imall

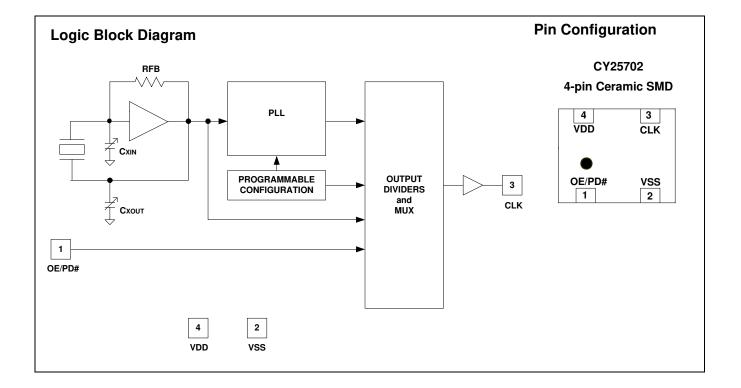
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


Programmable High-Frequency Crystal Oscillator (XO)

Features

- Programmable High-frequency Crystal Oscillator (XO)
- Wide operating output clock frequency range of 1–166 MHz
- · Integrated phase-locked loop (PLL)
- 85 ps typical cycle-to-cycle Jitter with CLK = 133 MHz
- 3.3V operation
- Output Enable and Power-down functions
- Package available in 4-Pin Ceramic LCC SMD
- Pb-free package
- Industrial Temperature from –40°C to 85°C
- For SSCG functionality refer to CY25701 data sheet

Benefits

- · Internal PLL to generate up to 166 MHz output
- Suitable for most PC, consumer, and networking applications
- Application compatibility in standard and low-power systems
- CY25701 can be used as a direct replacement without any PCB modification if spread spectrum clock (SSC) is required for EMI reduction.
- In-house programming of samples and prototype quantities is available using CY3672 programming kit and CY3724 socket adapters. Production quantities are available through Cypress's value-added distribution partners or by using third-party programmers from BP Microsystems, HiLo Systems, and others.

Pin Definition

Pin Name Description		Description
1	OE/PD#	Output Enable pin: Active HIGH. If OE = 1, CLK is enabled. Power Down pin: Active LOW. If PD# = 0, Power Down is enabled.
2	VSS	Power supply ground.
3	CLK	Clock output.
4	VDD	3.3V power supply.

Table 1. Programming Data Requirement

Pin Function	Output Frequency	Output Enable/Power Down
Pin Name	CLK	OE/PD#
Pin#	3	1
Units	MHz	N/A
Program Value	ENTER DATA	ENTER DATA

Functional Description

The CY25702 is a programmable high-frequency Crystal Oscillator (XO) that uses a Cypress proprietary PLL to synthesize the frequency of the embedded input crystal.

The CY25702 uses a programmable configuration memory array to synthesize output frequency. The frequency CLK output can be programmed from 1 MHz to 166 MHz.

The CY25702 is available in a 4-pin ceramic SMD package with an operating temperature range of -40 to 85° C.

Programming Description

Field/Factory-Programmable CY25702

Field/Factory programming is available for samples and manufacturing by Cypress and its distributors. All requests must be submitted to the local Cypress Field Application Engineer (FAE) or sales representative. Once the request has been processed, you will receive a new part number, samples, and data sheet with the programmed values. This part number will be used for additional sample requests and production orders.

Additional information on the CY25702 can be obtained from the Cypress web site at www.cypress.com.

Operating Conditions

Output Frequency, CLK Output (CLK, pin 3)

The frequency at the CLK output is produced by synthesizing the embedded crystal oscillator frequency input. The range of the synthesized clock is from 1 MHz to 166 MHz.

Output Enable or Power Down (OE/PD#, pin 1)

Pin 1 can be programmed as either output enable (OE) or Power Down (PD#).

Absolute Maximum Rating

Supply Voltage (V _{DD})	–0.5V to +7.0V
DC Input Voltage	0.5V to V _{DD} + 0.5V
Storage Temperature (Non-condensing)	–55°C to 100°C
Junction Temperature	–40°C to 125°C
Data Retention @ Tj = 125°C	> 10 years
Package Power Dissipation	350 mW

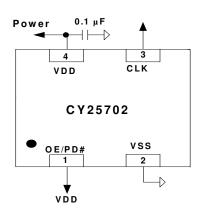
Parameter	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply Voltage	3.00	3.30	3.60	V
T _A	Ambient Temperature (Commercial)	-20	-	70	°C
T _A	Ambient Temperature (Industrial)	-40	-	85	°C
C _{LOAD}	Max. Load Capacitance @ pin 3	-	_	15	pF
F _{CLK}	CLK output frequency, C _{LOAD} = 15 pF		_	166	MHz
T _{PU}	Power-up time for VDD to reach minimum specified voltage (power ramp must be monotonic)		-	500	ms

DC Electrical Characteristics

Parameter	Description	Condition	Min.	Тур.	Max.	Unit
I _{OH}	Output High Current (pin 3)	$V_{OH} = V_{DD} - 0.5, V_{DD} = 3.3V$ (source)	10	12	-	mA
I _{OL}	Output Low Current (pin 3)	V _{OL} = 0.5, V _{DD} = 3.3V (sink)	10	12	-	mA
V _{IH}	Input High Voltage (pin 1)	CMOS levels, 70% of V _{DD}	0.7V _{DD}	-	V _{DD}	V
V _{IL}	Input Low Voltage (pin 1)	CMOS levels, 30% of V _{DD}	-	-	$0.3V_{DD}$	V
I _{IH}	Input High Current (pin 1)	V _{in} = V _{DD}	-	—	10	μA
IIL	Input Low Current (pin 1)	V _{in} = V _{SS}	-	-	10	μA
I _{OZ}	Output Leakage Current (pin 3)	Three-state output, OE = 0	-10	_	10	μA
C _{IN} ^[1]	Input Capacitance (pin 1)	Pin 1, or OE	-	5	7	pF
I _{VDD}	Supply Current	V_{DD} = 3.3V, CLK = 1 to 166 MHz, C_{LOAD} = 0, OE = V_{DD}	-	_	50	mA
$\Delta f/f$	Initial Accuracy at Room Temp.	T _A = 25°C, 3.3V	-25	-	25	ppm
	Freq. Stability over Temp. Range	$T_A = -20^{\circ}C$ to 70°C, 3.3V	-25	—	25	ppm
	Freq. Stability over Voltage Range	3.0 to 3.6V	-12	-	12	ppm
	Aging	T _A = 25°C, First year	-5	-	5	ppm

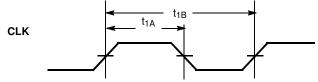
AC Electrical Characteristics^[1]

Parameter	Description	Condition	Min.	Тур.	Max.	Unit
DC	Output Duty Cycle	CLK, Measured at V _{DD} /2	45	50	55	%
t _R	Output Rise Time	20%–80% of V _{DD,} C _L =15 pF	-	—	2.7	ns
t _F	Output Fall Time	20%–80% of V _{DD,} C _L =15 pF	-	—	2.7	ns
T _{CCJ1} ^[2]	Cycle-to-Cycle Jitter CLK (Pin 3)	CLK \geq 133 MHz, Measured at V _{DD} /2	-	85	200	ps
		25 MHz \leq CLK < 133 MHz, Measured at V _{DD} /2	_	215	400	ps
		CLK < 25 MHz, Measured at V _{DD} /2	_	—	500	ps
T _{OE1}	Output Disable Time (pin1 = OE)	Time from falling edge on OE to stopped outputs (Asynchronous)	_	150	350	ns
T _{OE2}	Output Enable Time (pin1 = OE)	Time from rising edge on OE to outputs at a valid frequency (Asynchronous)	_	150	350	ns
T _{LOCK}	PLL Lock Time	Time for CLK to reach valid frequency	-	—	10	ms


Note

Guaranteed by characterization, not 100% tested.
Jitter is configuration dependent. Actual jitter is dependent on output frequencies, spread percentage, temperature, and output load. For more information, refer to the application note, "Jitter in PLL Based Systems: Causes, Effects, and Solutions" available at http://www.cypress.com/clock/appnotes.html, or contact your local Cypress Field Application Engineer.

Application Circuit


Figure 1. Application Circuit Diagram

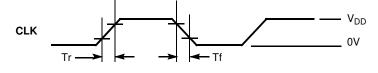

Switching Waveforms

Figure 2. Duty Cycle Waveform

Cycle Timing (DC = t_{1A}/t_{1B}) t_{1B} t_{1A} CLK

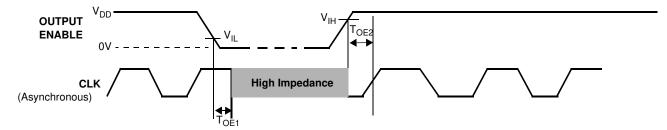
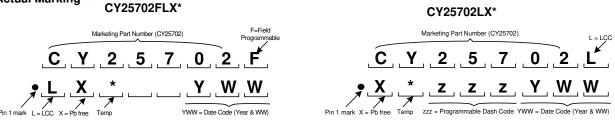
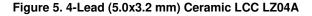
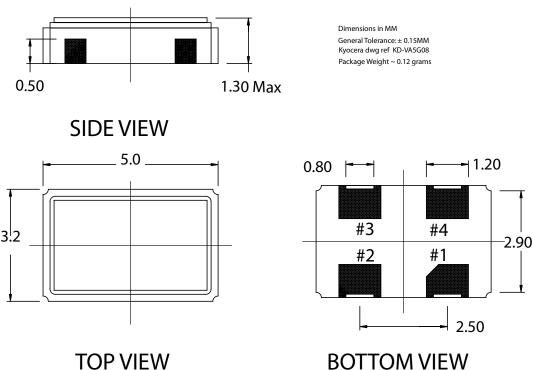


Figure 3. Output Rise/Fall Time Waveform

 $\begin{array}{l} \mbox{Output Rise time (Tr) = (0.6 \times V_{DD})/SR1 (or SR3) \\ \mbox{Output Fall time (Tf) = (0.6 \times V_{DD})/SR2 (or SR4) \\ \mbox{Refer to AC Electrical Characteristics table for SR (Slew Rate) values.} \end{array}$




Ordering Information


Part Number	Package Description	Product Flow
Lead-free (Pb-free)	· ·	
CY25702FLXCT ^[3]	4-Lead Ceramic LCC SMD -Tape and Reel	Commercial, –20° to 70°C
CY25702FLXIT ^[3]	4-Lead Ceramic LCC SMD -Tape and Reel	Industrial, -40° to 85°C
CY25702LXCZZZT ^[4]	4-Lead Ceramic LCC SMD -Tape and Reel	Commercial, -20° to 70°C
CY25702LXIZZZT ^[4]	4-Lead Ceramic LCC SMD -Tape and Reel	Industrial, -40° to 85°C

Actual Marking^[5]

Package Drawings and Dimensions

TOP VIEW

001-02743-*B

All product and company names mentioned in this document are the trademarks of their respective holders.

Notes

- "FLX" suffix is used for products programmed in field by Cypress Distributors. 3.
- 4. "ZZZ" denotes the assigned product dash number. This number will be assigned by factory after the output frequency programming data is received from the customer.
- 5. Temp can be C (Commercial) or I (Industrial).

Document #: 38-07721 Rev. *C

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

	Document Title: CY25702 Programmable High-Frequency Crystal Oscillator (XO) Document Number: 38-07721						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change			
**	296081	See ECN	RGL	New data sheet			
*A	333298	See ECN	RGL	Added Jitter Specifications Corrected the Ordering Information table to match the DevMaster			
*В	390406	See ECN	RGL	Removed CY25702FXC and CY25702XCZZZ			
*C	595857	See ECN	RGL	Complete data sheet rewrite			