

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

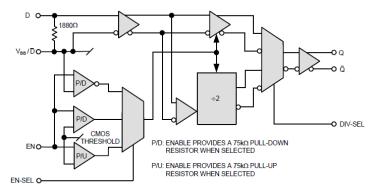
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



LVPECL Divide by 1, Divide by 2 Clock Generator w/ Tri-State Compatible Outputs MLP8

FEATURES

- Selectable Divide Ratio
- Selectable Enable Priority and Threshold (CMOS or PECL)
- Tristate Compatible Outputs
- Input Buffer Powers Down when Disabled
- High BW [1.5GHz (÷1), 3.0GHz (÷2)]
- 3V to 5.5V Power Supply
- -145dBc/Hz (÷1) Typ Noise Floor
- -151dBc/Hz (÷2) Typ Noise Floor
- RoHS Compliant Pb Free Packages

BLOCK DIAGRAM

DESCRIPTION

The CTSLV394 is a ÷1 or ÷2 clock generation part specifically designed to accommodate Colpitts or Pierce based oscillators. The tri-state compatible outputs allow for on-the-fly switching of multiple oscillators on a common bus. Other features are incorporated to reduce board components. A voltage reference and input biasing allows for easy oscillator interface.

The CTSLV394 provides a ÷ 2 mode of operation for more frequency options and is selectable with a single connection. A selectable enable is also provided which doubles as a reset when the CTSLV394 is in ÷2 mode. With a single connection, the enable can be selected to operate as active high or active low.

ENGINEERING NOTES

The CTSLV394 is a specialized $\div 1$ or $\div 2$ clock generation part including an enable/reset function. The divide ratio is selected with the DIV-SEL pin/pad. When DIV-SEL is open (NC), the CTSLV394 functions as a standard receiver. If DIV-SEL is connected to V_{EE} , it functions as a $\div 2$ divider.

Enable (EN) functionality is selected with the EN-SEL pin/pad which has three valid states: open (NC), V_{EE} , or connected to V_{EE} via a $20 \text{k}\Omega \pm 20\%$ resistor. Leaving EN-SEL open or connecting it to V_{EE} allows the EN pin/pad to function as an active high CMOS/TTL enable. When EN-SEL is open, an internal $75 \text{k}\Omega$ pull-up resistor is selected which enables the outputs whenever EN is left open. When EN-SEL is connected to V_{EE} , an internal $75 \text{k}\Omega$ pull-down resistor is selected which disables the outputs whenever EN is left open.

Connecting the EN-SEL to V_{EE} with a $20k\Omega$ resistor will allow the EN pin/pad to function as an active low PECL/ECL enable with an internal $75k\Omega$ pull-down resistor. In this mode, outputs are enabled when EN is left open (NC). The default logic condition can be overridden by connecting the EN to V_{CC} with an external resistor of $\leq 20k\Omega$. If the enable signal is CMOS (rail-to-rail) and the logic sense is active low (EN-SEL connected to V_{EE} with a $20k\Omega$ resistor), the EN pin/pad voltage swing must be reduced using two external resistors. Contact the factory for details.

When the CTSLV394 is disabled, the Q and \overline{Q} outputs are forced LOW and the input buffer is powered down to minimize feed through. This feature allows tri-state compatible parallel output connections. Multiple CTSLV394 chip outputs can be wired together. Since both outputs are forced LOW in the disable mode, an enabled CTSLV394 can drive the output lines without interference from the unselected units. In addition, the CTSLV394 can be used in parallel connection with PECL/ECL parts whose outputs are high impedance when disabled.

The EN pin/pad also functions as a reset when the $\div 2$ mode is selected. In the $\div 2$ mode, the counter resets when the outputs are disabled.

The CTSLV394 provides a V_{BB} with an 1880 Ω internal bias resistor from D to V_{BB} . This feature allows AC coupling with minimal external components. The V_{BB} pin supports 1.5mA sink/source current and should be bypassed to ground or V_{CC} with a 0.01 μ F capacitor.

1

LVPECL Divide by 1, Divide by 2 Clock Generator w/ Tri-State Compatible Outputs MLP8

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings are those values beyond which device life may be impaired.

Symbol	Characteristic	Condition	Rating	Unit
V_{CC}	PECL Power Supply	V _{EE} = 0V	0 to + 6.0	V
V_{I_PECL}	PECL Input Voltage	V _{EE} = 0V	0 to + 6.0	V
V_{EE}	ECL Power Supply	V _{CC} = 0V	-6.0 to 0	V
V_{I_ECL}	ECL Input Supply	V _{CC} = 0V	-6.0 to 0	V
	Output Current	Continuous	50	m A
I _{HGOUT}	Output Current	Surge	100	mA
T _A	Operating Temperature Range	-	-40 to +85	°C
T_{STG}	Storage Temperature Range	-	-65 to +150	°C
ESD _{HBM}	Human Body Model Electro Static Discharge	-	2500	V
ESD _{MM}	Machine Model Electro Static Discharge	-	200	V
ESD _{CDM}	Charged Device Model Electro Static Discharge	-	2000	V

100K ECL DC Characteristics (V_{EE} = -3.0V to -5.5V, V_{CC} = GND)

Cymhol	Characteristic	-40	°C	0°	С	25	°C	85	Unit	
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
V_{OH}	Output HIGH Voltage ¹	-1085	-880	-1025	-880	-1025	-880	-1025	-880	mV
V _{OL}	Output LOW Voltage ¹	-1900	-1555	-1900	-1620	-1900	-1620	-1900	-1620	mV
	Input HIGH Voltage D,EN (ECL) ²	-1165	-740	-1165	-740	-1165	-740	-1165	-740	mV
V _{IH}	Input HIGH Voltage EN (CMOS) ³	V _{EE} +2000	V_{CC}	V _{EE} +2000	V _{CC}	V _{EE} +2000	V_{CC}	V _{EE} +2000	V _{CC}	mV
	Input LOW Voltage D,EN (ECL) ²	-1900	-1475	-1900	-1475	-1900	-1475	-1900	-1475	mV
V _{IL}	Input LOW Voltage EN (CMOS) ³	V _{EE}	V _{EE} +800	mV						
V_{BB}	Reference Voltage	-1390	-1250	-1390	-1250	-1390	-1250	-1390	-1250	mV
I _{IH}	Input HIGH Current EN		150		150		150		150	μΑ
	Input LOW Current EN (ECL) ²	0.5		0.5		0.5		0.5		μA
I _{IL}	Input LOW Current EN (CMOS) ³	-150		-150		-150		-150		
I _{EE}	Power Supply Current ¹		34		34		34		37	mA

- 1 Specified with each output terminated through 50Ω resistors to V_{CC} -2V.
- 2 $\,$ EN-SEL connected to V_{EE} through a 20k $\!\Omega$ resistor.
- ³ EN-SEL connected to V_{EE} or left open (NC).

LVPECL Divide by 1, Divide by 2 Clock Generator w/ Tri-State Compatible Outputs MLP8

100K LVPECL DC Characteristics (V_{EE} = GND, V_{CC} = +3.3V)

Cumbal	Characteristic		-40°C		0°C		°C	85°C		Unit
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
V_{OH}	Output HIGH Voltage ^{1,2}	2215	2420	2275	2420	2275	2420	2275	2420	mV
V _{OL}	Output LOW Voltage ^{1,2}	1400	1745	1400	1680	1400	1680	1400	1680	mV
V	Input HIGH Voltage D,EN (ECL) ³	2135	2560	2135	2560	2135	2560	2135	2560	mV
V_{IH}	Input HIGH Voltage EN (CMOS) ⁴	2000	V_{CC}	2000	V_{CC}	2000	V_{CC}	2000	V_{CC}	mV
\/	Input LOW Voltage D,EN (ECL) ³	1400	1825	1400	1825	1400	1825	1400	1825	mV
V _{IL}	Input LOW Voltage EN (CMOS) ⁴	GND	800	GND	800	GND	800	GND	800	mV
V_{BB}	Reference Voltage ¹	1910	2050	1910	2050	1910	2050	1910	2050	mV
I _{IH}	Input HIGH Current EN		150		150		150		150	μA
	Input LOW Current EN (ECL) ³	0.5		0.5		0.5		0.5		μA
I _{IL}	Input LOW Current EN (CMOS)4	-150		-150		-150		-150		
I _{EE}	Power Supply Current ²		34		34		34		37	mA

- ¹ For supply voltages other than 3.3V, use the ECL table values and ADD supply voltage value.
- Specified with each output terminated through 50Ω resistors to V_{CC} -2V.
- ³ EN-SEL connected to V_{EE} through a 20k Ω resistor.
- ⁴ EN-SEL connected to VEE or left open (NC).

100K PECL DC Characteristics (V_{EE} = GND, V_{CC} = +5.0V)

Symbol	Symbol Characteristic		-40°C		0°C		၁	85°C		Unit
Syllibol	Cildiacteristic	Characteristic Min Max		Min	Max	Min	Max	Min	Max	Ullit
V_{OH}	Output HIGH Voltage ^{1,2}	3915	4120	3975	4120	3975	4120	3975	4120	mV
V _{OL}	Output LOW Voltage ^{1,2}	3100	3445	3100	3380	3100	3380	3100	3380	mV
V	Input HIGH Voltage D,EN (ECL) ³	3835	4260	3835	4260	3835	4260	3835	4260	mV
V_{IH}	Input HIGH Voltage EN (CMOS) ⁴	2000	V_{CC}	2000	V_{CC}	2000	V_{CC}	2000	V_{CC}	mV
\/	Input LOW Voltage D,EN (ECL) ³	3100	3525	3100	3525	3100	3525	3100	3525	mV
V _{IL}	Input LOW Voltage EN (CMOS) ⁴	GND	800	GND	800	GND	800	GND	800	mV
V_{BB}	Reference Voltage ¹	3610	3750	3610	3750	3610	3750	3610	3750	mV
I _{IH}	Input HIGH Current EN		150		150		150		150	μΑ
	Input LOW Current EN (ECL) ³	0.5		0.5		0.5		0.5		μΑ
I _{IL}	Input LOW Current EN (CMOS) ⁴	-150		-150		-150		-150		
I _{EE}	Power Supply Current ²		34		34		34		37	mA

- ¹ For supply voltages other than 3.3V, use the ECL table values and ADD supply voltage value.
- 2 $\,$ Specified with each output terminated through 50Ω resistors to V_{CC} -2V.
- 3 EN-SEL connected to V_{EE} through a $20k\Omega$ resistor.
- ⁴ EN-SEL connected to V_{EE} or left open (NC).

240

ps

CTSLV394

 t_R/t_F

LVPECL Divide by 1, Divide by 2 Clock Generator w/ Tri-State Compatible Outputs MLP8

_			,						,			•		
O make all and the second after		-40°C		0°C		25°C			85°C			I I mid		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	D to Q/Q			450			450			450			450	ps
t _{PLH} /t _{PHL}	EN to Q _{HG} /Qb _{HG} ^{1,2}			3000			3000			3000			3000	ps
t _{SKEW}	Duty Cycle Skew ³		5	20		5	20		5	20		5	20	ps
V _{PP} (AC)	Input Swing⁴	150		1000	150		1000	150		1000	150		1000	mV
4 /4	Output Rise/Fall ¹	100		240	100		240	100		240	100		240	20

240

100

240

100

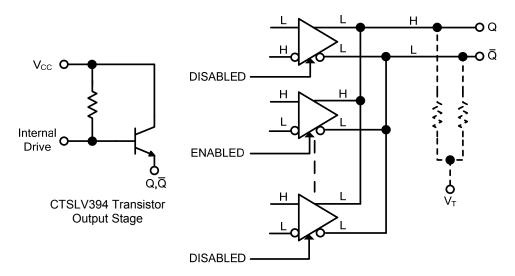
AC Characteristics ($V_{EE} = -3.0V$ to -5.5V; V_{CC} =GND or V_{EE} =GND; $V_{CC} = +3.0V$ to +5.5V)

- ¹ Specified with each output terminated through 50Ω resistors to V_{CC} -2V.
- Specified from 50% EN input edge to V_{OH} min to V_{OL} max of the Q/ \bar{Q} outputs.

240

³ Duty cycle skew is the difference between a t_{PLH} and t_{PHL} propagation delay through a device.

100


V_{PP} is the peak-to-peak differential input swing for which AC parameters are guaranteed.

Tri-state Compatible Operation

(20% - 80%)

100

The outputs of the CTSLV394 are emitter followers as shown in the left side of Figure 1. When a part is disabled, both outputs are set in the LOW state. This allows a HIGH output from an enabled part to override a disabled output and pull the combined line HIGH as seen in the right hand side of Figure 1. When the enabled part output is LOW, the combined line remains LOW. If all connected CTS94 parts are disabled, both output lines will be in the LOW state. As another feature, while disabled, the input buffer is powered down to minimize feed through.

Figure 1: Typical Tri-state Operation

LVPECL Divide by 1, Divide by 2 Clock Generator w/ Tri-State Compatible Outputs MLP8

Divide Truth Table

DIV-SEL	÷Ratio
NC	÷1
V _{EE} ¹	÷2

¹ DIV-SEL connection must be ≤1W.

Enable Truth Table

EN-SEL	EN	Q	Q
NC	CMOS Low or V _{EE}	Low	Low
NC	CMOS High, V _{CC} or NC	Data	Data
V	CMOS Low, V _{EE} or NC	Low	Low
V_{EE}	CMOS High or V _{CC}	Data	Data
20 k $Ω$ to V_{EE}	PECL Low, V_{EE} or NC	Low	Low
ZOKZZ IO VEE	PECL High or V _{CC}	Data	Data

Figure 2 illustrates the timing sequences for the CTSLV394 in the ÷1 mode which is determined by leaving the DIV-SEL open (NC). It also illustrates the enable in the active High mode being controlled by a CMOS signal. This mode is determined by leaving the EN-SEL open (NC).

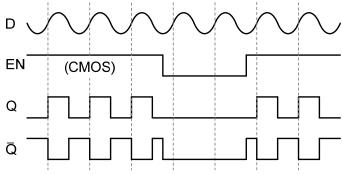
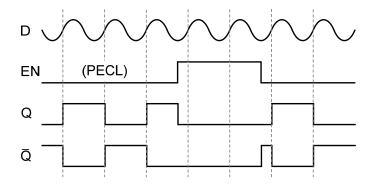
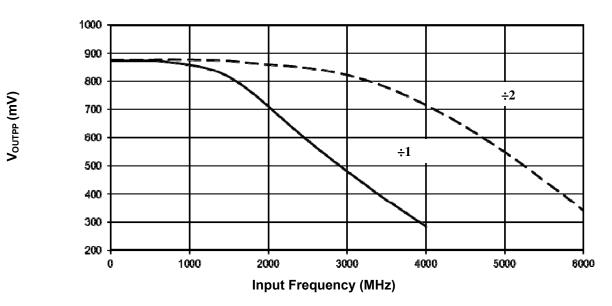


Figure 2

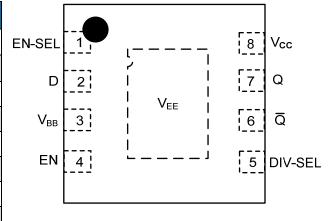
Figure 3 illustrates the timing sequences for the CTSLV394 in the $\div 2$ mode which is determined by connecting the DIV-SEL to V_{EE} . It also illustrates the enable in the active Low mode being controlled by a PECL signal. This mode is determined by connecting the EN-SEL to V_{EE} via $20k\Omega$ resistor.




Figure 3

CTSLV394
LVPECL Divide by 1, Divide by 2 Clock Generator w/ Tri-State Compatible Outputs

MLP8



Typical Large Signal Output Swing Measured with 750mV D input, Q/ \bar{Q} each terminated to V_{CC} -2V via 50 Ω resistors.

Pin Description and Configuration

Pin Assignments

Pin	Name	Туре	Function		
1	EN-SEL	Input	Enable Polarity Select		
2	D	Input	Data Input		
3	V_{BB}	Input	Reference Voltage		
4	EN	Input	Output Enable		
5	DIV-SEL	Input	Divide Select		
6	Q	Output	Inverted PECL Output		
7	Q	Output	PECL Output		
8	V _{CC}	Power	Positive Supply		
9	V _{EE}	Power	Negative Supply		

PART ORDERING INFORMATION

Part Number	Package	Marking
CTSLV394NG	MLP8	J4G / YWW

