# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

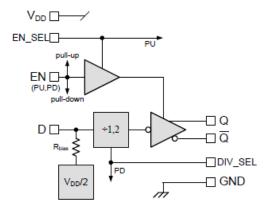
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China






## **FEATURES**

- LVPECL Outputs Optimized for Very Low Phase Noise (-165dBc/Hz)
- > Up to 800MHz Bandwidth
- Selectable ÷1, ÷2 Output
- Selectable Enable Logic
- > 3.0V to 3.6V Operation
- RoHS Compliant Pb Free Packages

#### **BLOCK DIAGRAM**



## DESCRIPTION

The CTSLV353 is a sine wave/CMOS to LVPECL buffer/translator optimized for very low phase noise (-165dBc/Hz). It is particularly useful in converting crystal or SAW based oscillators into LVPECL outputs for up 800MHz of bandwidth. For greater bandwidth, refer to the <u>CTSLV363</u>.

The CTSLV353 is one of a family of parts that provide options of fixed ÷1, fixed ÷2 and selectable ÷1, ÷2 modes as well as active high enable or active low enable to oscillator designers. Refer to Table 1 for the comparison of parts within the CTSLV35x and CTSLV363 family.

## **ENGINEERING NOTES**

## Functionality

Table 1 details the differences between the family parts to assist designers in selecting the optimal part for their design.

Table 2 lists the specific CTSLV353 functional operation.

Figure 1 plots the S-parameters of the D input.

| Part Number | Divide Ratio        | EN Logic    | EN Pull-Up /<br>Pull-Down | Bandwidth |
|-------------|---------------------|-------------|---------------------------|-----------|
| CTSLV351    | ÷1                  | active HIGH | Pull-up                   | > 800MHz  |
| CTSLV353    | Selectable ÷1 or ÷2 | selectable  | selectable                | > 800MHz  |
| CTSLV363    | Selectable ÷1 or ÷2 | selectable  | selectable                | ≥ 1GHz    |

## Table 1



|             | Inputs   |                          |      | Outputs      |      |
|-------------|----------|--------------------------|------|--------------|------|
| Part Number | EN_SEL   | EN                       | D    | Q            | `Q   |
| CTSLV353    | High, NC | Low, NC                  | Low  | Low          | High |
|             |          |                          | High | High         | Low  |
|             |          | High                     | Х    | Z            | Z    |
|             | Low      | High, NC<br>High High Lo | Low  | Low          | High |
|             |          |                          | High | High         | Low  |
|             |          |                          | Z    |              |      |
|             | DIV_SEL  |                          |      | Divide Ratio |      |
|             | Low, NC  |                          |      | ÷1           |      |
|             | High     |                          |      | ÷2           |      |

## Table 2 - CTSLV353 Functional Operation, +1 mode

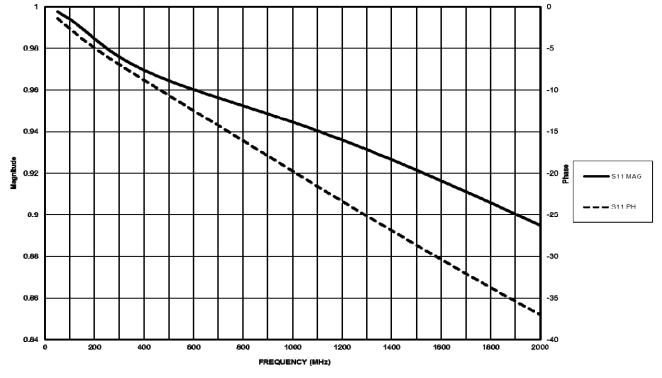
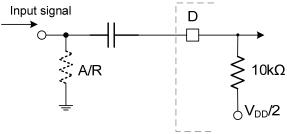



Figure 1 - S11, Parameters, D Input




Length Americas: +1-800-757-6686 • International: +1-508-435-6831 • Asia: +65-655-17551 • www.ctscorp.com/semiconductors Specifications are subject to change without notice.



#### **Input Termination**

The D input bias is  $V_{DD}/2$  fed through an internal  $10k\Omega$  resistor. For clock applications, an input signal of at least 750mV<sub>PP</sub> ensures the CTSLV353 meets AC specifications. The input should also be AC coupled to maintain a 50% duty cycle on the outputs. The input can be driven to any voltage between 0V and  $V_{DD}$  without damage or waveform degradation.

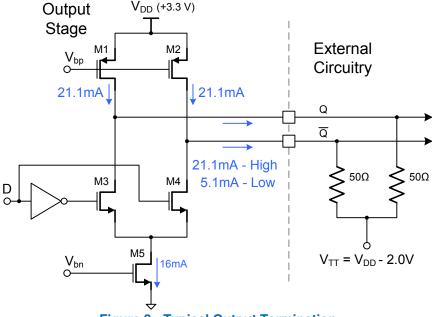


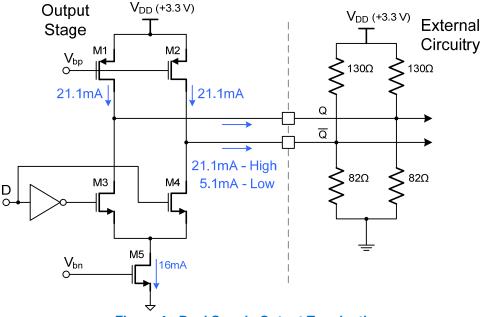
**Figure 2 - Input Termination** 

#### **Output Termination Techniques**

The LVPECL compatible output stage of the CTSLV353 uses a current drive topology to maximize switching speed as illustrated below in Figure 3. Two current source PMOS transistors (M1-M2) feed the output pins. M5 is an NMOS current source which is switched by M3 and M4. When M4 is on, M5 takes current from M2. This produces an output current of 5.1mA (low output state). M3 is off, and the entire 21.1mA flows through the output pin. The associated output voltage swings match LVPECL levels when external 50 $\Omega$  resistors terminate the outputs.

Both Q and  $\overline{Q}$  should always be terminated identically to avoid waveform distortion and circulating current caused by unsymmetrical loads. This rule should be followed even if only one output is in use.

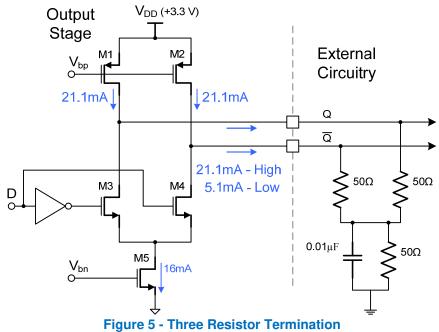




Figure 3 - Typical Output Termination



## CTSLV353 Low Phase Noise LVPECL Buffer and Translator QFN8, SON8

#### **Dual Supply LVPECL Output Termination**


The standard LVPECL loads are a pair of  $50\Omega$  resistors connected between the outputs and V<sub>DD</sub>-2.0V (Figure 3). The resistors provide both the DC and the AC loads, assuming  $50\Omega$  interconnect. If an additional supply is available within the application, a four resistor termination configuration is possible (Figure 4).



## Figure 4 - Dual Supply Output Termination

#### **Three Resistor Termination**

Another termination variant eliminates the need for the additional supply (Figure 5). Alternately three resistors and one capacitor accomplish the same termination and reduce power consumption.



North Americas: +1-800-757-6686 • International: +1-508-435-6831 • Asia: +65-655-17551 • www.ctscorp.com/semiconductors Specifications are subject to change without notice.



#### **Evaluation Board (EBP53)**

CTS's evaluation board, EBP53, provides the most convenient way to test and prototype CTSLV353 series circuits. Built for the CTSLV353QG 1.5x1.0mm package, it is designed to support both dual and single supply operation. Dual supply operation ( $V_{DD}$ =+2.0V,  $V_{SS}$ =-1.3V) enables direct coupling to 50 $\Omega$  time domain test equipment (Figure 6).

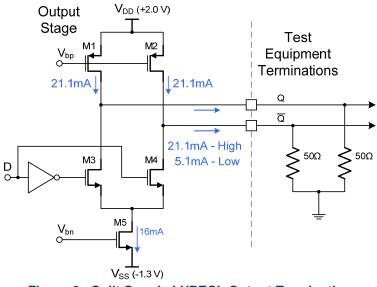
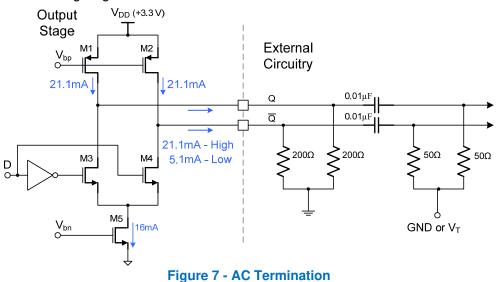




Figure 6 - Split Supply LVPECL Output Termination

## **AC Termination**

Clock applications or phase noise/frequency domain testing scenarios typically require AC coupling. Figure 7 below shows the AC coupling technique. The  $200\Omega$  resistors form the required DC loads, and the  $50\Omega$  resistors provide the AC termination. The parallel combination of the  $200\Omega$  and  $50\Omega$  resistors results in a net  $40\Omega$  AC load termination. In many cases this will work well. If necessary, the  $50\Omega$  resistors can be increased to about  $56\Omega$ . Alternately, bias tees combined with current setting resistors will eliminate the lowered AC load impedance. The  $50\Omega$  resistors are typically connected to ground but can be connected to the bias level needed by the succeeding stage.





North Americas: +1-800-757-6686 • International: +1-508-435-6831 • Asia: +65-655-17551 • www.ctscorp.com/semiconductors Specifications are subject to change without notice.

## **ELECTRICAL SPECIFICATIONS**

## **Absolute Maximum Ratings**

#### Absolute Maximum Ratings are those values beyond which device life may be impaired.

| Symbol             | Characteristic              | Rating                        | Unit |
|--------------------|-----------------------------|-------------------------------|------|
| V <sub>DD</sub>    | Power Supply                | 0 to +5.5                     | V    |
| VI                 | Input Voltage               | -0.5 to V <sub>DD</sub> + 0.5 | V    |
| T <sub>A</sub>     | Operating Temperature Range | -40 to +85                    | °C   |
| T <sub>STG</sub>   | Storage Temperature Range   | -65 to +150                   | °C   |
| ESD <sub>HBM</sub> | Human Body Model            | 2500                          | V    |
| ESD <sub>MM</sub>  | Machine Model               | 200                           | V    |
| ESD <sub>CDM</sub> | Charged Device Model        | 2500                          | V    |

## **DC Characteristics**

#### DC Characteristics (V<sub>DD</sub> = 3.0V to 3.6V unless otherwise specified, T<sub>A</sub> = -40°C to +85°C) Symbol Conditions Characteristic Min Тур Max Unit -40°C 2.05 2.415 Output HIGH Voltage<sup>1</sup> +25°C $V_{DD} = 3.3V$ 2.48 V V<sub>OH</sub> 2.05 +85°C 2.05 2.54 -40°C 1.365 1.615 Output LOW Voltage<sup>1</sup> VOL +25°C $V_{DD} = 3.3V$ 1.43 1.68 V +85°C 1.49 1.74 Output Leakage Current, **EN=Disable** -10 10 $I_7$ μA Tri-state<sup>2</sup> EN SEL VIH High Level Input Voltage 2 V DIV SEL V VIL Low Level Input Voltage EN 0.8 2.2 $I_{PU}$ Pull-up Current EN\_SEL μΑ **Pull-down Current** -2.2 DIV\_SEL $I_{PD}$ μΑ Pull-up / Pull-down Current ±2.2 $I_{P}$ EN μA D Input to Internal $\mathsf{R}_{\mathsf{BIAS}}$ **Bias Resistor** 10k Ω V<sub>DD</sub>/2 Reference **Power Supply Current** 22 35 mΑ $I_{DD}$ Power Supply Current -D Input $\leq V_{IL}$

 $^1$  Specified with outputs terminated through 50  $\Omega$  resistors to  $V_{\text{DD}}$  -2V or Thevenin equivalent.

<sup>2</sup> Measured at Q /  $\overline{Q}$  pins.

Outputs Tri-state<sup>1</sup>

DDZ



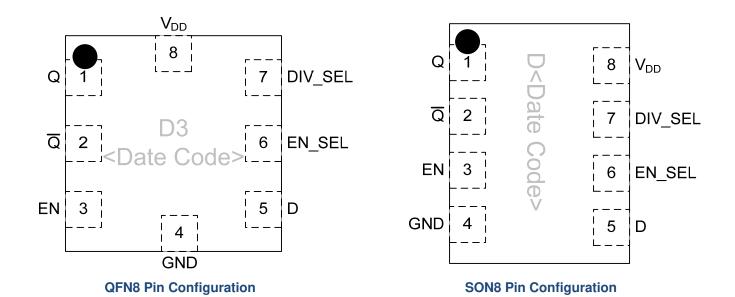
**EN=Disable** 

8

mΑ

## **AC Characteristics** AC Characteristics ( $V_{DD}$ = 3.0V to 3.6V, $T_A$ = -40°C to +85°C)

AC Specifications guaranteed by design Symbol **Characteristic** Min Тур Max Unit Output Rise/Fall<sup>1, 2</sup> t<sub>r</sub> / t<sub>f</sub> 80 250 ps (20% - 80%) Maximum Input Frequency - Sine wave<sup>2</sup> ÷1 800 MHz  $\mathbf{f}_{MAX}$ ÷2 1300 Maximum Recommended Input Signal VINMAX  $V_{DD}$  $V_{PP}$ VINMIN Minimum Recommended Input Signal 0.2  $V_{PP}$ 938 **Propagation Delay** 1614 t<sub>PLH</sub> ps **Propagation Delay** 938 1614 t<sub>PHL</sub> ps RMS Jitter: 12kHz - 20MHz, 155MHz Center 36 fs Ĵrмs Freq Phase Noise<sup>1, 2</sup> - 1MHz offset -165 dBc/Hz  $n_P$ 


<sup>1</sup> Specified with outputs terminated through 50W resistors to  $V_{CC}$  -2V or Thevenin equivalent.

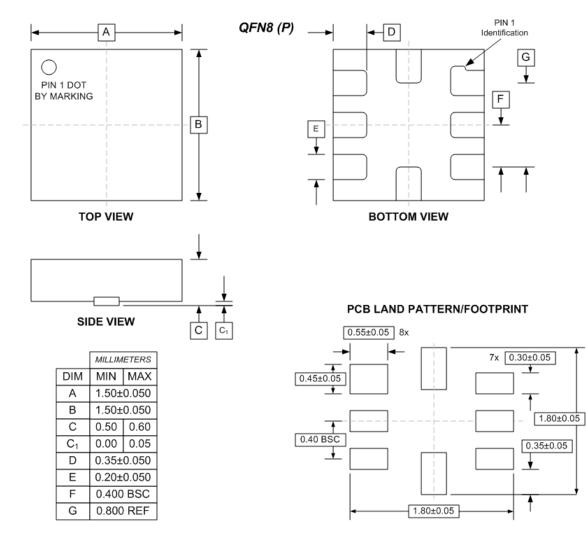
<sup>2</sup> 1.5  $V_{P-P}$  sine wave input, AC coupled to D pin.



## **Pin Description and Configuration**

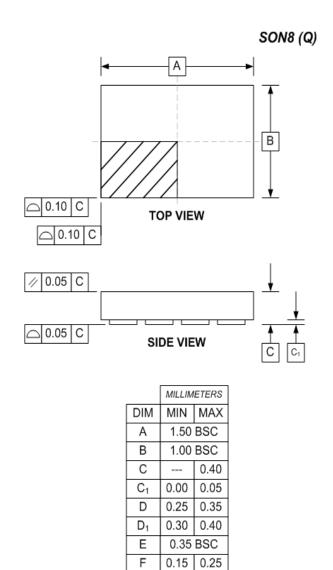
| Pin Assignments |                 |        |                    |
|-----------------|-----------------|--------|--------------------|
| Pin             | Name            | Туре   | Function           |
| 1               | Q               | Output | LVPECL Output      |
| 2               | Q               | Output | LVPECL Output      |
| 3               | EN              | Input  | Enable             |
| 4               | GND             | Power  | Negative Supply    |
| 5               | D               | Input  | Sine or CMOS Input |
| 6               | EN_SEL          | Input  | Enable Select      |
| 7               | DIV_SEL         | Input  | Divide Select      |
| 8               | V <sub>DD</sub> | Power  | Positive Supply    |

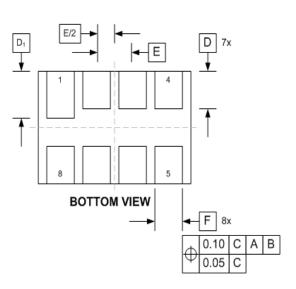



## PART ORDERING INFORMATION

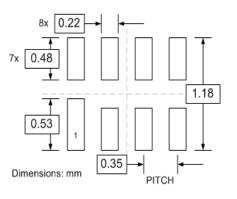
| Part Number | Package | Marking |
|-------------|---------|---------|
| CTSLV353QG  | QFN8    | D3 / YW |
| CTSLV353PG  | SON8    | D YW    |

СТБ


CTSLV353 Low Phase Noise LVPECL Buffer and Translator QFN8, SON8


## **PACKAGE DIMENSIONS**






## CTSLV353 Low Phase Noise LVPECL Buffer and Translator QFN8, SON8





PCB LAND PATTERN/FOOTPRINT



