

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

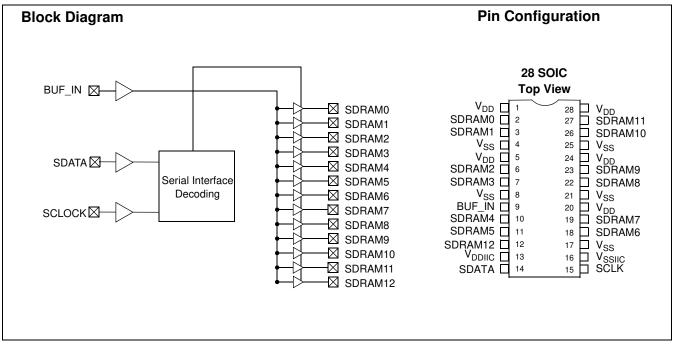
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

408-943-2600

13 Output, 3.3V SDRAM Buffer for Desktop PCs with 3 DIMMs


Features

- One input to 13 output buffer/driver
- · Supports up to three SDRAM DIMMs
- One additional outputs for feedback
- · Serial interface for output control
- · Low skew outputs
- Up to 100-MHz operation
- Multiple V_{DD} and V_{SS} pins for noise reduction
- Low EMI outputs
- · 28-pin SOIC (300-mil) package
- 3.3V operation

Functional Description

The CY2313ANZ is a 3.3V buffer designed to distribute high-speed clocks in desktop PC applications. The part has 13 outputs, 12 of which can be used to drive up to three SDRAM DIMMs, and the remaining can be used for external feedback to a PLL. The device operates at 3.3V and outputs can run up to 100 MHz, thus making it compatible with Pentium® II processors. The CY2313ANZ can be used in conjunction with the CY2280, CY2281, CY2282 or similar clock synthesizer for a complete Pentium II motherboard solution.

The CY2313ANZ also includes a serial interface which can enable or disable each output clock. On power-up, all output clocks are enabled.

Pentium is a registered trademark of Intel Corporation.

Pin Summary

Name	Pins	Description	
V _{DD}	1, 5, 20, 24, 28	3.3V Digital voltage supply	
V_{SS}	4, 8, 17, 21, 25	Ground	
V _{DDIIC}	13	Serial interface voltage supply	
V _{SSIIC}	16	Ground for serial interface	
BUF_IN	9	Input clock	
SDATA 14		Serial data input, internal pull-up to V _{DD}	
SCLK	15	Serial clock input, internal pull-up to V _{DD}	
SDRAM [0-12]	2, 3, 6, 7, 10, 11, 12, 18, 19, 22, 23, 26, 27	SDRAM clock outputs	

Serial Configuration Map

 The Serial bits will be read by the clock driver in the following order:

Byte 0 - Bits 7, 6, 5, 4, 3, 2, 1, 0 Byte 1 - Bits 7, 6, 5, 4, 3, 2, 1, 0

Byte N - Bits 7, 6, 5, 4, 3, 2, 1, 0

- Reserved and unused bits should be programmed to "0"
- · Serial interface address for the CY2313ANZ is:

A 6	A 5	A 4	А3	A2	A 1	A0	R/W
1	1	0	1	0	0	1	

Byte 0:SDRAM Active/Inactive Register (1 = Enable, 0 = Disable), Default = Enabled

Bit	Pin#	Description	
Bit 7	11	SDRAM5 (Active/Inactive)	
Bit 6	10	SDRAM4 (Active/Inactive)	
Bit 5		Reserved, drive to 0	
Bit 4		Reserved, drive to 0	
Bit 3	7	SDRAM3 (Active/Inactive)	
Bit 2	6	S SDRAM2 (Active/Inactive)	
Bit 1	3	SDRAM1 (Active/Inactive)	
Bit 0	2	SDRAM0 (Active/Inactive)	

Byte 1: SDRAM Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active

Bit	Pin#	n # Description	
Bit 7	27	SDRAM11 (Active/Inactive)	
Bit 6	26	SDRAM10 (Active/Inactive)	
Bit 5	23	SDRAM9 (Active/Inactive)	
Bit 4	22	SDRAM8 (Active/Inactive)	
Bit 3		Reserved, drive to 0	
Bit 2		Reserved, drive to 0	
Bit 1	19	SDRAM7 (Active/Inactive)	
Bit 0	18	SDRAM6 (Active/Inactive)	

Byte 2: SDRAM Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active

Bit	Pin#	Description	
Bit 7		Reserved, drive to 0	
Bit 6	12	SDRAM12 (Active/Inactive)	
Bit 5		Reserved, drive to 0	
Bit 4		Reserved, drive to 0	
Bit 3		Reserved, drive to 0	
Bit 2		Reserved, drive to 0	
Bit 1		Reserved, drive to 0	
Bit 0		Reserved, drive to 0	

Maximum Ratings

Supply Voltage to Ground Potential	. –0.5V to +7.0V
DC Input Voltage (Except BUF_IN)0.5	$V \text{ to } V_{DD} + 0.5V$
DC Input Voltage (BUF_IN)	–0.5V to +7.0V

Storage Temperature	65°C to +150°C
Junction Temperature	150°C
Static Discharge Voltage	
(per MIL-STD-883, Method 3015)	>2000V

Operating Conditions^[1]

Parameter	Description	Min.	Max.	Unit
V_{DD}	Supply Voltage		3.465	V
T _A	Operating Temperature (Ambient Temperature)	0	70	°C
C _L	Load Capacitance		30	pF
C _{IN}	Input Capacitance		7	pF
t _{PU}	Power-up time for all VDD's to reach minimum specified voltage (power ramps must be monotonic)		50	ms

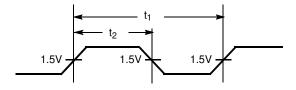
Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{IL}	Input LOW Voltage ^[2]	Except serial interface pins		0.8	V
V _{ILiic}	Input LOW Voltage	For serial interface pins only		0.7	V
V _{IH}	Input HIGH Voltage ^[2]		2.0		V
I _{IL}	Input LOW Current (BUF_IN input)	V _{IN} = 0V	-10	10	μΑ
I _{IL}	Input LOW Current (Except BUF_IN Pin)	V _{IN} = 0V		100	μΑ
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$	-10	10	μА
V _{OL}	Output LOW Voltage ^[3]	I _{OL} = 25 mA		0.4	V
V _{OH}	Output HIGH Voltage ^[3]	I _{OH} = -36 mA	2.4		V
I _{DD}	Supply Current ^[3]	Unloaded outputs, 100 MHz		200	mA
I _{DD}	Supply Current ^[3]	Loaded outputs, 100 MHz		290	mA
I _{DD}	Supply Current ^[3]	Unloaded outputs, 66.67 MHz		150	mA
I _{DD}	Supply Current ^[3]	Loaded outputs, 66.67 MHz		185	mA
I _{DDS}	Supply Current	BUF_IN=V _{DD} or V _{SS} All other inputs at V _{DD}		500	μΑ

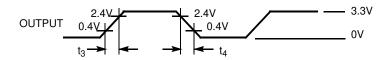
Notes:

Document #: 38-07144 Rev. *B

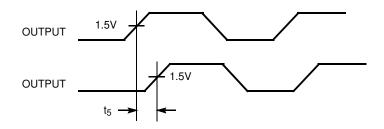
Electrical parameters are guaranteed under the operating conditions specified.
 BUF_IN input has a threshold voltage of V_{DD}/2.
 Parameter is guaranteed by design and characterization. Not 100% tested in production.


Switching Characteristics^[4] Over the Operating Range

Parameter	Name	Test Conditions	Min.	Тур.	Max.	Unit
	Maximum Operating Frequency				100	MHz
	Duty Cycle ^[3,5] = $t_2 \div t_1$	Measured at 1.5V	45.0	50.0	55.0	%
t ₃	Rising Edge Rate ^[3]	Measured between 0.4V and 2.4V	0.9	1.5	4.0	V/ns
t ₄	Falling Edge Rate ^[3]	Measured between 2.4V and 0.4V	0.9	1.5	4.0	V/ns
t ₅	Output to Output Skew ^[3]	All outputs equally loaded	-250		+250	ps
t ₆	SDRAM Buffer LH Prop. Delay ^[3]	Input edge greater than 1 V/ns	1.0	3.5	5.0	ns
t ₇	SDRAM Buffer HL Prop. Delay ^[3]	Input edge greater than 1 V/ns	1.0	3.5	5.0	ns
t ₈	SDRAM Buffer Enable Delay ^[3]	Input edge greater than 1 V/ns	1.0	5	12	ns
t ₉	SDRAM Buffer Disable Delay ^[3]	Input edge greater than 1 V/ns	1.0	20	30	ns


Notes:

Switching Waveforms

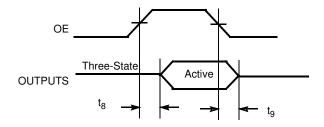

Duty Cycle Timing

All Outputs Rise/Fall Time

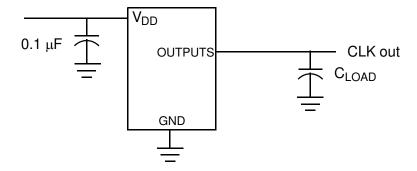
Output-Output Skew

Document #: 38-07144 Rev. *B

^{4.} All parameters specified with loaded outputs.
5. Duty cycle of input clock is 50%. Rising and falling edge rate of the input clock is greater than 1 V/ns.

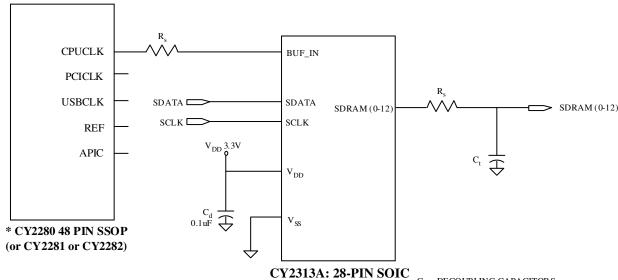


Switching Waveforms (continued)


SDRAM Buffer LH and HL Propagation Delay

SDRAM Buffer Enable and Disable Times

Test Circuit



Application Information

Clock traces must be terminated with either series or parallel termination, as is normally done.

Application Circuit

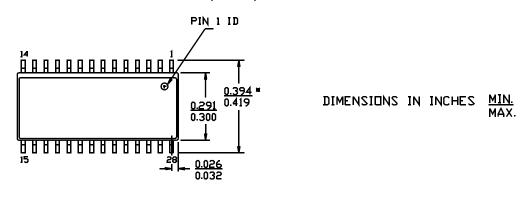
* THIS FREQUENCY SYNTHESIZER IS USED TO GENER ATE CPU, PCI, USB, REF, AND APIC CLOCKS.

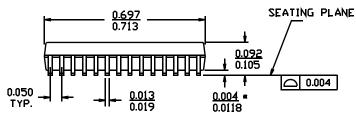
 $\begin{aligned} & C_{d} = \text{DECOUPLING CAPACITORS} \\ & C_{t} = \text{OPTIONAL EMI-REDUCING CAPACITORS} \\ & R_{s} = \text{SERIES TERMINATING RESISTORS} \end{aligned}$

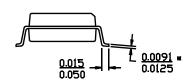
Summary

- Surface mount, low-ESR, ceramic capacitors should be used for filtering. Typically, these capacitors have a value of 0.1 μF.
 In some cases, smaller value capacitors may be required.
- The value of the series terminating resistor satisfies the following equation, where Rtrace is the loaded characteristic impedance
 of the trace, Rout is the output impedance of the buffer (typically 25Ω), and Rseries is the series terminating resistor.
 Rseries > Rtrace Rout
- Footprints must be laid out for optional EMI-reducing capacitors, which should be placed as close to the terminating resistor as is physically possible. Typical values of these capacitors range from 4.7 pF to 22 pF.
- A Ferrite Bead may be used to isolate the Board V_{DD} from the clock generator V_{DD} island. Ensure that the Ferrite Bead offers greater than 50Ω impedance at the clock frequency, under loaded DC conditions. Please refer to the application note "Layout and Termination Techniques for Cypress Clock Generators" for more details.
- If a Ferrite Bead is used, a 10 μ F–22 μ F tantalum bypass capacitor should be placed close to the Ferrite Bead. This capacitor prevents power supply droop during current surges.

Ordering Information


Ordering Code	Package Name	Package Type	Operating Range
CY2313ANZSC-1	S21	28-Pin SOIC	Commercial
Pb-free	•	•	•
CY2313ANZSXC-1	S21	28-Pin SOIC	Commercial
CY2313ANZSXC-1T	S21	28-Pin SOIC Tape and Reel	Commercial


Document #: 38-07144 Rev. *B Page 6 of 8



Package Diagram

28-Lead (300-Mil) Molded SOIC S21

Document History Page

Document Title: CY2313ANZ 13 Output, 3.3V SDRAM Buffer for Desktop PCs with 3 DIMMs Document Number: 38-07144								
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change				
**	110253	11/18/01	DSG	Change from Spec number: 38-00692 to 38-07144				
*A	121831	12/14/02	RBI	Power up requirements added to Operating Conditions Information				
*B	1244583	See ECN	DPF	Added Pb-free part numbers in the Ordering Information				

Document #: 38-07144 Rev. *B