

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

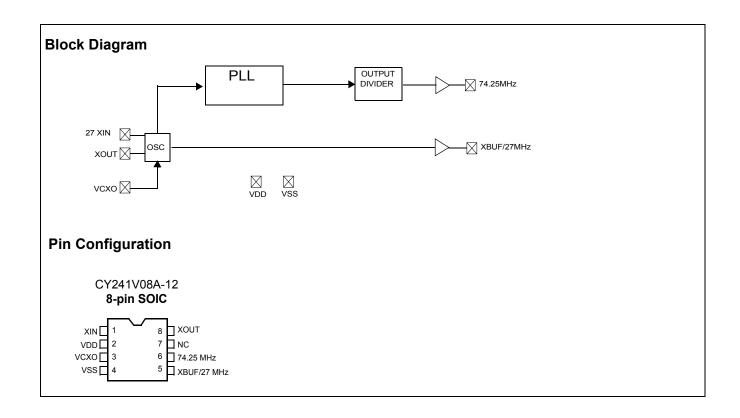
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Clock Generator with VCXO

Features


- Integrated phase-locked loop (PLL)
- · Low-jitter, high-accuracy outputs
- VCXO with analog adjust
- · 3.3V operation

Benefits

- Highest-performance PLL tailored for multimedia applications
- Meets critical timing requirements in complex system designs
- · Application compatibility for a wide variety of designs

Frequency Table

Part Number	Outputs	Input Frequency Range	Output Frequencies	VCXO Control Curve	
CY241V08A-12		1	One copy of 27 MHz One copy of 74.25 MHz	linear	

Pin Definitions

Name	Pin Number	Description			
XIN	1	Reference crystal input.			
VDD	2	je supply.			
VCXO	3	analog control for VCXO.			
VSS	4	und.			
XBUF/27 MHz	5	MHz buffered crystal output.			
74.25 MHz	6	25 MHz clock output.			
NC	7	Connect.			
XOUT	8	eference crystal output.			

Absolute Maximum Conditions

Supply Voltage (V _{DD})	0.5 to +7.0V
DC Input Voltage	-0.5V to V _{DD} + 0.5
Storage Temperature (Non-condensing).	55°C to +125°C
Junction Temperature	–40°C to +125°C

Data Retention @ Tj = 125°C.....> 10 years Package Power Dissipation......350 mW ESD (Human Body Model) JESD22-A114-B> 2000V (Above which the useful life may be impaired. For user guidelines, not tested.)

Pullable Crystal Specifications[1]

Parameter	Description	Comments	Min.	Тур.	Max.	Unit
140141		Parallel resonance, fundamental mode, AT cut	-	27	_	MHz
C _{LNOM}	Nominal load capacitance		-	14	_	pF
R ₁			-	_	25	Ω
R ₃ /R ₁ Ratio of third overtone mode ESR to fundamental mode ESR		Ratio used because typical R ₁ values are much less than the maximum spec	3	_	_	_
DL	Crystal drive level	No external series resistor assumed	150	_	_	μW
F _{3SEPHI}	Third overtone separation from 3*F _{NOM}	High side	300	_	_	ppm
F _{3SEPLO}	Third overtone separation from 3*F _{NOM}	Low side	-	_	-150	ppm
C ₀	Crystal shunt capacitance		-	_	7	pF
C ₀ /C ₁	Ratio of shunt to motional capacitance		180	_	250	_
C ₁	Crystal motional capacitance		14.4	18	21.6	fF

Recommended Operating Conditions

Parameter	Description	Min.	Тур.	Max.	Unit
V_{DD}	Operating Voltage	3.135	3.3	3.465	V
T _A	Ambient Temperature	0	_	70	°C
C _{LOAD}	Max. Load Capacitance	-	_	15	pF
t _{PU}	Power-up time for all V _{DD} pins to reach minimum specified voltage (power ramps must be monotonic)	0.05	_	500	ms

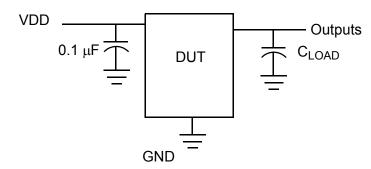
DC Electrical Specifications

Parameter	Name	Description	Min.	Тур.	Max.	Unit
I _{OH}	Output HIGH Current	$V_{OH} = V_{DD} - 0.5V, V_{DD} = 3.3V$	12	24	_	mA
I _{OL}	Output LOW Current	V _{OL} = 0.5V, V _{DD} = 3.3V	12	24	_	mA
C _{IN}	Input Capacitance	Except XIN, XOUT pins	_	_	7	pF
V _{VCXO}	VCXO Input Range		0	_	V_{DD}	V
f _{∆XO} [2]	VCXO Pullability Range	Low Side	_	_	-115	ppm
		High Side	115	_	_	ppm
I_{VDD}	Supply Current		_	_	40	mA

AC Electrical Specifications $(V_{DD} = 3.3V)$ ^[3]

Parameter ^[3] Name		Description	Min.	Тур.	Max.	Unit
DC	Output Duty Cycle	Duty Cycle is defined in Figure 1, 50% of V _{DD}	45	50	55	%
ER	Rising Edge Rate	Output Clock Edge Rate, Measured from 20% to 80% of V _{DD} , C _{LOAD} = 15 pF. See <i>Figure 2</i> .	8.0	1.4	-	V/ns
EF	Falling Edge Rate	Output Clock Edge Rate, Measured from 80% to 20% of V _{DD} , C _{LOAD} = 15 pF. See <i>Figure 2</i> .	8.0	1.4	-	V/ns

Notes:


- Crystals that meet this specification includes: Ecliptek ECX-5808-27.000M
 ____115/+115 ppm assumes 2.5 pF of additional board level load capacitance. This range will be shifted down with more board capacitance or shifted up with less board capacitance.
 Not 100% tested.

AC Electrical Specifications ($V_{DD} = 3.3V$) (continued)^[3]

Parameter ^[3]	Name	Description	Min.	Тур.	Max.	Unit
t ₉	Clock Jitter 74.25 MHz	Peak-to-peak period jitter	_	150	_	ps
t ₉	Clock Jitter XBUF/27 MHz	Peak-to-peak period jitter	_	250	_	ps
t ₉	Clock Jitter 74.25 MHz	1000-cycle long term jitter	_	430	_	ps
t ₉	Clock Jitter XBUF/27 MHz	1000-cycle long term jitter	_	270	_	ps
t ₁₀	PLL Lock Time		_	_	3	ms

Test and Measurement Set-up

Voltage and Timing Definitions

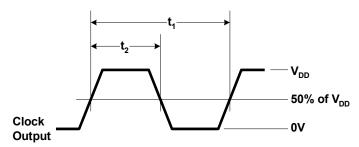


Figure 1. Duty Cycle Definition

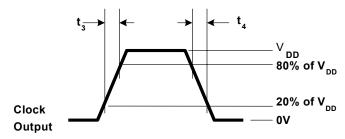
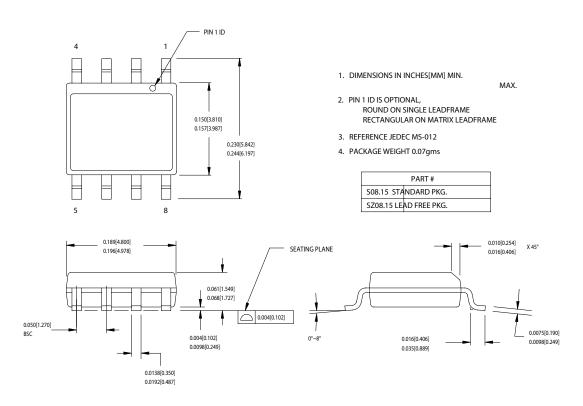


Figure 2. ER = (0.6 x V_{DD}) /t3, EF = (0.6 x V_{DD}) /t4


Ordering Information

Ordering Code	Package Name	Package Type	Operating Range	Operating Voltage	Features
CY241V8ASXC-12	SZ08	8-pin SOIC	Commercial	3.3V	Linear VCXO control curve
CY241V8ASXC-12T	SZ08	8-pin SOIC – Tape and Reel	Commercial	3.3V	Linear VCXO control curve

Package Drawing and Dimensions

8-lead (150-Mil) SOIC S8

51-85066-*C

All product or company names mentioned in this document may be the trademarks of their respective holders.

[+] Feedback

Document History Page

Document Title: CY241V08A-12 Clock Generator with VCXO Document Number: 38-07676							
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change			
**	230997	See ECN	RGL	New Data Sheet			