mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CY3214 PSoCEVALUSB Kit Guide

Doc No. 001-67030 Rev. *B

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

Copyrights

© Cypress Semiconductor Corporation, 2011-2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATE-RIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

PSoC Designer[™] is a trademark and PSoC[®] is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress PSoC Data Sheets. Cypress believes that its family of PSoC products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as 'unbreakable'.

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress are committed to continuously improving the code protection features of our products.

Contents

1.	Introdu	ction	5
	1.1	Kit Contents	5
	1.2	Additional Learning Resources	6
		1.2.1 Reference Documents	6
	1.3	Document History	6
	1.4	Documentation Conventions	6
2.	Getting	Started	9
	2.1	Kit Installation	9
	2.2	PSoC Designer	12
	2.3	PSoC Programmer	14
	2.4	SuiteUSB 3.4	14
3.	Kit Ope	ration	15
	3.1	Introduction	15
	3.2	Square Mouse Example	15
		3.2.1 Programming Specifications and Connections	16
4.	Hardwa	re	19
	4.1	System Block Diagram	19
	4.2	Functional Description	22
		4.2.1 Character LCD Module	
		4.2.2 CapSense® Buttons (P3[0], P3[7]), and Sliders (Port5)	
		4.2.3 Legacy DB9 Connector (J1)	
		4.2.4 Power Supply Connector (J13)	25
		4.2.5 LEDS (LED1–4)	
		4.2.6 Buzzer (LS1)	
		4.2.7 ISSP Connector (J15)	
		4.2.0 JUYSIICK (JST)	، 21
		4.2.9 Reset Duiton (S5)	20 28
		4.2.10 IOE-Oube Connector (014)	20
		4.2.12 Potentiometers (VR1 and VR2)	29
		4.2.13 Buttons (S1 and S2)	
5.	Code E	xamples	31
	51	My First Code Example	.31
	0.1	5.1.1 Project Objective	
		5.1.2 Flowchart	
		5.1.3 Creating My First PSoC 1 Project	
		5.1.4 Verify Output	
	5.2	Buttons and Lights Example	

	5.2.1	Project Description	51
	5.2.2	Hardware Connections	51
	5.2.3	Firmware Architecture	53
	5.2.4	Verify Output	54
5.3	Tempe	erature Sensing Keyboard	55
	5.3.1	Project Description	55
	5.3.2	Hardware Connection	55
	5.3.3	Firmware Architecture	57
	5.3.4	Verify Output	58
5.4	Proces	ss Monitoring	59
	5.4.1	Project Description	59
	5.4.2	Hardware Connection	60
	5.4.3	Firmware Architecture	61
	5.4.4	Verify Output	62
5.5	Async	PingExample	63
	5.5.1	Project Description	63
	5.5.2	Hardware Connections	63
	5.5.3	Driver Installation	64
	5.5.4	Firmware Architecture	67
	5.5.5	Verify Output	67
5.6	Bulk F	PingExample	68
	5.6.1	Project Description	68
	5.6.2	Hardware Connections	68
	5.6.3	Driver Installation	69
	5.6.4	Firmware Architecture	70
	5.6.5	Verify Output	71
5.7	ISoc E	Example	71
	5.7.1	Project Description	71
	5.7.2	Hardware Connections	71
	5.7.3	Driver Installation	72
	5.7.4	Firmware Architecture	73
	5.7.5	Verify Output	73
5.8	USBU	ART	74
	5.8.1	Project Description	74
	5.8.2	Hardware Connections	75
	5.8.3	Driver Installation	76
	5.8.4	Firmware Architecture	77
	5.8.5	Verify Output	78
5.9	Joystic		80
	5.9.1	Description	80
	5.9.2	Hardware Connection	80
	5.9.3	Firmware Architecture	82
	5.9.4	Verify Output	83
Append	ix		85
A.1	Schem	natic	85
A.2	Board	Layout	86
	A.2.1	CY3214 -PSoCEVALUSB Top Copper	86
	A.2.2	CY3214-PSoCEVALUSB Top Overlay	87
	A.2.3	CY3214 -PSoCEVALUSB Bottom Copper	88
A.3	Bill of I	Materials (BOM)	89

Α.

Thank you for your interest in the CY3214-PSoCEVALUSB Kit. This kit includes a development board for the CY8C24894-24LTXI PSoC[®] device. Note that the board has the CY8C24094 device, which is an on-chip debug part for the CY8C24x94 family. You can design your own projects with PSoC Designer[™] or by altering the code examples provided with this kit. It is a combination of technologies that create opportunities for a new range of low-cost, mixed-signal USB products. This architecture enables creating customized peripheral configurations that match the requirements of individual applications.

The CY3214-PSoCEVALUSB Kit is based on the PSoC 1 family of devices. PSoC is a Programmable System-on-Chip[™] platform for 8-bit applications. It combines precision analog and digital logic with a high-performance CPU. With PSoC, you can create the exact combination of peripherals and integrated proprietary IP to meet the needs of your applications.

Chapter 2 describes the installation and configuration of the CY3214-PSoCEVALUSB Kit, PSoC Designer and PSoC Programmer. Chapter 3 describes the kit operation, with the help of the 'Square Mouse' project, which comes as a demonstration with the CY3214-PSoCEVALUSB kit. It also explains the programming connections of a PSoC 1 device with the PSoC MiniProg and power supply. Chapter 4 describes the hardware operations. Chapter 5 provides the description of the execution of simple projects. The Appendix section provides the schematics and bill of materials (BOM).

1.1 Kit Contents

The CY3214-PSoCEVALUSB Kit includes:

- PSoCEVALUSB board
- LCD module
- MiniProg Programmer
- USB A to Mini B cable
- CY3214-PSoCEVALUSB Kit CD
 - PSoC Designer installation file
 - PSoC Programmer installation file
 - Code examples
 - Hardware files
 - Kit guide
 - Quick start guide
 - Release notes
- Jumper wire pack
- CY8C24894-24LTXI sample silicon

Inspect the contents of the kit; if any parts are missing, contact your nearest Cypress sales office for further assistance.

1.2 Additional Learning Resources

Visit www.cypress.com for additional learning resources in the form of data sheets, technical reference manuals, and application notes.

1.2.1 Reference Documents

- Schematic diagram for the CY3214 PSoCEVALUSB board: http://www.cypress.com/go/CY3214-PSoCEvalUSB
- CY8C24894-24LTXI data sheet: http://www.cypress.com/?mpn=CY8C24894-24LTXI
- PSoC MiniProg1 details: http://www.cypress.com/go/CY3217-MiniProg1
- ICE-Cube details: http://www.cypress.com/go/CY3215-DK
- PSoC Designer: PSoC Designer Overview http://www.cypress.com/go/psocdesigner
- PSoC Designer Training: PSoC Designer On-Demand Training Series and videos http://www.cypress.com/psoctraining
- PSoC Programmer, COM Hardware Layer Supported Languages http://www.cypress.com/go/psocprogrammer

1.3 Document History

Revision	PDF Creation Date	Origin of Change	Description of Change
**	01/31/2011	RKPM	Initial version of kit guide
*A	04/27/2011	SASH	Added My First Code Example section. Content updates throughout the document
			Updated screenshots in the Kit Installation section.
*В	05/03/2012	RKPM	Updated Figure 5-13.
			Updated installer file names.

1.4 Documentation Conventions

Table 1-1. Document Conventions for Guides

Convention	Usage
Courier New	Displays file locations, user entered text, and source code: C:\cd\icc\
Italics	Displays file names and reference documentation: Read about the <i>sourcefile.hex</i> file in the <i>PSoC Designer User Guide</i> .
[Bracketed, Bold]	Displays keyboard commands in procedures: [Enter] or [Ctrl] [C]

Table 1-1.	Document Conventions fo	r Guides

Convention	Usage
File >> Open	Represents menu paths: File >> Open >> New Project
Bold	Displays commands, menu paths, and icon names in procedures: Click the File icon and then click Open .
Times New Roman	Displays an equation: 2 + 2 = 4
Text in gray boxes	Describes cautions or unique functionality of the product.

Introduction

This chapter describes how to install and configure the CY3214-PSoCEVALUSB Kit.

2.1 Kit Installation

To install the kit software, follow these steps:

1. Insert the kit CD into the CD drive of your PC. The CD is designed to auto-run and the kit installer startup screen appears.

Note You can also download the latest kit installer from http://www.cypress.com/go/CY3214-PSoCEvalUSB. Three different types of installers are available for download.

- a. CY3214-PSoCEVALUSB Kit ISO: This file (ISO image) is an archive file of the optical disc provided with the kit. You can use this to create an installer CD or extract information using WinRar or similar tools.
- b. CY3214-PSoCEVALUSB Kit Setup: This executable file installs the contents of the kit CD, which includes PSoC Programmer, PSoC Designer, kit code examples, kit hardware files, and user documents.
- c. CY3214-PSoCEVALUSB Kit Only (without prerequisites): This executable file installs only the kit contents, which includes kit code examples, hardware files, and user documents.
- 2. Click Install the CY3214-PSoCEVALUSB to start the installation, as shown in Figure 2-1.

Figure 2-1. Kit Installer Startup Screen

Note If auto-run does not execute, double-click **cyautorun.exe** file on the root directory of the CD/DVD, as shown in Figure 2-2.

Figure 2-2. Root directory of the CD/DVD

Section CY 3214-PS₀CEVALUSB (G:)				
<u>File E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u> oo	ols <u>H</u> elp			
🌀 Back 👻 🕥 – 🏂 🔎	Search 🍺 Folders 🛄 🗸			
Address 🗣 G:\				💙 🄁 Go
CY3214-PSoCEVALUSB	Documentation File Folder	Firmware File Folder	Hardware File Folder	
Prerequisite File Folder	PSoC Designer File Folder	PSoC Programmer File Folder	Cypress Autorun Applet	
Cyautorun DAT File 1 KB	ICO File 48 × 48	setup Information 1 KB		

- 3. On the startup screen, click **Next** to start the installer.
- 4. The **InstallShield Wizard** screen is displayed, with the default location for setup. You can change the location using **Change**, as shown in Figure 2-3.
- 5. Click **Next** to launch the kit installer.

Figure 2-3. InstallShield Wizard

CY3214-PSoCEVALUSB - Insta	IIShield Wizard 🛛 🔀
	Welcome to the InstallShield Wizard for CY3214-PSoCEVALUSB
and a	The InstallShield Wizard will install CY3214-PSoCEVALUSB on your computer. To continue, click Next.
s c	elect folder where setup will install files. Install CY3214-PSoCEVALUSB to: C:\Program Files\CypressChange
	< <u>B</u> ack Next > Cancel

- 6. On the **Product Installation Overview** screen, select the installation type that best suits your requirement. The drop-down menu has three options: **Typical, Complete,** and **Custom**; see Figure 2-4.
- 7. Click **Next** to continue the installation.

Figure 2-4. Installation Type Options

Cylnstaller for CY3214-PSoCEVALUSB 1.0	? 🗙
Product Installation Overview Choose the install type that best suits your needs	
Choose the type of installation Product: CY3214-PSoCEVALUSB Installation Type: Installs the most common features of CY3214-PSoCEVALUSB.	
Contact Us	ncel

- 8. When the installation begins, a list of all packages appears on the Installation Page.
- 9. A green check mark appears adjacent to every package that is cached and installed. Wait until all the packages are downloaded and installed successfully.

Figure 2-5. Installation Page

10.Click **Finish** to complete the installation of the CY3214-PSoCEVALUSB Kit, as shown in Figure 2-6.

Figure 2-6. Installation Completion Page

Note Advanced users can skip to Code Examples chapter on page 31.

2.2 PSoC Designer

PSoC Designer is the revolutionary easy-to-use Integrated Development Environment (IDE) that helps to customize PSoC to meet your specific application requirements. PSoC Designer accelerates system bring-up and time-to-market.

- 1. Click Start > All Programs > Cypress > PSoC Designer <version> > PSoC Designer <version>.
- To create a new project, click File > New Project; click File > Project Workspace to open an existing project.

See Additional Learning Resources on page 6 for links to PSoC Designer training.

The PSoC Designer quick start guide is available at: http://www.cypress.com/?rID=47954.

For more details on PSoC Designer, go to:

<Install_Directory>:\Cypress\PSoC Designer\<version>\Documentation

Figure 2-7. PSoC Designer Interconnect View

2.3 **PSoC Programmer**

To open the PSoC Programmer, click Start > All Programs > Cypress > PSoC Programmer <version> > PSoC Programmer <version>.

To successfully program the device, follow these steps:

1. Use the **Power** button to power up the CY3214-PSoCEVALUSB kit before loading the hex file on to the kit.

Figure 2-8. PSoC Programmer

PSoC Programmer			- 0 X
File View Options Help			
1) 0 88 [
Port Selection	Programmer Utilities JTAG		
MINIProg1/07AA35950F07	Programming Parameters File Path: HCapsenselCapsense.hex Programming Mode: Reset @ Power Oycle Programming Mode: Reset @ Power Oycle Yerification: @ On © Off Connector: \$ 5p @ 10p		
Device Family	AutoDetection: On Off Clock Speed: 1.6 MHz		
24x94 * Device CY8C24094-24AXI *	Programmer Characteristics Status Endocol: TAG SVD ISSP I2C Execution Time: Voltage: 6.50 V 3.3 V 2.5 V 1.8 V Voltage: NA		
Actions	Results		
Device set to CY8C24094-24AXI at 4:54:27 PM	Programming Starting Erase Succeeded 16384 FLASH bytes		
Device Family set to 24x94 at 4:54:27 PM	Automatically Detected Device: CY8C24094-24AXI		Е
Program Requested at 4:54:26 PM			
Successfully Connecte to MINIProg1/07AA35950F0 at 4:52:15 PM	d 7 MINI Version 1.80		
Opening Port at 4:52: PM	11		
Connected at 4:52:11	PM MINIProg1/07AA35950F07		
Active HEX file set a 4:51:27 PM	<pre>L:\Capsense\Capsense.hex</pre>		-
or Halo, pross E1		SY Powered	Connected

- 2. Click the File Load button to load the respective hex file.
- 3. Click the **Program** button to program the hex file to the chip.
- 4. When programming is successful, Programming Succeeded appears in the Actions pane.
- 5. Close PSoC Programmer.

Note For more details on PSoC Programmer, go to: <Install_Directory>:\Cypress\Programmer\<version>\Documents

2.4 SuiteUSB 3.4

The Cypress SuiteUSB 3.4 is a generic USB driver environment that you can freely use to develop host applications that interact with a USB device.

CyConsole is used to communicate with USB devices that match the CyUSB.sys device driver. The console supports hot-plugging of USB devices. When a device that matches the driver is plugged into the PC, it automatically appears in the device list near the top of the CyConsole window.

SuiteUSB 3.4 software can be installed from the link http://www.cypress.com/?rID=34870.

3.1 Introduction

The CY3214-PSoCEVALUSB kit examples helps you to exchange data between a PC application and real world I/O. The kit includes a full-speed USB User Module with programmable I/O user modules to provide instant connection.

3.2 Square Mouse Example

The Square Mouse example is programmed to the CY3214-PSoCEVALUSB board as a default project for demonstration purposes. If the PSoC on the board has been reprogrammed or erased, follow the steps in the section, Programming Specifications and Connections on page 16 to program the board with the square mouse hex file provided in the kit CD (<Install_Directory>:\ Cypress\CY3214-PSoCEVALUSB\<version>\Firmware\squaremouse2_reset.hex).

To execute the program, follow these steps:

- 1. Connect the USB2 cable to the Mini USB type B connector on P1, as shown in Figure 3-1. Ensure that the power selection jumper (shunt) is place on the first two pins (designated as VBUS).
- 2. The message "PSoC Eval USB 1" is displayed on the LCD.
- 3. Check the movement of the mouse pointer on the screen; note that it moves in a square fashion.

Figure 3-1. USB Cable Connection and Power Jumper Setting

3.2.1 Programming Specifications and Connections

When the MiniProg is connected, you can use PSoC Programmer to program the CY3214-PSoCEVALUSB kit. Plug in the USB cable into the MiniProg before attaching it to the ISSP header on the board. When using a USB cable with MiniProg, keep the length under six feet to avoid signal integrity issues.

When using MiniProg, the LEDs blink at a variable rate to track connection status. The green LED near the USB connector turns on after MiniProg is plugged into the computer and is configured by the operating system. If MiniProg cannot find the correct driver in the system, this LED does not turn on. After the device is configured, the LED stays on at about a 4-Hz blink rate. This changes during programming, where the blink duty cycle increases.

The red LED (Figure 3-2) at the bottom turns on when the MiniProg powers the part. The LED is off when power is provided by the target board.

Figure 3-2. Programming PSoC Device

Figure 3-3.	PSoC	Programmer	Screen
-------------	------	------------	--------

ile View Options H	lelp	File Load	Program	
			– Toggle Power	
Port Selection	Programmer Utilities JTAG			
MINIProg1/07AA35950F07	Programming Parameters <u>File Path</u> HiCapsenselCapsense.here <u>Programmer, MINIProg1/07AA35950F0': Programming Mode: Reset Programming Mode: Verification; @ 0 0 0 0ff </u>	x 7 e O Power Detect Connector: O 5p @ 10p		
levice Family	AutoDetection: On Off	Clock Speed: 1.6 MHz *		
24x94 * Device CY8C24094-24AXI *	Programmer Characteristics Protocol: JTAG SWD @ ISSP 22C Voltace: 0.50V 3.3V 2.5V 1.8V	Status Execution Time; Power Status; ON Voltage; NA		
Actions	Results			
Device set to Y8C24094-24AXI at :54:27 PM Device Family set t	Programming Starting Erase Succeeded 16384 FLASH bytes			
4x94 at 4:54:27 PM	Automatically Detected Device:	: CY8C24094-24AXI		
rogram kequasted a ::54:26 PM uuccessfully Connec :0 IINIProg1/07AA35950 ut 4:52:15 PM Mpening Port at 4:5 M	ted FO7 MINI Version 1.80 2:11			
Connected at 4:52:1	1 PM MINIProg1/07AA35950F07			
ctive HEX file set :51:27 PM	at I:\Capsense\Capsense.hex			

Follow these steps to program using MiniProg1:

- 1. Connect the USB cable to the PC and MiniProg1
- 2. Plug in the MiniProg1 to the ISSP header on the CY3214-PSoCEVALUSB board
- 3. When USB is connected to the MiniProg1, the LED (green) glows in the MiniProg1
- 4. Open PSoC Programmer
- 5. Click the Load File button and browse to the hex file location. Click Open to select the hex file
- Click Connect or double-click on the respective MiniProg under Port Selection to select or connect to MiniProg
- 7. Click Program or press [F5] to initiate programming
- 8. The green LED on the MiniProg1 blinks to indicate the progress of programming
- 9. After successful programming, the red LED on MiniProg1 is powered off
- 10. Select the Toggle Power button in PSoC Programmer to power the board and verify output

Kit Operation

4. Hardware

This section provides an overview of the hardware, including power system, jumper setting, and programming interface. To start using the board, go to Code Examples chapter on page 31.

4.1 System Block Diagram

The CY3214-PSoCEVALUSB Kit has the following sections:

- Character LCD module
- Buzzer (LS1)
- Contrast potentiometer (R2)
- Buttons (S1 and S2)
- ISSP connector(J15)
- LEDs (LED 1–4)
- Potentiometer (VR1 and VR2)
- USB connector (P1)
- CapSense buttons (P3[0], P3[7]), and sliders (Port5)
- Power supply connector (J13)
- Joystick (JS1)
- Reset button (S3)
- Legacy DB9 connector (J1)
- ICE-Cube connector (J14)

Figure 4-1. CY3214-PSoCEVALUSB Board

CapSense Slider

Table 4-1.	Functional	Pin	Table

Pin No.	Pin Name	Description
1	P2[3]	Direct switched capacitor block input
2	P2[1]	Direct switched capacitor block input
3	P4[7]	GPIO
4	P4[5]	GPIO
5	P4[3]	GPIO
6	P4[1]	GPIO
7	P3[7]	GPIO
8	P3[5]	GPIO
9	P3[3]	GPIO
10	P3[1]	GPIO
11	P5[7]	GPIO
12	P5[5]	GPIO
13	P5[3]	GPIO
14	P5[1]	GPIO

Pin No.	Pin Name	Description
15	P1[7]	I ² C serial clock (SCL)
16	P1[5]	I^2 C serial data (SCA)
17	P1[3]	GPIO
18	P1[1]	I ² C serial clock (SCL) ISSP SCLK[2]
19	Vee	Ground connection
20	D+	GPIO
21	D-	GPIQ
22	Vdd	Supply voltage
23	P7[7]	GPIO
24	P7[0]	GPIO
25	P1[0]	I ² C serial data (SDA), ISSP SDATA[2]
26	P1[2]	
27	P1[4]	Optional external clock input (EXTCLK)
28	P1[6]	GPIO
29	P5[0]	GPIQ
30	P5[2]	GPIO
31	P5[4]	GPIQ
32	P5[6]	GPIO
33	P3[0]	GPIO
34	P3[2	GPIO
35	P3[4]	GPIO
36	P3[6]	GPIO
37	P4[0]	GPIO
38	P4[2]	GPIO
39	P4[4]	GPIO
40	P4[6]	GPIO
41	P2[0]	Direct switched capacitor block input
42	P2[2]	Direct switched capacitor block input
43	P2[4]	External analog ground (AGND) input
44	P2[6]	External voltage reference (VREF) input
45	P0[0]	Analog column mux input
46	P0[2]	Analog column mux input
47	P0[4]	Analog column mux input VREF
48	P0[6]	Analog column mux input
49	Vdd	Supply voltage
50	Vss	Ground connection
51	P0[7]	Analog column mux input
52	P0[5]	Analog column mux input and column output
53	P0[3]	Analog column mux input and column output
54	P0[1]	Analog column mux input
55	P2[7]	GPIO
56	P2[5]	GPIO

Table 4-1. Functional Pin Table

4.2 Functional Description

4.2.1 Character LCD Module

The kit has a character LCD module, which goes into the character LCD header, P8. The LCD runs on a 5-V supply and can function regardless of the voltage on which PSoC is powered. There is a zero-ohm resistor setting available on the LCD section making it possible to convert it to a 3.3-V LCD. The variable resistor R2 is a contrast potentiometer. It is used to control the LCD contrast.

4.2.2 CapSense[®] Buttons (P3[0], P3[7]), and Sliders (Port5)

There are two CapSense buttons and eight element CapSense sliders on the CY3214-PSoCEVALUSB kit. CapSense Sigma Delta uses an external modulation capacitor (CMOD), the copper sensor pad on the CY3214 PSoCEVALUSB board, and bleed resistor (Rb) in addition to the sensor capacitor (Cx).

Bleed Resistor (Rb): The CSD uses the switched capacitor circuitry to convert the sensor capacitance into a voltage, which is compared to a reference voltage. When the capacitor voltage reaches the reference voltage, the comparator triggers a bleed resistor discharging the capacitor. After the capacitor voltage discharges below the reference voltage, the bleed resistor is left floating to allow the capacitor to continue charging. The comparator output becomes a bit-stream as it toggles the bleed resistor and manipulates its input voltage. This bit stream is ANDed with a pulse width modulator (PWM) to provide consistent stream framing. The number of counts in each frame is analyzed to determine if the capacitive sensor is activated.

Modulation Capacitor (CMOD): The capacitor CMOD acts to attenuate high-frequency noise. The pin assignment for CapSense buttons used in the CapSense code example (see My First Code Example on page 31) are as follows:

B2 - P3[7]

B3 – P3[0]

The slider segments pin assignment used in My First Code Example on page 31 are as follows:

- Slider 0 P5[7]
- Slider 1 P5[5]
- Slider 2 P5[3]
- Slider 3 P5[1]
- Slider 4 P5[0]
- Slider 5 P5[2]
- Slider 6 P5[4]
- Slider 7 P5[6]

Figure 4-4. CapSense Sliders

Hardware

Figure 4-5. CapSense Buttons

4.2.3 Legacy DB9 Connector (J1)

This connector is used for serial interface. Connect the serial cable to the DB9 connector and the serial port on the PC. The supply voltage is 3.3 V to 5 V; the output voltage Vout (high) is Vcc–0.6 V and Vout (low) is 0.4 V.

Figure 4-6. DB9 Connector

Table 4-2. IC Description

Pin No.	Pin Name	Description
1	C1+	Connected to +ve of capacitor C3
2	V+	Vcc supply
3	C1–	Connected to -ve of capacitor C3
4	C2+	Connected to +ve of capacitor C4
5	C2–	Connected to -ve of capacitor C4
6	V–	Vcc ground
7	T2 out	Request to send (OUT)

Pin No.	Pin Name	Description
8	R2in	Clear to send (IN)
9	R2out	Clear to send (OUT)
10	T2in	Request to send (IN)
11	T1in	Transmitted data (IN)
12	R1out	Receive data (OUT)
13	R1in	Receive data (IN)
14	T1out	Transmitted data (OUT)
15	Gnd	Ground
16	Vcc	Vcc supply

Table 4-2. IC Description

Table 4-3. DB9 Connector Description

Pin No	Pin Name	Description
1	DCD	Carrier detect
2	RD	Receive data
3	TD	Transmit data
4	DTR	Data terminal ready
5	SGND	System ground
6	DSR	Data set ready
7	RTS	Request to send
8	CTS	Clear to send
9	RI	Ring indicator

4.2.4 Power Supply Connector (J13)

You can power the board from the USB cable or from an external 9 V to 12 V power supply. D1 is used as a protecting diode. The protecting diodes are necessary if the load discharges are slower than the filter capacitor after the rectification process.

Figure 4-7. Power Supply Connector

