance to 15mm in case the adjacent device is a heat source (e.g. another power supply).

WARNING Risk of electrical shock, fire, personal injury or death.

- Do not use the power supply without proper grounding (Protective Earth). Use the terminal on the input block for earth connection and not one of the screws on the housing.
- Turn power off before working on the device. Protect against inadvertent re-powering.
- Make sure that the wiring is correct by following all local and national codes.
- Do not modify or repair the unit.
- Do not open the unit as high voltages are present inside.
- Use caution to prevent any foreign objects from entering into the housing.
- Do not use in wet locations or in areas where moisture or condensation can be expected.
- Do not touch during power-on, and immediately after power-off. Hot surface may cause burns.

C-Series

3. AC-INPUT

AC input	nom.	3AC 380-480V	TN, TT, IT-mains networks,
·			grounding of one phase is allowed except for UL508
			applications
AC input range		3x 323-576Vac	continuous operation
		3x 576-700Vac	for max. 1 second, occasional (not periodical)
		3x 200-323Vac	full power for 200ms, no damage between 0 and 200Vac
Allowed Voltage Phase to Earth		500Vac	IEC 62103
Input frequency	nom.	50–60Hz	±6%
Turn-on voltage	typ.	3x 260Vac	steady-state value, see Fig. 3-1
Shut-down voltage	typ.	3x 185Vac	steady-state value, see Fig. 3-1

		3AC 400V	3AC 480V	
Input current	typ.	0.7A	0.6A	at 24V, 10A, symmetrical phase voltage, see Fig. 3-3
Power factor *)	typ.	0.53	0.52	at 24V, 10A, see Fig. 3-4
Start-up delay	typ.	90ms	90ms	see Fig. 3-2
Rise time	typ.	40ms	40ms	0mF, 24V, 10A, see Fig. 3-2
	typ.	85ms	85ms	10mF, 24V, 10A, see Fig. 3-2
Turn-on overshoot	max.	200mV	200mV	see Fig. 3-2

^{*)} The power factor is the ratio of the true (or real) power to the apparent power in an AC circuit.

576V 3x700Vac

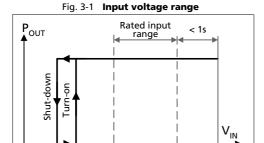


Fig. 3-3 Input current vs. output load at 24V

185V 260V 323V

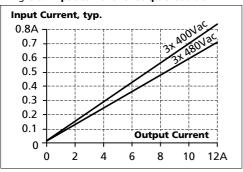


Fig. 3-2 Turn-on behavior, definitions

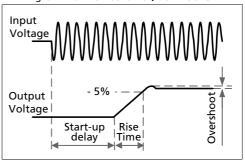
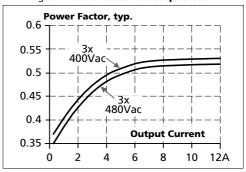
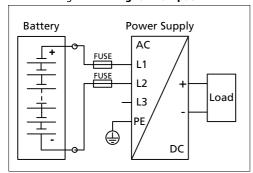



Fig. 3-4 **Power factor vs. output load**

Jan. 2010 / Rev. 1.3 DS-CT10.241-EN All parameters are specified at 24V, 10A, 3x400Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.



C-Series

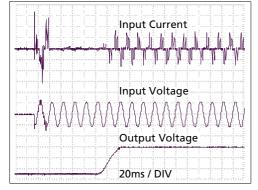
4. DC-INPUT

DC input	nom.	DC 600V	
DC input range	min.	450-780Vdc	continuous operation
Allowed Voltage Line to Earth	max.	820Vdc	IEC 62103
DC input current	typ.	0.58A / 0.34A	450Vdc / 780Vdc, at 24V, 10A
Turn-on voltage	typ.	370Vdc	steady state value
Shut-down voltage	typ.	260Vdc	steady state value

Fig. 4-1 Wiring for DC Input

Instructions for DC use:

- a) Use a battery or similar DC source. For other sources contact PULS
- b) Connect +pole to L1 and -pole to L2.
- c) Terminal L3 remains unused, terminal screw of L3 must be securely tightened.
- d) Use appropriate external fuses in the + and lines which are suitable for the DC-voltage.
- e) Connect the PE terminal to a earth wire or to the machine ground.
- f) DC-operation is not included in the UL approval. Additional testing might be necessary.


5. INPUT INRUSH CURRENT

An active inrush limitation circuit limits the input inrush current after turn-on of the input voltage and after short input voltage interruptions.

The charging current into EMI suppression capacitors is disregarded in the first microseconds after switch-on.

		3AC 400V	3AC 480V	
Inrush current	max.	$10A_{peak}$	$10A_{peak}$	-25°C to +70°C
	typ.	$4A_{peak}$	$4A_{peak}$	-25°C to +70°C
Inrush energy	max.	$0.5A^2s$	$0.5A^2s$	-25°C to +70°C

Input inrush current, typical behavior

3x 400Vac Input: Output: 24V, 10A 25°C Ambient:

Upper curve: Input current 1A / DIV Middle curve: Input voltage 500V / DIV Output voltage 10V / DIV Lower curve:

Time basis: 20ms / DIV

Jan. 2010 / Rev. 1.3 DS-CT10.241-EN

C-Series

6. OUTPUT

Output voltage	nom.	24V	
Adjustment range	min.	24-28V	guaranteed
	max.	30V	at clockwise end position of potentiometer
Factory setting	typ.	24.1V	±0.2%, at full load, cold unit, in "single use" mode
	typ.	24.1V	±0.2%, at full load, cold unit, in "parallel use" mode
	typ.	25.1V	at no load, cold unit, in "parallel use" mode
Line regulation	max.	10mV	3x 323-576Vac
Load regulation	max.	100mV	in "single use" mode: static value, $0A \rightarrow 10A$
	typ.	1000mV	in "parallel use" mode: static value, $0A \rightarrow 10A$, see Fig. 6-2
Ripple and noise voltage	max.	50mVpp	20Hz to 20MHz, 50Ohm
Output capacitance	typ.	6 500µF	
Output current	nom.	12A	at 24V, ambient < 45°C, see Fig. 6-1
	nom.	10A	at 24V, ambient < 60°C, see Fig. 6-1
	nom.	10.3A	at 28V, ambient < 45°C, see Fig. 6-1
	nom.	8.6A	at 28V, ambient < 60°C, see Fig. 6-1
Output power	nom.	288W	ambient < 45°C
	nom.	240W	ambient < 60°C
Short-circuit current	min.	19A	continuous, load impedance 100mOhm, see Fig. 6-1
	max.	23A	continuous, load impedance 100mOhm, see Fig. 6-1
	min.	28A	<20ms, load impedance 100mOhm, see Fig. 6-1
	max.	32A	<20ms, load impedance 100mOhm, see Fig. 6-1
			discharge current of output capacitors not included

Fig. 6-1 Output voltage vs. output current, typ.

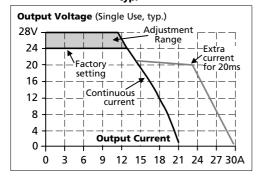
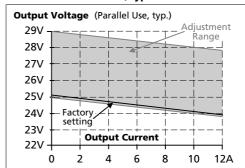



Fig. 6-2 Output voltage in "parallel use" mode, typ.

Peak current capability (up to several milliseconds)

The power supply can deliver a peak current which is higher than the specified short term current. This helps to start current demanding loads or to safely operate subsequent circuit breakers.

The extra current is supplied by the output capacitors inside the power supply. During this event, the capacitors will be discharged and causes a voltage dip on the output. Detailed curves can be found in chapter 23.1.

Peak current voltage dips	typ.	from 24V to 6V	at 20A for 50ms, resistive load
	typ.	from 24V to 12V	at 50A for 2ms, resistive load
	typ.	from 24V to 3V	at 50A for 5ms, resistive load

Jan. 2010 / Rev. 1.3 DS-CT10.241-EN

C-Series

7. HOLD-UP TIME

		3AC 400V	3AC 480V	
Hold-up Time	typ.	34ms	54ms	at 24V, 10A, see Fig. 7-1
	typ.	68ms	108ms	at 24V, 5A, see Fig. 7-1

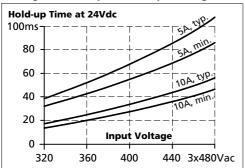
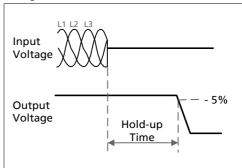



Fig. 7-2 Shut-down behavior, definitions

DIMENSION C-Series

8. EFFICIENCY AND POWER LOSSES

		3AC 400V	3AC 480V	
Efficiency	typ.	92.8%	92.9%	at 24V, 10A, 3-phase operation
	typ.	92.4%	92.6%	at 24V, 10A, when using only two legs of a 3-phase system, see also chapter 23.6.
Average efficiency *)	typ.	92.2%	92.0%	25% at 2.5A, 25% at 5A, 25% at 7.5A. 25% at 10A, 3-phase operation
Power losses	typ.	2.3W	2.6W	at 0A, 3-phase operation
	typ.	18.6W	18.3W	at 24V, 10A, 3-phase operation
	typ.	23.5W	22.8W	at 24V, 12A, 3-phase operation

^{*)} The average efficiency is an assumption for a typical application where the power supply is loaded with 25% of the nominal load for 25% of the time, 50% of the nominal load for another 25% of the time, 75% of the nominal load for another 25% of the time and with 100% of the nominal load for the rest of the time.

Fig. 8-1 **Efficiency vs. output current at 24V, typ., 3-phase operation**

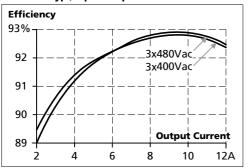


Fig. 8-3 Efficiency vs. input voltage at 24V, 10A, typ., 3-phase operation

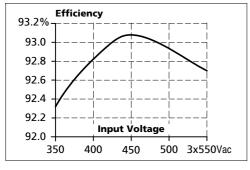
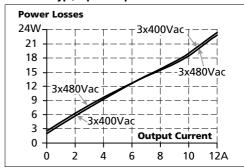
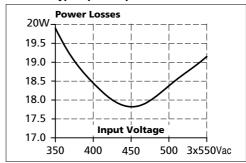
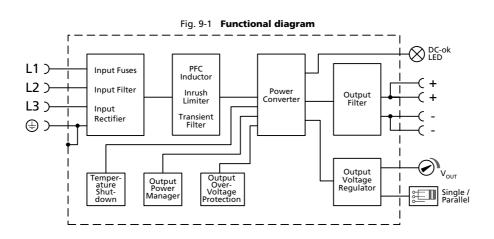
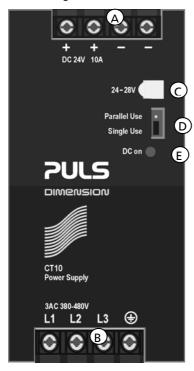


Fig. 8-2 Losses vs. output current at 24V, typ., 3-phase operation


Fig. 8-4 Losses vs. input voltage at 24V, 10A, typ., 3-phase operation


C-Series

9. FUNCTIONAL DIAGRAM

10. FRONT SIDE AND USER ELEMENTS

Fig. 10-1 Front side

- **Output Terminals** Screw terminals, dual terminals per pole
 - + Positive output
 - Negative (return) output
- **Input Terminals** Screw terminals
 - L1, L2, L3 Phase input
 - ⊕ PE (Protective Earth) input
- Output voltage potentiometer
 - Open the flap to set the output voltage. Factory set: 24.1V
- "Parallel Use" "Single Use" selector Set jumper to "Parallel Use" when power supplies are connected in parallel to increase the output power. In order to achieve a sharing of the load current between the individual power supplies, the "parallel use" regulates the output voltage in such a manner that the voltage at no load is approx. 5% higher than at nominal load. See also Fig. 6-2. A missing jumper is equal to a "Single Use" mode. Factory setting is "Single Use" mode.
- DC-OK LED (green) On when the voltage on the output terminals is > 21V

C-Series

11. TERMINALS AND WIRING

	Input	Output	
Туре	screw terminals	screw terminals	
Solid wire	0.5-6mm ²	0.5-6mm ²	
Stranded wire	0.5-4mm ²	0.5-4mm ²	
American Wire Gauge	20-10 AWG	20-10 AWG	
Wire stripping length	7mm / 0.275inch	7mm / 0.275inch	
Screwdriver	3.5mm slotted or	3.5mm slotted or	
	Pozidrive No 2	Pozidrive No 2	
Recommended tightening torque	0.8Nm, 7lb.in	0.8Nm, 7lb.in	

Instructions:

- a) Use appropriate copper cables that are designed for an operating temperature of: 60°C for ambient up to 45°C and 75°C for ambient up to 60°C minimum.
- b) Follow national installation codes and installation regulations!
- c) Ensure that all strands of a stranded wire enter the terminal connection!
- d) Up to two stranded wires with the same cross section are permitted in one connection point (except PE wire).
- e) Do not use the unit without PE connection.
- f) Screws of unused terminal compartments should be securely tightened.
- g) Ferrules are allowed, but not required

12. RELIABILITY

3-Phase operation	3AC 400V	3AC 480V	
Lifetime expectancy *)	54 000h	62 000h	at 24V, 10A and 40°C
	133 000h	134 000h	at 24V, 5A and 40°C
	151 000h	176 000h	at 24V, 10A and 25°C
MTBF **) SN 29500, IEC 61709	975 000h	985 000h	at 24V, 10A and 40°C
	1 706 000h	1 723 000h	at 24V, 10A and 25°C
MTBF **) MIL HDBK 217F	445 000h	429 000h	at 24V, 10A and 40°C; Ground Benign GB40
	584 000h	427 000h	at 24V, 10A and 25°C; Ground Benign GB25

Operation only on 2 legs of a three phase system	2AC 400V	2AC 480V	
Lifetime expectancy *)	48 000h	58 000h	at 24V, 10A and 40°C
	134 000h	145 000h	at 24V, 5A and 40°C
	135 000h	164 000h	at 24V, 10A and 25°C
MTBF **) SN 29500, IEC 61709	925 000h	939 000h	at 24V, 10A and 40°C
	1 633 000h	1 656 000h	at 24V, 10A and 25°C
MTBF **) MIL HDBK 217F	437 000h	423 000h	at 24V, 10A and 40°C; Ground Benign GB40
	573 000h	556 000h	at 24V, 10A and 25°C; Ground Benign GB25

The Lifetime expectancy shown in the table indicates the minimum operating hours (service life) and is determined by the lifetime expectancy of the built-in electrolytic capacitors. Lifetime expectancy is specified in operational hours and is calculated according to the capacitor's manufacturer specification. The prediction model allows only a calculation of up to 15 years from date of shipment.

Jan. 2010 / Rev. 1.3 DS-CT10.241-EN

MTBF stands for Mean Time Between Failure, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product.

13. EMC

The power supply is suitable for applications in industrial environment as well as in residential, commercial and light industry environment without any restrictions. The CE mark indicates conformance with EMC guideline 89/336/EC, 93/68/EC and 2004/108/EC and the low-voltage directive (LVD) 73/23/EC and 2006/95/EC. A detailed EMC report is available on request.

EMC Immunity	Generic standard	c standards: EN 61000-6-1 and EN 61000-6-2		
Electrostatic discharge	EN 61000-4-2	Contact discharge	8kV	Criterion A
		Air discharge	15kV	Criterion A
Electromagnetic RF field	EN 61000-4-3	80MHz-2.7GHz	10V/m	Criterion A
Fast transients (Burst)	EN 61000-4-4	Input lines	4kV	Criterion A
		Output lines	2kV	Criterion A
Surge voltage on input	EN 61000-4-5	L1 → L2, L2 → L3, L1 → L3	2kV	Criterion A
Surge voltage on input	EN 61000-4-5	L1 / L2 / L3 → PE	4kV	Criterion A
Surge voltage on output	EN 61000-4-5	+ → -	500V	Criterion A
		+ / - → PE	500V	Criterion A
Conducted disturbance	EN 61000-4-6	0.15-80MHz	10V	Criterion A
Mains voltage dips	EN 61000-4-11	N 61000-4-11 0% of 380Vac		Criterion A
(Dips on three phases)		0% of 480Vac	0Vac, 20ms	Criterion A
Mains voltage dips	EN 61000-4-11	40% of 380Vac	200ms	Criterion A
(Dips on two phases)		40% of 480Vac	200ms	Criterion A
		70% of 380Vac	500ms	Criterion A
		70% of 480Vac	500ms	Criterion A
Voltage interruptions	EN 61000-4-11		0Vac, 5000ms	Criterion C
Voltage sags	SEMI F47 0706	Dips on two phases according to section 7.2. of the SEMI F47 standard		
		80% of 380Vac	1000ms	Criterion A
		70% of 380Vac	500ms	Criterion A
		50% of 380Vac	200ms	Criterion A
Powerful transients	VDE 0160	over entire load range	1550V, 1.3ms	Criterion A

Criterions:

C: Temporary loss of function is possible. Power supply may shut-down and restarts by itself. No damage or hazards for the power supply will occur.

Generic standards: EN 61000-6-3 and EN 61000-6-4	
EN 55011, EN 55022, FCC Part 15, CISPR 11, CISPR 22	Class B, input lines
EN 55011, EN 55022	Class B
EN 61000-3-2	fulfilled
EN 61000-3-3	fulfilled
	EN 55011, EN 55022, FCC Part 15, CISPR 11, CISPR 22 EN 55011, EN 55022 EN 61000-3-2

This device complies with FCC Part 15 rules.

Operation is subjected to following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Switching frequency Variable between 60kHz and 140kHz depending on load and input voltage

A: Power supply shows normal operation behavior within the defined limits.

C-Series

14. ENVIRONMENT

Operational temperature *)	-25°C to +70°C (-13°F to 158°F)	reduce output power according Fig. 14-1
Storage temperature	-40 to +85°C (-40°F to 185°F)	for storage and transportation
Output de-rating	3.2W/°C	45-60°C (113°F to 140°F)
	6W/°C	60-70°C (140°F to 158°F)
Humidity **)	5 to 95% r.H.	IEC 60068-2-30
Vibration sinusoidal	2-17.8Hz: ±1.6mm; 17.8-500Hz: 2g 2 hours / axis	IEC 60068-2-6
Shock	30g 6ms, 20g 11ms 3 bumps / direction, 18 bumps in total	IEC 60068-2-27
Altitude	0 to 6000m (0 to 20 000ft)	reduce output power or ambient temperature above 2000m sea level.
Altitude de-rating	15W/1000m or 5°C/1000m	above 2000m (6500ft), see Fig. 14-2
Over-voltage category	III	IEC 62103, EN 50178, altitudes up to 2000m
	II	altitudes from 2000m to 6000m
Degree of pollution	2	IEC 62103, EN 50178, not conductive

Operational temperature is the same as the ambient temperature and is defined as the air temperature 2cm below the unit.

Fig. 14-1 Output current vs. ambient temp.

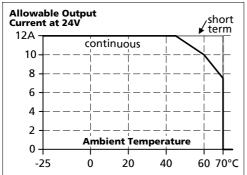
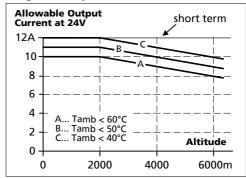



Fig. 14-2 Output current vs. altitude at 24V

^{**)} Do not energize while condensation is present

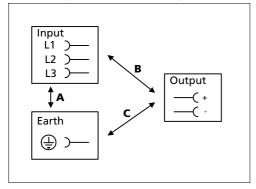
C-Series

15. Protection Features

Output protection	Electronically protected against overload, no-load and short-circuits *)			
Output over-voltage protection	typ. 30.5Vdc max. 32Vdc	In case of an internal power supply defect, a redundant circuit limits the maximum output voltage. The output shuts down and automatically attempts to restart.		
Degree of protection	IP 20	EN/IEC 60529		
Penetration protection	> 3.5mm	e.g. screws, small parts		
Over-temperature protection	yes	output shut-down with automatic restart		
Input transient protection	MOV (Metal Oxide Varistor) and active transient filter			
Internal input fuse	3x T3.15A H.B.C.	not user replaceable		

^{*)} In case of a protection event, audible noise may occur.

16. SAFETY FEATURES


Input / output separation *)	SELV	IEC/EN 60950-1
	PELV	IEC/EN 60204-1, EN 50178, IEC 62103, IEC 60364-4-41
Class of protection	I	PE (Protective Earth) connection required
Isolation resistance	> 5MOhm	input to output, 500Vdc
PE resistance	< 0.10hm	
Touch current (leakage current)	typ. 0.17mA	3x 400Vac, 50Hz, TN mains
	typ. 0.24mA	3x 480Vac, 60Hz, TN mains
	< 0.22mA	3x 440Vac, 50Hz, TN mains
	< 0.31mA	3x 528Vac, 60Hz, TN mains

Double or reinforced insulation

17. DIELECTRIC STRENGTH

The output voltage is floating and has no ohmic connection to the ground. Type and factory tests are conducted by the manufacturer. Field tests may be conducted in the field using the appropriate test equipment which applies the voltage with a slow ramp (2s up and 2s down). Connect all phase-terminals together as well as all output poles before conducting the test. When testing, set the cut-off current settings to the value in the table below.

Fig. 17-1 Dielectric strength

		Α	В	С
Type test	60s	2500Vac	3000Vac	500Vac
Factory test	5s	2500Vac	2500Vac	500Vac
Field test	5s	2000Vac	2000Vac	500Vac
Cut-off current	setting	> 10mA	> 10mA	> 30mA

To fulfill the PELV requirements according to EN60204-1 § 6.4.1, we recommend that either the + pole, the - pole or any other part of the output circuit shall be connected to the protective earth system. This helps to avoid situations in which a load starts unexpectedly or can not be switched off when unnoticed earth faults occur.

Jan. 2010 / Rev. 1.3 DS-CT10.241-EN

18. APPROVALS

C-Series

IEC 60950-1	IECEE CB SCHEME	CB Scheme, Information Technology Equipment
UL 508	C US LISTED IND. CONT. EQ.	Listed for use as Industrial Control Equipment; U.S.A. (UL 508) and Canada (C22.2 No. 107-1-01); E-File: E198865 Mains supply circuit: 3-wire + PE, star
UL 60950-1	c FU ®us	Recognized for use as Information Technology Equipment; U.S.A. (UL 60950-1) and Canada (C22.2 No. 60950); E-File: E137006, Level 5
Marine, pending	(GL) ABS	GL (Germanischer Lloyd) classified and ABS (American Bureau for Shipping) PDA Environmental category: C, EMC2 Marine and offshore applications
SEMI F47	SEMI F47	SEMI F47-0706 Ride-through compliance for the semiconductor industry. Full SEMI range compliance (Dips on two phases: 304Vac for 1000ms, 266Vac for 500ms and 190Vac for 200ms)

19. FULFILLED STANDARDS

EN 61558-2-17	Safety of Power Transformers
EN/IEC 60204-1	Safety of Electrical Equipment of Machines
EN/IEC 61131-2	Programmable Controllers
EN 50178, IEC 62103	Electronic Equipment in Power Installations

20. USED SUBSTANCES

The unit does not release any silicone and is suitable for the use in paint shops.

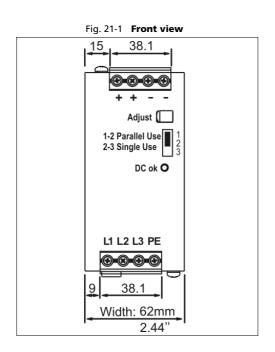
The unit conforms to the RoHS directive 2002/96/EC

Electrolytic capacitors included in this unit do not use electrolytes such as Quaternary Ammonium Salt Systems.

Plastic housings and other molded plastic materials are free of halogens, wires and cables are not PVC insulated.

The production material within our production does not include following toxic chemicals:

Polychlorized Biphenyl (PCB), Polychlorized Terphenyl (PCT), Pentachlorophenol (PCP), Polychlorinated naphthalene (PCN), Polybrom Biphenyll (PBB), Polybrom Bipheny-oxyd (PBO), Polybrominated Diphenylether (PBDE), Polychlorinated Diphenylether (PCDE), Polydibromphenyl Oxyd (PBDO), Cadmium, Asbestos, Mercury, Silicia



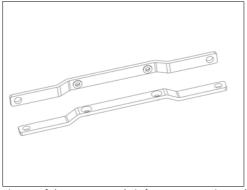
C-Series

21. PHYSICAL DIMENSIONS AND WEIGHT

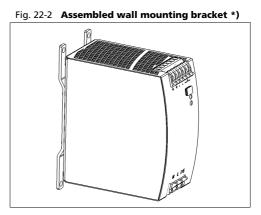
Weight	750g / 1.65lb
DIN-Rail	Use 35mm DIN-rails according to EN 60715 or EN 50022 with a height of 7.5 or 15mm. The DIN-rail height must be added to the unit depth (117mm) to calculate the total required installation depth.
Installation Clearances	See chapter 2

Depth: 117mm, 4.61"

C-Series

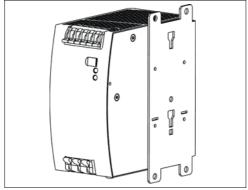

24V, 10A, THREE PHASE INPUT

22. Accessories


ZM1.WALL Wall mounting bracket

This bracket is used to mount specific Dimension units onto a flat surface without utilizing a DIN-Rail. The two aluminum brackets and the black plastic slider of the unit have to be removed, so that the two steel brackets can be

Fig. 22-1 ZM1.WALL Wall mounting bracket


Picture of the power supply is for representation only

ZM13.SIDE Side mounting bracket

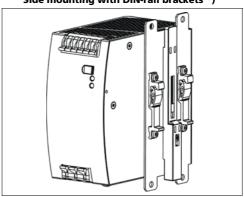

This bracket is used to mount Dimension units sideways with or without utilizing a DIN-Rail. The two aluminum brackets and the black plastic slider of the unit have to be detached, so that the steel brackets can be mounted. For sideway DIN-rail mounting, the removed aluminum brackets and the black plastic slider need to be mounted on the steel bracket.

Fig. 22-3 ZM13.SIDE Side mounting bracket *)

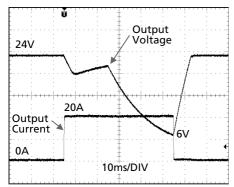
*) Picture of the power supply is for representation only

Fig. 22-4 Side mounting with DIN-rail brackets *)

C-Series

24V, 10A, THREE PHASE INPUT

23. APPLICATION NOTES


23.1. PEAK CURRENT CAPABILITY

Solenoids, contactors and pneumatic modules often have a steady state coil and a pick-up coil. The inrush current demand of the pick-up coil is several times higher than the steady-state current and usually exceeds the nominal output current (including the PowerBoost) The same situation applies, when starting a capacitive load.

Branch circuits are often protected with circuit breakers or fuses. In case of a short or an overload in the branch circuit, the fuse needs a certain amount of over-current to trip or to blow. The peak current capability ensures the safe operation of subsequent circuit breakers.

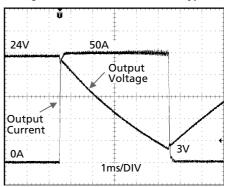

Assuming the input voltage is turned on before such an event, the built-in large sized output capacitors inside the power supply can deliver extra current. Discharging this capacitor causes a voltage dip on the output. The following two examples show typical voltage dips:

Fig. 23-1 Peak load 20A for 50ms, typ.

Peak load 20A (resistive) for 50ms Output voltage dips from 24V to 6V.

Fig. 23-2 Peak load 50A for 5ms, typ.

Peak load 50A (resistive) for 5ms Output voltage dips from 24V to 3V.

23.2. BACK-FEEDING LOADS

Loads such as decelerating motors and inductors can feed voltage back to the power supply. This feature is also called return voltage immunity or resistance against Back- E.M.F. (Electro Magnetic Force).

This power supply is resistant and does not show malfunctioning when a load feeds back voltage to the power supply. It does not matter, whether the power supply is on or off.

The maximum allowed feed-back-voltage is 35Vdc. The absorbing energy can be calculated according to the built-in large sized output capacitor which is specified in chapter 6.

C-Series

23.3. CHARGING OF BATTERIES

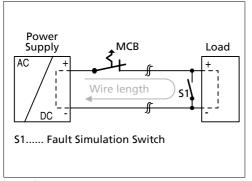
The power supply can be used to charge lead-acid or maintenance free batteries. (Two 12V batteries in series)

Instructions for charging batteries:

- Set jumper on the front of the unit into "Parallel Use"
- Set output voltage (measured at no load and at the battery end of the cable) very precisely to the end-of-charge voltage.

End-of-charge voltage	27.8V	27.5V	27.15V	26.8V
Battery temperature	10°C	20°C	30°C	40°C

- Use a 16A circuit breaker (or blocking diode) between the power supply and the battery. c)
- d) Ensure that the output current of the power supply is below the allowed charging current of the battery.
- Use only matched batteries when putting 12V types in series. e)
- The return current to the power supply (battery discharge current) is typ. 8mA when the power supply is switched f) off (except in case a blocking diode is utilized).


23.4. OUTPUT CIRCUIT BREAKERS

Standard miniature circuit breakers (MCB's or UL1077 circuit breakers) are without doubt, one of the most efficient and economical ways to open circuits on faulty branches. Most of these breakers may also be used on 24V branches.

MCB's are designed to protect wires and circuits. If the ampere value and the characteristics of the MCB are adapted to the wire size that is used, the wiring is considered as thermally safe regardless of whether the MCB opens or not.

To avoid voltage dips and under-voltage situations in adjacent 24V branches which are supplied by the same source, a fast (magnetic) tripping of the MCB is desired. A quick shutdown within 10ms is necessary corresponding roughly to the ride-through time of PLC's. This requires power supplies with high current reserves and large output capacitors. Furthermore, the impedance of the faulty branch must be sufficiently small in order for the current to actually flow. The best current reserve in the power supply does not help if Ohm's law does not permit current flow. The following table has typical test results showing which B- and C-Characteristic MCBs magnetically trip depending on the wire cross section and wire length.

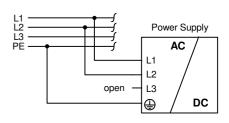
Fig. 23-3 Test circuit

Maximal wire length for a magnetic (fast) tripping *):

	0.75mm ²	1.0mm ²	1.5mm ²	2.5mm ²
C-2A	23m	28m	43m	69m
C-3A	18m	23m	34m	54m
C-4A	6m	12m	18m	28m
C-6A	3m	4m	6m	7m
C-8A	2m	3m	4m	5m
C-10A	1m	2m	3m	4m
B-6A	9m	14m	19m	33m
B-10A	4m	5m	6m	9m
B-13A	3m	4m	5m	8m

Don't forget to consider two times the distance to the load (or cable length) when calculating the total wire length (+ and - wire).

C-Series


23.5. EXTERNAL INPUT PROTECTION

The unit is tested and approved for branch circuits up to 30A (U.S.A.) and 32A (IEC). An external protection is only required, if the supplying branch has an ampacity greater than this. Check also local codes and local requirements. In some countries local regulations might apply.

If an external fuse is necessary or utilized, minimum requirements need to be considered to avoid nuisance tripping of the circuit breaker. A minimum value of 6A B- or 3A C-Characteristic breaker should be used

23.6. Using only 2 Legs of a 3-Phase System

The power supply is allowed to run permanently on two legs of a 3-phase system, when the output power is reduced according to the curves below. A long-term exceeding of these limits will result in a thermal shut-down of the unit. No external protection device is required to protect against a phase-loss failure. EMC performance, hold-up time and losses differ from a three phase operation. Therefore, check suitability of your individual application. The screw of the terminal which remains unused must be securely tightened.

Using only two legs of a 3-phase system is not included in the UL approval. Therefore, additional testing might be necessary.

Fig. 23-4 Allowed output current for use on only two legs of a 3-phase system

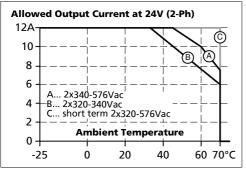


Fig. 23-6 Efficiency vs. output current at 24V for use on only two legs of a 3-phase system

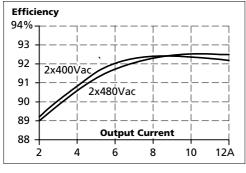


Fig. 23-5 Hold-up time for use on only two legs of a 3-phase system

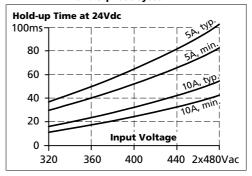
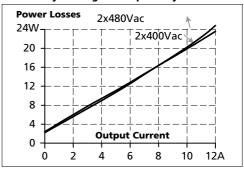
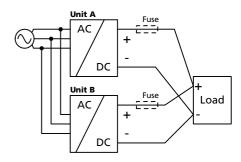



Fig. 23-7 Losses vs. output current at 24V for use on only two legs of a 3-phase system


Jan. 2010 / Rev. 1.3 DS-CT10.241-EN

23.7. INDUCTIVE AND CAPACITIVE LOADS

The unit is designed to supply any kind of loads, including unlimited capacitive and inductive loads.

23.8. Parallel Use to Increase Output Power

CT10.241 power supplies can be paralleled to increase the output power. This power supply can also be paralleled with power supplies from the DIMENSION CT, QS or QT-series. The output voltage of all power supplies shall be adjusted to the same value (±100mV) in "Single use" mode with the same load conditions on all units, or the units can be left with the factory settings. After the adjustments, the jumper on the front of the unit shall be moved from "Single use" to "Parallel use", in order to achieve load sharing. The "Parallel use" mode regulates the output voltage in such a manner that the voltage at no load is approx. 5% higher than at nominal load. See also chapter 6. If no jumper is plugged in, the unit is in "Single use". Factory

setting is "Single use" mode. A fuse (or diode) on the output of each unit is only required if more than three units are connected in parallel. If a fuse (or circuit breaker) is used, choose one with approximately 150% of the rated output current of the power supply. Keep an installation clearance of 15mm (left / right) between two power supplies and avoid installing the power supplies on top of each other. Do not use power supplies in parallel in mounting orientations other than the standard mounting orientation (input terminals on the bottom and output terminals on top of the unit) or in any other condition where a derating of the output current is required (e.g. altitude, above 60°C, ...). Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple power supplies.

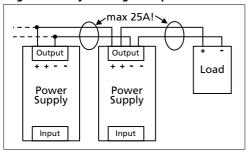
23.9. PARALLEL USE FOR REDUNDANCY

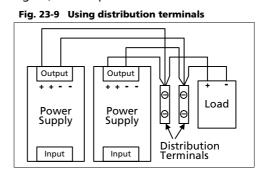
Power supplies can be paralleled for redundancy to gain higher system availability. Redundant systems require a certain amount of extra power to support the load in case one power supply unit fails. The simplest way is to put two power supplies in parallel. This is called a 1+1 redundancy. In case one power supply unit fails, the other one is automatically able to support the load current without any interruption. Redundant systems for a higher power demand are usually built in a N+1 method. E.g. five power supplies, each rated for 10A are paralleled to build a 40A redundant system. For N+1 redundancy the same restrictions apply as for increasing the output power, see also section 23.8.

Please note: This simple way to build a redundant system does not cover failures such as an internal short circuit in the secondary side of the power supply. In such a case, the defect unit becomes a load for the other power supplies and the output voltage can not be maintained any more. This can only be avoided by utilizing decoupling diodes which are included in the decoupling module YRM2.DIODE.

Recommendations for building redundant power systems:

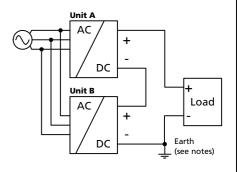
- a) Use separate input fuses for each power supply.
- b) Set the power supply into "Parallel Use".
- Monitor the individual power supply units. A DC-ok lamp and a DC-ok contact are included in the redundancy module YRM2.DIODE. This feature reports a faulty unit.
- d) It is desirable to set the output voltages of all units to the same value (± 100mV) or leave it at the factory setting.


C-Series


24V, 10A, THREE PHASE INPUT

23.10. Daisy Chaining of Outputs

Daisy chaining (jumping from one power supply output to the next) is allowed as long as the average output current through one terminal pin does not exceed 25A. If the current is higher, use a separate distribution terminal block.


Fig. 23-8 Daisy chaining of outputs

23.11. SERIES OPERATION

Power supplies of the same type can be connected in series for higher output voltages. It is possible to connect as many units in series as needed, providing the sum of the output voltage does not exceed 150Vdc. Voltages with a potential above 60Vdc are not SELV any more and can be dangerous. Such voltages must be installed with a protection against touching. Earthing of the output is required when the sum of the output voltage is above 60Vdc. Avoid return voltage (e.g. from a decelerating motor or battery) which is applied to the output terminals. Keep an installation clearance of 15mm (left / right) between two power supplies and avoid installing the power supplies on top of each other. Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple power supplies.

23.12. USE IN A TIGHTLY SEALED ENCLOSURE

When the power supply is installed in a tightly sealed enclosure, the temperature inside the enclosure will be higher than outside. In such situations, the inside temperature defines the ambient temperature for the power supply.

The following measurement results can be used as a reference to estimate the temperature rise inside the enclosure.

The power supply is placed in the middle of the box, no other heat producing items are inside the box

Enclosure: Rittal Typ IP66 Box PK 9519 100, plastic, 180x180x165mm

Load: 24V, 8A; (=80%) load is placed outside the box

Input: 3x 400Vac

Temperature inside enclosure: 48.4°C (in the middle of the right side of the power supply with a distance of 2cm)

Temperature outside enclosure: 24.5°C Temperature rise: 24.5°C 23.9K

C-Series

23.13. Mounting Orientations

Mounting orientations other than input terminals on the bottom and output on the top require a reduction in continuous output power or a limitation in the maximum allowed ambient temperature. The amount of reduction influences the lifetime expectancy of the power supply. Therefore, two different derating curves for continuous operation can be found below:

Curve A1 Recommended output current.

Curve A2 Max allowed output current (results in approximately half the lifetime expectancy of A1).

Fig. 23-10

Mounting

Orientation A

(Standard

orientation)

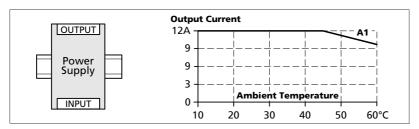


Fig. 23-11

Mounting

Orientation B

(Upside down)

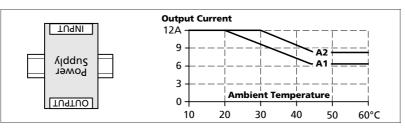


Fig. 23-12

Mounting
Orientation C
(Table-top
mounting)

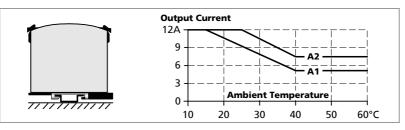


Fig. 23-13
Mounting
Orientation D
(Horizontal cw)

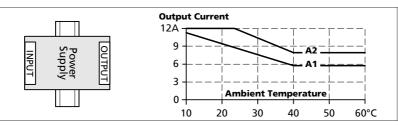
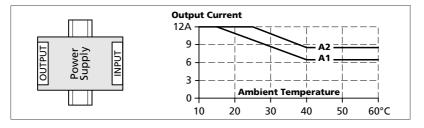



Fig. 23-14

Mounting

Orientation E

(Horizontal ccw)

Jan. 2010 / Rev. 1.3 DS-CT10.241-EN