

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

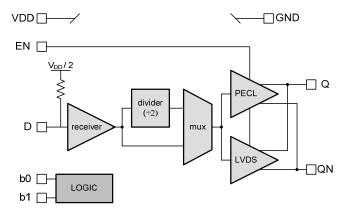
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



FEATURES

- 2.5V-3.3V Operation
- Ultra-Low Phase Noise Floor
 - o LVPECL -167dBc/Hz
 - o LVDS -165dBc/Hz
- Configurable
 - LVPECL or LVDS Output
 - o +1 or +2
 - Enable Active High or Low
- > 1GHz+ Bandwidth
- RoHS Compliant Pb Free Packages

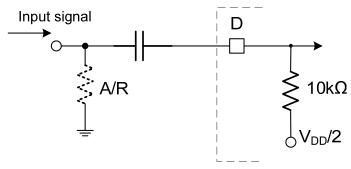
BLOCK DIAGRAM

DESCRIPTION

- The CTSLV310 is a configurable LVPECL, LVDS buffer & translator IC that is optimized for ultra-low phase noise and 2.5V-3.3V nominal supply voltage. It is particularly useful in converting crystal or SAW based oscillators into LVPECL and LVDS outputs for up to 1GHz of bandwidth. For a design that includes gain in the signal path, refer to the CTSLV315.
- A configurable IC design capable of providing LVPECL or LVDS outputs, ÷1 or ÷2 function, and active high or active low enable selection. See Table 1 for details of the configurations options that provide designers with a single IC buffer/translator solution that is extremely compact, flexible and high performance.
- 8 configurations which are determined by the static voltage levels of b-0 and b-1. Table 1 details the configurations.

Table 1 - Possible IC Configuration

Configuration Bits		Functional Configuration			
b-0	b-1	Output Type Enable Polarity		Division	
Open	Open	LVPECL	Active High	÷1	
Open	Low	LVPECL	Active High	÷2	
Open	High	LVPECL	Active Low	÷1	
Low	Open	LVPECL	Active Low	÷2	
Low	Low	LVDS	Active High	÷1	
Low	High	LVDS	Active High	÷2	
High	Open	LVDS	Active Low	÷1	
High	Low	LVDS	Active Low	÷2	
High	High	Not Used	Not Used	Not Used	

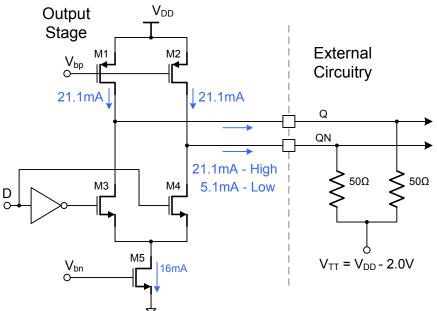

CTSLV310

Ultra-Low Phase Noise LVPECL, LVDS Buffer and Translator

SON8, MSOP8

Input Termination

The D input bias is $V_{DD}/2$ fed through an internal $10k\Omega$ resistor. For clock applications, an input signal of at least 750m V_{PP} ensures the CTSLV10 meets AC specifications. The input should also be AC coupled to maintain a 50% duty cycle on the outputs. The input can be driven to any voltage between 0V and V_{DD} without damage or waveform degradation.



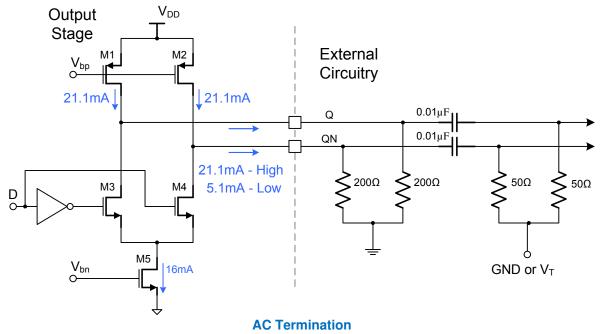
LVPECL Output Termination Techniques

DC Coupling

The LVPECL compatible output stage of the CTSLV310 uses a current drive topology to maximize switching speed as illustrated below. Two current source PMOS transistors (M1-M2) feed the output pins. M5 is an NMOS current source which is switched by M3 and M4. When M4 is on, M5 takes current from M2. This produces an output current of 5.1mA (low output state). M3 is off, and the entire 21.1mA flows through the output pin. The associated output voltage swings match LVPECL levels when external 50Ω resistors terminate the outputs.

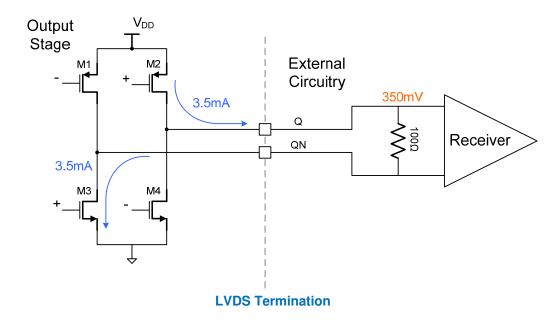
Both Q and QN should always be terminated identically to avoid waveform distortion and circulating current caused by unsymmetrical loads. This rule should be followed even if only one output is in use.

Typical Output Termination


CTSLV310

Ultra-Low Phase Noise LVPECL, LVDS Buffer and Translator

SON8, MSOP8


AC Coupling

Clock applications or phase noise/frequency domain testing scenarios typically require AC coupling. The illustration below shows the AC coupling technique. The 200Ω resistors form the required DC loads, and the 50Ω resistors provide the AC termination. The parallel combination of the 200Ω and 50Ω resistors results in a net 40Ω AC load termination. In many cases this will work well. If necessary, the 50Ω resistors can be increased to about 56Ω . Alternately, bias tees combined with current setting resistors will eliminate the lowered AC load impedance. The 50Ω resistors are typically connected to ground but can be connected to the bias level needed by the succeeding stage.

LVDS Output Termination Technique

The following LVDS termination is compliant to the LVDS specification TIA/EIA-644A.

CTS.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Rating

Symbol	Characteristic	Conditions	Min	Тур	Max	Unit	
V	Cupply Voltage		2.375	2.5		V	
V_{DD}	Supply Voltage			3.3	3.6	V	
V	Absolute Max Power Supply	Continuous			3.6	V	
V _{ABSOLUTE}	Absolute Max Fower Supply	t ≤ 1s			5.5	V	
T _{OP}	Operating Temperature Range		-40		85	°C	
T _{STORAGE}	Storage Temperature Range		-65		150	°C	
		D	-0.5		V _{DD} +0.5		
V	Maximum Input Voltages	EN	-0.5		$V_{DD} + 0.5$	V	
V_{I_MAX}	waxiinum input voitages	b0	-0.5		$V_{DD} + 0.5$		
		b1	-0.5		$V_{DD} + 0.5$		
1	b-0, b-1 Input High Current	b-0, b-1 = V _{DD}			11	uA	
I _{b0,b1}	b-0, b-1 Input Low Current		-11			uA	
Vt _{b0,b1}	b-0, b-1 Input High Voltage Threshold		V _{DD} -0.5		V_{DD}	V	
ν ι _{b0,b1}	b-0, b-1 Input Low Voltage Threshold		0		0.5	V	
I _{EN}	EN Input Current		-4		3	uA	
Vt _{EN}	EN Input High Voltage Threshold		V _{DD} -0.5		V_{DD}	V	
VIEN	EN Input Low Voltage Threshold		0		0.5	V	
		Human Body Model	2000				
ESD	ESD Ratings	Machine Model	200			V	
LOD	202	Charged Device Model	2000				

RevA0215

LVPECL Performance Specifications

Symbol	Characteristic	Conditions	Min	Тур	Max	Unit
f	May Input Fraguency	÷1 mode	1000			MHz
f _{MAX}	Max Input Frequency	÷2 mode	1600			IVITZ
R_L	Output Loading			50		Ω
R _{BIAS}	Input Bias Resistor	D input to V _{DD} /2 ref		10k		Ω
W	Input Voltage Cwing	minimum ¹	0.2			V
V_{IN_SWING}	Input Voltage Swing	recommended ¹	0.6			V_{PP}
		V_{DD} = 2.5V, HIGH	V _{DD} -1.25		V _{DD} -0.88	V
V	Voltago Output Lavola	V_{DD} = 2.5V, LOW	V _{DD} -1.86		V _{DD} -1.66	V
V _{OUT}	Voltage Output Levels	V_{DD} = 3.3V, HIGH	V _{DD} -1.15		V _{DD} -0.88	V
		V_{DD} = 3.3V, LOW	V _{DD} -1.86		V _{DD} -1.75	V
		V _{DD} = 2.5V	0.54		0.93	V _{PP} , Q/QN
V	V _{OD} Differential Output Voltage		0.75		5.47	dBm, Q/QN
V _{OD}			0.74		0.93	V _{PP} , Q/QN
		V _{DD} = 3.3V	3.49		5.47	dBm, Q/QN
t_R / t_F	Output Rise/Fall Time	80%-20%	100		205	ps
PN	Phase Noise Floor	1MHz Offset	-167			dBc/Hz
J _{INTEG}	Integrated Jitter: 12kHz-20MHz	155MHz Carrier	26			fs
T _{ENABLE}	Enable Time ²	EN = active			15	us
T _{DISABLE}	Disable Time ²	EN = disabled			0.5	us
T _{PROP}	Propagation Delay ³		0.9		2.2	ns
I	Power Supply Current	EN = active ⁴		28.5		mA
I _{DD}	r ower Suppry Current	EN = disabled ⁵			5	IIIA

¹ Phase noise floor performance is dependent upon input voltage swing. Voltage swing values below recommended values may result in degraded phase noise values.

Into and out of tri-state condition.

Time from D crossing $V_{DD}/2$ to Q=QN.

 V_{DD} =3.3V, F_{IN} @ 200MHz.

D = 0V.

LVDS Performance Specifications

Symbol	Characteristic	Conditions	Min	Тур	Max	Unit	
f _{MAX}	Max Input Fraguency	÷1 mode	1000			MHz	
MAX	Max Input Frequency	÷2 mode	1600			IVITIZ	
R_L	Output Loading			100		Ω	
R _{BIAS}	Input Bias Resistor	D input to V _{DD} /2 ref		10k		Ω	
\/	Input Valtage Swing	minimum ¹	0.2			V	
V _{IN_SWING}	Input Voltage Swing	recommended ¹	0.6			V_{PP}	
\/	Voltage Output Levels	V _{DD} = 2.5V	290		454	mV	
V_{OUT}	Voltage Output Levels	V _{DD} = 3.3V	290		454	IIIV	
V _{OD}	Differential Output Voltage		-50		50	mV	
V _{oc}	Common Mode Output Voltage		1.125		1.375	V	
ΔV _{OC}	Delta in Common Mode Output Voltage ²		-50		50	mV	
$V_{OC,PP}$	Peak-to-Peak Common Mode Output Voltage				100	mV	
t _R / t _F	Output Rise/Fall Time	80%-20%	120		220	ps	
PN	Phase Noise Floor	1MHz Offset	-165			dBc/Hz	
J _{INTEG}	Integrated Jitter: 12kHz - 20MHz	155MHz Carrier	36			fs	
T _{ENABLE}	Enable Time ³	EN = active			4	us	
T _{DISABLE}	Disable Time ³	EN = disabled			0.5	us	
T _{PROP}	Propagation Delay ⁴		8.0		1.7	ns	
1	Dower Supply Current	EN = active ⁵		12.9		mΛ	
I _{DD}	Power Supply Current	EN = disabled ⁶	5		5	mA	

Phase noise floor performance is dependent upon input voltage swing. Voltage swing values below recommended values may result in degraded phase noise values.

Between logics states.

Into and out of tri-state condition.

Time from D crossing $V_{DD}/2$ to Q=QN.

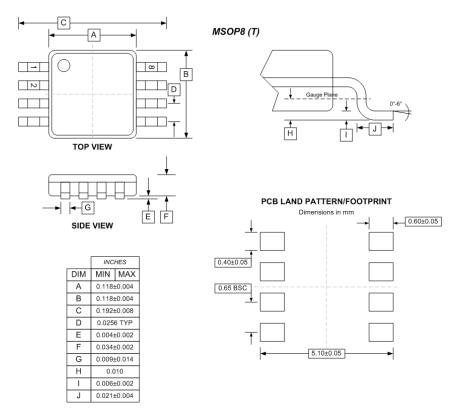
 V_{DD} =3.3V, F_{in} @ 200MHz.

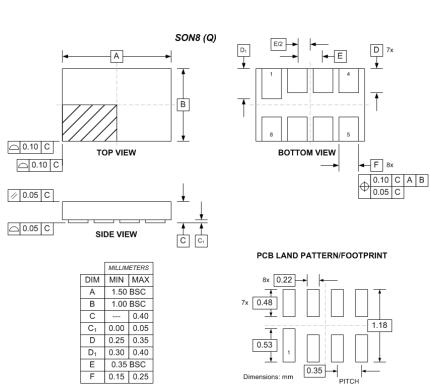
D = 0V.

Pin Description and Configuration

Pin Assignments

Pin	Name	I/O/P	Function	Properties
1	EN	I	Enable	Configurable functionality
2	Q	0	Output Signal	Configurable (LVPECL, LVDS)
3	QN	0	Output Signal	Configurable (LVPECL, LVDS)
4	GND	Р	Negative Supply	0V
5	D	I	Input Signal	
6	В0	1	Configuration Bit	Tertiary Levels
7	B1		Configuration Bit	Tertiary Levels
8	V_{DD}	Р	Positive Supply	2.375V - 3.6V




PART ORDERING INFORMATION

Part Number	Package	Marking
CTSLV310QG	SON8	SYW
CTSLV310TG	MSOP8	BE0G / YYWW

PACKAGE DIMENSIONS

