
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PSoC CY8C20x34 TRM

PSoC® CY8C29x66,
CY8C27x43, CY8C27x43E,

CY8C21x34

LIN Bus 2.0

PSoC Reference Design. Revision **

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709

Phone (USA): 800.858.1810
Phone (Intnl.): 408.943.2600

http://www.cypress.com

2 PSoC Reference Design. Revision **

Copyrights

Copyrights

Copyright © 2006 Cypress Semiconductor Corporation. All rights reserved.

Cypress, the Cypress logo, and PSoC® are registered trademarks and PSoC Designer™, Programmable System-on-Chip™,

and PSoC Express™ are trademarks of Cypress Semiconductor Corporation (Cypress). All other trademarks or registered

trademarks referenced herein are the property of their respective owners.

The information in this document is subject to change without notice and should not be construed as a commitment by

Cypress. While reasonable precautions have been taken, Cypress assumes no responsibility for any errors that may appear

in this document. No part of this document may be copied or reproduced in any form or by any means without the prior written

consent of Cypress. Made in the U.S.A.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-

TICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.

Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress

does not authorize its products for use as critical components in life-support systems where a malfunction or failure may rea-

sonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems appli-

cation implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Flash Code Protection

Note the following details of the Flash code protection features on Cypress devices.

Cypress products meet the specifications contained in their particular Cypress Data Sheets. Cypress believes that its family of

products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be

methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would

be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of

their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly

evolving. We at Cypress are committed to continuously improving the code protection features of our products.

LIN Bus 2.0 Reference Design 1

Contents

1.1 LIN Bus 2.0 Demonstration Kit Description ...5

1.1.1 Introduction ..5

1.2 Kit Contents ...5

1.3 Getting Started...5

1.4 LIN Bus Demonstration..6

1.5 Master Node Port Pin Usage ...9

1.6 Slave 1 Port Pin Usage..9

1.7 Slave 2 Port Pin Usage..10

1.8 Design IP ...10

1.9 Demonstration Projects..10

1.10 Other Features...10

1.11 Support ..10

2.1 System Architecture Overview ..11

2.2 Features of the PSoC LIN Bus 2.0 Design...11

2.3 LIN Frame ..11

2.3.1 Basic LIN Frame ...11

2.3.2 Break Field...12

2.3.3 Synch Byte...12

2.3.4 Protected Identifier...12

2.3.5 Data ...12

2.3.6 Checksum..12

2.3.7 Frame Transfers on the LIN Bus..12

2.4 Hardware Architecture ...13

2.4.1 LIN Transceiver ...13

2.4.2 Voltage Regulator ...13

2.4.3 External Pin Connections ..13

3.1 Master Software Architecture ..15

3.1.1 Overview..15

3.1.2 Foreground Processing..15

3.1.3 Timing and Interrupts ...16

3.2 Device Configurations..16

3.2.1 Synchro Break Configuration ...16

3.2.2 Data Transmission Configuration...16

3.2.3 Data Reception Configuration..16

3.3 Firmware ..17

3.3.1 Overview..17

3.3.2 Synchro Break Interrupt ...17

3.3.3 TX Interrupt ..17

3.3.4 RX Interrupt..17

3.3.5 Bit Time Interrupt ...17

3.3.5.1 Synchro Break Configuration ..17

3.3.5.2 Data Transmission Configuration ...17

3.3.5.3 Data Reception Configuration ...18

2 LIN Bus 2.0 Reference Design

Contents

3.4 Source Code Files ...18

3.5 Header Files ..18

3.6 Creating a Project Using the Design IP ...18

3.6.1 Importing the Design ...18

3.6.2 Configuring Global Resources...19

3.6.3 Configuring GPIO ..19

3.6.4 Routing the Signals ...19

3.6.5 Setting the Baud Rate ...20

3.6.6 Adding the Schedule Timer ...20

3.6.7 Setting the Source Clock and Period ..20

3.6.8 Configuring the Signal Table..20

3.6.9 RAM Allocation ..20

3.6.10 Frame Definition ..20

3.6.11 Schedule Table ..22

3.6.11.1 Structure of Schedule Table ..22

3.6.11.2 An Example Schedule Table ...22

3.6.11.3 Diagnostic Schedules ..23

3.6.12 Adding the Main Application ..23

3.6.13 Special Features..23

3.6.13.1 Low Power Management...23

3.6.13.2 Node Configuration..24

3.6.13.3 Implementation of Sporadic Frames..24

3.7 Master Design APIs ...25

3.7.1 Basic Functions ...25

3.7.2 Miscellaneous Core API Functions..26

3.7.3 LIN Node Configuration API Functions..27

3.8 Time Study...28

3.8.1 ISR Timing ...28

3.8.2 Calculation of CPU Overhead Over a Frame ..29

3.8.3 Maximum Interrupt Latency ...29

4.1 Slave Software Architecture ..31

4.1.1 Overview..31

4.1.2 Foreground Processing ...31

4.1.3 Timing and Interrupts...31

4.2 Device Configuration ...32

4.2.1 Synchro Reception Configuration..32

4.2.2 Data Reception Configuration..32

4.3 Firmware..32

4.3.1 Overview..32

4.3.2 GPIO Interrupt ...32

4.3.3 Synchro Timer Interrupt ...33

4.3.4 Synchro Timeout Interrupt ...33

4.3.5 RX Interrupt ...33

4.3.6 TX Interrupt..34

4.3.7 Bit Timer Interrupt ...34

4.4 LIN Source Code Files...34

4.5 Header Files ..34

4.6 Using the Design IP ...35

4.6.1 Importing the Design ...35

4.6.2 Configuring Global Resources...35

4.6.3 Configuring GPIO ..35

4.6.4 Routing the Signals ...36

4.6.5 Configuring the Signal Table..36

LIN Bus 2.0 Reference Design 3

Contents

4.6.5.1 RAM Allocation ..36

4.6.6 Frame Definition...37

4.6.7 Response_Error Bit Definition..37

4.6.8 Node Information ...37

4.6.9 Adding the Main Application ..37

4.6.10 Special Features ..38

4.6.10.1 Power Management...38

4.6.10.2 Node Configuration..38

4.6.10.3 Implementing Event-Triggered Frames ...38

4.7 LIN 2.0 Slave Design API ..39

4.8 Time Study...40

4.8.1 ISR and Function Timing ...40

4.8.2 Calculation of CPU Overhead Over a Frame...41

4.8.3 Maximum Interrupt Latency ...41

5.1 Demonstration Projects Introduction ...43

5.2 LIN Description File (LDF)..43

5.2.1 Description ...43

5.2.2 Example LDF ...44

5.3 Example Project for Master (CEM) ..47

5.3.1 Description ...47

5.3.2 Example Master Program ..47

5.4 Example Project for Slave 1 (CPM) ...52

5.4.1 Description ...52

5.4.2 Example Slave 1 Program ...52

5.5 Example Project for Slave 2 (DIA) ...54

5.5.1 Description ...54

5.5.2 Example Slave 2 Program ...54

6.1 Board Schematics ..57

6.1.1 Power Supply...57

6.1.2 Master ..58

6.1.3 Slave 1 ...59

6.1.4 Slave 2 ...60

7.1 Board Bill of Materials ...61

4 LIN Bus 2.0 Reference Design

Contents

October 25, 2006 Cypress Semiconductor – Rev. ** 5

1. LIN Bus 2.0 Kit

1.1 LIN Bus 2.0 Demonstration Kit Description

1.1.1 Introduction

The LIN Bus Demonstration Kit demonstrates the ability of

the PSoC® Programmable System-on-Chip™ to implement

LIN bus, Local Interconnect Network, standard protocol. The

LIN bus was developed to fill the need for a low cost auto-

motive network to complement existing networks. LIN bus

also finds many uses in non-automotive distributed systems

where a robust, low-speed and low-cost protocol is required.

Additional information is located on the LIN consortium web

site at http://www.lin-subbus.org where you can also find the

complete LIN specifications for version 2.0.

This design provides a flexible development environment for

creation of either slave or master LIN device applications

using the PSoC. The demonstration board has one master

and two slave nodes. Using dynamic reconfiguration, hard-

ware resources are minimized with low CPU overhead.

Design details on specific implementation provided with the

demonstration board are included in the supplied Lin Master

Node Design IP, Lin Slave Design IP, Application Note

AN2045, and in the corresponding project comments inside

PSoC Designer™.

1.2 Kit Contents

■ LIN Bus Demonstration Board

■ International Power Supply (110-220 VAC to 12V DC)

■ Serial Cable (DB-9)

■ Software CD with Documentation, Example Project, and

Design IP

1.3 Getting Started

The LIN bus demonstration board is preprogrammed to

demonstrate the LIN bus directly out of the box. To demon-

strate functionality, follow these steps:

1. Verify contents in design kit.

2. Plug the power supply into a wall outlet (international

plug adaptors are included). The power supply automati-

cally adapts to this voltage and frequency range: 100-

240 VAC at 50-60 Hz.

3. Connect the barrel plug of the power supply cord into the

demonstration board. The green power LED next to the

power jack lights.

The demonstration board is now fully operational and dem-

onstrates LIN bus operations. Functional details of the

examples running on the board can be found in section 1.4,

LIN Bus Demonstration, on page 6.

1. LIN Bus 2.0 Kit LIN Bus 2.0 Reference Design

6 Cypress Semiconductor – Rev. ** October 25, 2006

Figure 1-1. LIN Bus Demonstration Board

The master node and slave 1 are both implemented in a 28-

pin part, CY8C27443-24PXI. Slave 2 is implemented in an

8-pin part, CY8C27143-24PXI.

The CD-ROM that is included with this kit has all project files

for the designed-in devices as well as project files for auto-

motive grade devices.

1.4 LIN Bus Demonstration

The LIN bus demonstration board is divided into four

regions: master node, slave 1, slave 2, and the prototype

area.

The master node has a bank of 8 dip-switches, SW2, and a

bank of 10 LEDs, U8. Slave 1 also has a set of 8 dip-

switches, SW1, and a bank of 10 LEDs, U7. Slave 2 has 2

push-button switches, S1 and S2, and 2 individual green

LEDs, D2 and D4. Figure 1-1 shows the positions of these

components.

Master

Node

Slave

1
Slave

2

Prototype

Area

Power

Supply

Power

Jack

Master

Serial Port

October 25, 2006 Cypress Semiconductor – Rev. ** 7

LIN Bus 2.0 Reference Design 1. LIN Bus 2.0 Kit

Figure 1-2. Layout of Node-Specific Switches and LEDs

Periodically, the master node sends its switch state informa-

tion to slave 1 and then polls both slaves for their switch

state information. In response, the master and slaves dis-

play the state of the information as specified by the switch-

to-display relationship. Figure 1-3 and the following list show

the switches and the LEDs that they control:

■ Master node dip-switches 8 to 1 control slave 1’s LEDs 1

to 8. Note that the dip-switch numbering is reversed but

is oriented such that the left most switch, numbered 8,

controls the left most LED of slave 1.

■ Slave 1’s dip-switches 8 to 5 control master node LEDs

1 to 4.

■ Slave 1 measures the resistance connected between

P0[1] and P0[3] and sends this information to the master.

To make the resistance measurement, a reference resis-

tance of 2.2K is connected between P0[1] and P0[2].

These resistance connections can be made to the

header (SV3) meant for port 0 of slave 1.

■ Slave 1’s dip-switches 2 and 1 control slave 2 LEDs, D2

and D4. These switches are configured to implement a

left / right turn indicator. When one of these switches is

closed, D2 or D4 blinks.

■ Slave 2’s push-button switches, S2 and S1, control mas-

ter node LEDs 5 and 6.

■ The remaining switches and LEDs are not used, but

board connections are provided for use in the prototype

area.

SW2

S2

SW1

D2

U7

U8

D4S1

1. LIN Bus 2.0 Kit LIN Bus 2.0 Reference Design

8 Cypress Semiconductor – Rev. ** October 25, 2006

Figure 1-3. Switch-to-LED Control Relationship

The master node performs the following operations.

■ Initializes the LIN communication.

■ Calls the node configuration function to configure slave 1

and slave 2 nodes.

■ Initializes the Schedule table. The frame sequence and

time allotted for each frame is configured in the Sched-

ule table.

Then the master node performs the following operations in

an infinite loop:

❐ Checks if the current frame transfer is complete and

if the LIN hardware is ready to send the next frame. If

yes, calls the l_sch_tick function that loads the next

frame due and initiates the transfer.

❐ Checks if Frame1 completion flag is set. Frame1 car-

ries the master's dip-switch information. If Frame1

flag is set, the master updates the Frame1 buffer

with the dip-switch information and sends the dip-

switch information over serial port.

❐ Checks if Frame2 completion flag is set. Frame2 car-

ries the resistance information from slave 1. If

Frame2 flag is set, converts the 2-byte HEX integer

to an ASCII string and sends this string over the

serial port.

❐ Checks if Frame3 completion flag is set. Frame3 car-

ries the switch status of slave 2. If Frame3 flag is set,

updates LED 5 and LED 6 according to the switch

status and sends the Slave-2 switch status over

serial port.

❐ Checks if Frame4 completion flag is set. Frame4 car-

ries the dip-switch status of slave 1. If Frame4 flag is

set, updates LED 1 to LED 4 as per status of SW8 to

SW5 of slave 1. Then updates the Frame5 buffer

with the status of SW1 and SW2 of slave 1. When

Frame5 is due, this information is sent to slave 2 and

slave 2 blinks D4 or D5, accordingly. Then it sends

the Slave-1 switch status over serial port.

❐ The master's data over serial port may be observed

by using a HyperTerminal and connecting the mas-

ter's serial port to the PC. The serial port setting is

38.4 kbps, 8 data bits, no parity, 1 stop bit. The fol-

lowing is an example output on the serial port:

Master Switch Status: ON ON ON ON ON ON ON ON

Slave 2 Switch Status: ON OFF

Slave 1 Resistance: 25000

Slave 1 Switch Status: ON ON ON ON ON ON ON ON

October 25, 2006 Cypress Semiconductor – Rev. ** 9

LIN Bus 2.0 Reference Design 1. LIN Bus 2.0 Kit

1.5 Master Node Port Pin Usage

The pin usage for the LIN bus PSoC master node is as fol-

lows:

1.6 Slave 1 Port Pin Usage

The section details the pin usage for the LIN bus PSoC

slave 1:

Table 1-1. Port 0 – Pins Connect to User-Accessible

Header Row

0 Not used

1 Not used

2 Not used

3 Not used

4 Not used

5 LIN bus RX

4 LIN bus TX

6 UART RX

7 UART TX

Table 1-2. Port 1 – Pins Connect to User-Accessible

Header Row and LEDs

0 Crystal out

1 Crystal in

2 LED controlled by slave 2, Port0_7 switch

3 LED controlled by slave 2, Port0_2 switch

4 LED controlled by slave 1, Port2_4 switch

5 LED controlled by slave 1, Port2_5 switch

6 LED controlled by slave 1, Port2_6 switch

7 LED controlled by slave 1, Port2_7 switch

Table 1-3. Port 2 – Pins Connect to User-Accessible

Header Row and Dip-Switches

0 Switch controls slave 1, Port1_0 LED

1 Switch controls slave 1, Port1_1 LED

2 Switch controls slave 1, Port1_2 LED

3 Switch controls slave 1, Port1_3 LED

4 Switch controls slave 1, Port1_4 LED

5 Switch controls slave 1, Port1_5 LED

6 Switch controls slave 1, Port1_6 LED

7 Switch controls slave 1, Port1_7 LED

Table 1-4. Port 0 – Pins Connect to User-Accessible

Header Row

0 Not used

1 Common point of measured resistance and reference

resistance

2 Reference resistance

3 Measured resistance

4 LIN bus TX

5 LIN bus RX

6 Not used

7 Not used

Table 1-5. Port 1 – Pins Connect to User-Accessible

Header Row and LEDs

0 LED controlled by master, Port2_0 switch

1 LED controlled by master, Port2_1 switch

2 LED controlled by master, Port2_2 switch

3 LED controlled by master, Port2_3 switch

4 LED controlled by master, Port2_4 switch

5 LED controlled by master, Port2_5 switch

6 LED controlled by master, Port2_6 switch

7 LED controlled by master, Port2_7 switch

Table 1-6. Port 2 - Pins Connect to User-Accessible

Header Row and Dip-Switches

0 Switch not used

1 Switch not used

2 Switch controls slave 2, Port1_1 LED blinking control

3 Switch controls slave 2, Port1_0 LED blinking control

4 Switch controls master, Port1_4 LED

5 Switch controls master, Port1_5 LED

6 Switch controls master, Port1_6 LED

7 Switch controls master, Port1_7 LED

1. LIN Bus 2.0 Kit LIN Bus 2.0 Reference Design

10 Cypress Semiconductor – Rev. ** October 25, 2006

1.7 Slave 2 Port Pin Usage

The section details the pin usage for the LIN bus PSoC

slave 2:

1.8 Design IP

LIN Master Node and LIN Slave Node Design IP are pro-

vided on the CD and on the Cypress Semiconductor web

site at http://www.cypress.com.

Design IP in PSoC Designer allows a user to import the

required solution, precomposed of configurations and soft-

ware APIs, to quickly and easily implement a LIN bus node.

To import the Design IP into a project, use the PSoC

Designer Design Browser (under Config >> Import Design).

The LIN Master Node Design IP and the LIN Slave Node

Design IP documentation are located in the root directory of

the CD.

1.9 Demonstration Projects

Also included on the CD are the three PSoC projects that

implement the master and slave nodes on the demonstra-

tion board delivered with this design kit. The demonstration

projects are in the following directories of the CD:

■ Demonstration Projects\Master Node\MasterLinDemo

■ Demonstration Projects\Slave 1 Node\CLinSlaveDemo

■ Demonstration Projects\Slave 2 Node\CLinSlaveDemo2

1.10 Other Features

In addition to the three LIN nodes, the demonstration board

provides several other features:

■ Unregulated 12V DC 500 mA power supply for prototype

use.

■ Regulated 5V DC 500 mA power supply for prototype

use.

■ U12 header provides access to LIN bus for probing or

bus extension.

■ Disconnectable LIN nodes from the LIN bus by removing

the JP1, JP2, or JP3 jumpers.

■ Prototype area provides power and ground connections,

and two strips of holes for prototyping. The holes are

connected in rows of three to simplify connections, and if

required, the traces can be cut.

Figure 1-4. Prototype Area Through Hole Connections

■ Install header U13 to short LED D2. This allows develop-

ment of self-diagnostic indicator faults.

■ Remove jumper JP4 to provide an open circuit at LED

D4. This provides an additional way to develop self-diag-

nostic indicator faults.

■ You can emulate master node and slave 1 using a uni-

versal emulation pod, from a PSoC Basic Development

Kit, mounted on the standard 28-pin DIP foot.

■ You can emulate slave 2 using a universal emulation

pod mounted on the standard 8-pin DIP foot.

■ The four unused LEDs in the master node LED array are

provided on pads LED 0-3 for prototyping.

■ The two unused LEDs in the slave 1 LED array are pro-

vided on pads LED 4-5 for prototyping.

1.11 Support

Support for the PSoC device, the development tools or the

LIN bus demonstration board can be found on our web site

at http://www.cypress.com, http://www.cypress.com/support

or by calling the Applications Hotline at 425.787.4814.

Table 1-7. Port 0 – Pins

2 Push button controls master, Port1_3 LED

4 LIN bus TX

5 LIN bus RX

7 Push button controls master, Port1_2 LED

Table 1-8. Port 1 – Pins

0 Blinking LED controlled by slave 1, Port2_3 switch

1 Blinking LED controlled by slave 1, Port2_2 switch

5V

Gnd
Gnd

5V

October 25, 2006 Cypress Semiconductor – Rev. ** 11

2. System Architecture

2.1 Overview

The LIN bus, Local Interconnect Network, is an asynchro-

nous, 1 wire, single master, multiple slave network. It is most

commonly used in automobile networks.

2.2 Features of the PSoC LIN

Bus 2.0 Design

■ Single master, multiple slaves - up to 16 slaves.

■ Message-based protocol.

■ Single wire - maximum 40 m.

■ Data rates of 2.4K, 4.8K, 9.6K and 19.2K are supported

by master.

■ Slaves capable of synchronizing to any baud rate from

2K to 20K.

■ Self synchronization of slaves to master’s speed.

■ Data format similar to common serial UART format.

■ Safe behavior with data checksums and bit-error detec-

tion.

■ 100% LIN Bus 2.0 protocol-compliant.

■ Master design uses minimal resources (only three digital

blocks) and is easy to implement (using overlapping

configurations).

■ Slave designs use minimal resources (only four digital

blocks) and are easy to implement (using overlapping

configurations). The slave design for the CY8C21x34

device family uses the least amount of system

resources.

■ The PSoC design IP is provided for master and slave

nodes in the following device families:

❐ CY8C29x66 Industrial

❐ CY8C27x43 Automotive

❐ CY8C27x43 Industrial

❐ CY8C21x34 Industrial

Figure 2-1. Structure of a LIN Frame

2.3 LIN Frame

2.3.1 Basic LIN Frame

The LIN communication takes place in frames. Figure 2-1

shows the structure of a frame.

It is made of a break field followed by 4 to 11 byte fields.

Each byte field is transmitted as a serial byte as shown in

Figure 2-2.

2. System Architecture LIN Bus 2.0 Reference Design

12 Cypress Semiconductor – Rev. ** October 25, 2006

Figure 2-2. Structure of a Byte Field

2.3.2 Break Field

The break symbol is used to signal the beginning of a new

frame. It is the only field that does not comply with Figure 2-

2. A break is always generated by the master and is at least

13 bits of dominant value, including the start bit, followed by

a break delimiter, as shown in Figure 2-3. The break delim-

iter is at least one nominal bit-time long. A slave node uses

a break detection threshold of 11 nominal bit times.

Figure 2-3. The Break Field

2.3.3 Synch Byte

The synch byte is sent to the slave to synchronize to the

master’s baud rate. The synch byte is nothing but a data

field with 0x55 as data. The synch byte is shown in Figure 3-

4.

Figure 2-4. The Synch Byte

The slave measures the time between the start bit and the

fourth falling edge of the synch byte. Then dividing this by

eight, gives the single bit time. Based upon this time, the

slave sets the clock to its UART so that it can send/receive

the data bytes of the frame at the master’s bit rate.

2.3.4 Protected Identifier

The byte that follows the synch byte is the protected identi-

fier. This byte has two parts. Bits 0-5 form the actual identi-

fier (0 to 63). Bits 6 and 7 form the identifier parity. The

identifiers can be split into four different categories:

■ Identifiers 0 - 59 are used for signal-carrying frames.

■ Identifiers 60 (0x3C) and 61 (0x3D) are used for diag-

nostic frames.

■ Identifier 62 (0x3E) is used for user-defined extensions.

■ Identifier 63 (0x3F) is used for future protocol enhance-

ments.

More details on protected identifiers are in the LIN Bus 2.0

specifications at http://www.linsubbus.org.

2.3.5 Data

The protected Identifier is followed by 1 to 8 bytes of data.

The number of data bytes carried by a frame is defined in

the LIN definition file (LDF). This file also defines whether

the data bytes are sent from the master to a slave or from a

slave to the master. Data that are longer than 1 byte are

transmitted LSB first (Little Endian mode).

2.3.6 Checksum

The last field of a frame is the checksum. The checksum

contains the inverted 8-bit sum with carry over all data bytes

or all data bytes and the protected identifier. Checksum cal-

culation over only the data bytes is called classic checksum

and is used for communication with LIN bus 1.x slaves.

Checksum calculation over both the data bytes and the pro-

tected identifier byte is called enhanced checksum and it is

used for communication with LIN bus 2.0 slaves. The check-

sum is transmitted in a byte field. Use of classic or

enhanced checksum is managed by the master node and

determined per frame identifier; classic in communication

with LIN bus 1.x slave nodes and enhanced in communica-

tion with LIN bus 2.0 slave nodes. Identifiers 60 (0x3c) to 63

(0x3f) always use classic checksum.

The complete LIN standard is available at http://www.linsub-

bus.org.

2.3.7 Frame Transfers on the LIN Bus

Only the master initiates a frame. The master allocates a

time slot for each frame. The master also sends the frames

in a predetermined sequence. The information sequence of

the frames and the time slot for each frame is available in a

table called Schedule table. Each entry of this table

describes the protected identifier of the frame to be initiated

and also the time to be allotted for that frame. When all the

October 25, 2006 Cypress Semiconductor – Rev. ** 13

LIN Bus 2.0 Reference Design 2. System Architecture

frames in the Schedule table have been transmitted, the

next cycle starts again from the first frame of the table.

The LIN 2.0 API has many functions to manage the Sched-

ule table. It has functions to select tables, to initiate the

transfer of the next frame in the current table, and so on.

More details on these APIs are found in section 3, Master

Design APIs, on page 25.

Figure 2-5. Hardware Configuration of a LIN Master/Slave

2.4 Hardware Architecture

Figure 2-5 shows the hardware architecture for the LIN Mas-

ter/Slave.

2.4.1 LIN Transceiver

Because the physical LIN bus is held at Vbat in the range of

8 to 18 volts, a LIN transceiver device is required to connect

the LIN bus with the PSoC chip. The LIN transceiver con-

verts the single wire LIN bus at 8V – 18 volts to TTL-level TX

and RX signals, which can be connected to the PSoC.

2.4.2 Voltage Regulator

You must use a voltage regulator to provide the PSoC Vcc

supply. LIN transceivers with built-in regulators are avail-

able.

2.4.3 External Pin Connections

You have the option to decide which pins to use for the TX

and RX pins in the design. These connections are done in

the Device Editor of PSoC Designer. Details on how to con-

figure the pins are in section 5, Using the Design IP, on

page 35.

2. System Architecture LIN Bus 2.0 Reference Design

14 Cypress Semiconductor – Rev. ** October 25, 2006

LIN Bus 2.0 Reference Design, Rev. ** 15

3. Master Design IP

3.1 Software Architecture

3.1.1 Overview

The software architecture maximizes interrupt processing to

minimize the processing overhead on the end application.

All message processing through configurations is performed

at the interrupt level. Each stage is designed as a state

machine and, upon completion, this state machine unloads

itself and loads in the next required configuration to propa-

gate the message to completion through the LIN message

protocol sequence. Each message scheduled for process-

ing is identified by the identifier byte in the header. The iden-

tifier is defined by the agreed master-slave relationship in

the LIN description file (LDF). See the example LDF in sec-

tion 5, LIN Description File (LDF) on page 43.

The master has a Schedule table where the frames are

defined in the sequence in which they are transmitted on the

bus. This table also contains an entry for the duration slot for

each frame. In addition to the Schedule table, there is a Sig-

nal table in which the frames that are used in the system are

defined. This table contains parameters such as the pro-

tected identifier, transfer type, checksum mode, data count,

and the pointer to the frame buffer.

There are three transfer types:

■ MASTER_TO_SLAVE where the master sends the data

after the protected ID for the slave to process.

■ SLAVE_TO_MASTER where the slave responds with

data to the master’s request.

■ SLAVE_TO_SLAVE where the master initiates a frame

and the data is transferred from one slave to another.

When a MASTER_TO_SLAVE transaction takes place, the

master transmits the content of the frame’s buffer to the

slave. For SLAVE_TO_MASTER, the master receives the

slave’s response and deposits the data in the frame’s buffer.

For a SLAVE_TO_SLAVE transfer, the master discards all

the data received at the end of the frame.

There are two types of checksum modes used, classic and

enhanced. For LIN 1.x slave nodes, use the classic check-

sum for all frames. For LIN 2.0 slave nodes, use enhanced

checksum for frames with identifiers 1 through 59. For iden-

tifiers 60 to 63, use classic checksum. While creating the

Signal table, refer to the LDF to determine the slave version

before deciding the checksum type.

The data count also depends upon the slave type. For

LIN1.x slaves, the data count is fixed for different protected

identifiers. For these frames, the data count is set to zero in

the Signal table. When the master comes across a zero for

data count in this table, it assumes that the default data

count is used and extracts the data count from the protected

identifier. For LIN 2.0 slaves, the data count can be from one

to eight. So the data count entry can have any value from

one to eight. Again, this value must be configured after

studying the LDF.

The buffer pointer is an entry that has the address of the

buffer for the particular frame. The master reads from or

writes to the corresponding frame buffer using the buffer

pointer parameter.

3.1.2 Foreground Processing

The main process must initialize the LIN function and then

set the Schedule table using the l_sch_set function. After

this, the main process performs the actual application. The

successive frame transfers are initiated either inside the

main loop or inside the schedule timer’s interrupt service

routine (ISR). The schedule timer is configured to generate

an interrupt based upon the time base defined in the LDF.

When a frame is read from the Schedule table, the time for

the frame is also read and a loop counter is updated with

this time count. This counter is decremented inside the

schedule timer ISR. When it reaches zero, a flag is set to

indicate that the next frame is ready for processing. The

main function continuously checks this using the

LinMaster_fIsLinReady function. When this flag is set, the

main function calls the l_sch_tick function to start the next

message. Alternatively, the l_sch_tick function can be called

from the schedule timer ISR.

The main program is able to perform other functions inside

the main loop. It checks the status of each frame transfer by

checking the first byte of the frame buffer. It can also update

frames or process received data.

More details on the l_sch_tick function are in the API section

ahead.

3. Master Design IP LIN Bus 2.0 Reference Design

16 Cypress Semiconductor – Rev. ** October 25, 2006

3.1.3 Timing and Interrupts

Automotive applications are often real-time driven. As a

result, the LIN driver only uses interrupts with no active loop

or blocking functions. Overhead measurements made on a

LIN bus with messages transferred at 19200 bauds and the

PSoC CPU running at 24 MHz, show a 0% overhead

between messages, and a maximum of 5% overhead while

sending or receiving messages. Refer to Time Study on

page 28 in this chapter.

3.2 Device Configurations

The LIN master design uses dynamic reconfiguration and

has three configurations, the Synchro Break Configuration,

Data Transmission Configuration and the Data Reception

Configuration. The Synchro Break Configuration generates

the break field. The Data Transmission Configuration sends

the synchronization byte and any data bytes to be transmit-

ted followed by the checksum byte. The Data Reception

Configuration receives the slave’s response data.

3.2.1 Synchro Break Configuration

Figure 3-1 shows the module placement for the Synchro

Break Configuration. This configuration has one 8-bit

counter (SB_Baud_Rate_Counter) that generates the baud

clock. The output frequency of this clock generator is eight

times the baud rate. There is a second 8-bit counter

(SB_Bit_time_counter) that is used to generate an interrupt

every bit time. Finally, there is a third 8-bit counter

(Synchro_Break_Counter) that generates the actual break

field. The period and compare values of

Synchro_Break_Counter are set in such a way that one full

cycle of the counter produces a break time approximately

equal to 13 bit times and the break delimiter equal to one bit

time. The TX and RX pins are compared to detect any bit

error inside the Bit_time_counter ISR.

Figure 3-1. Synchro Break Configuration

3.2.2 Data Transmission Configuration

Figure 3-2 shows the user module placement for the Data

Transmission Configuration. This configuration has one 8-bit

counter that generates the baud rate

(DT_Baud_rate_counter), one 8-bit counter that is used to

generate interrupts every bit time for detecting bit errors

(DT_Bit_time_counter), and one TX8 User Module to trans-

mit data (TX8). The baud rate generator is configured to

generate a clock eight times that of the baud clock and feed

the TX8 block’s clock input. When break field generation is

complete, the Data Transmission Configuration is loaded

and 0x55 is transmitted as the synch byte. Next, the pro-

tected identifier is transmitted. The protected identifier is fol-

lowed by master’s data and the checksum if the frame is

MASTER_TO_SLAVE. Also during the data transmission,

the Bit_time_counter generates an interrupt every bit time.

Inside the Bit_time_counter’s ISR, the TX and RX pins are

compared. If they are not equal, then the BIT_ERROR flag

is set and transmission of the current frame is aborted.

Figure 3-2. Data Transmission Configuration

3.2.3 Data Reception Configuration

Figure 3-3 shows the user module placement for the Data

Reception Configuration. This has one 8-bit counter that

generates the baud rate (DR_Baud_rate_counter), one 8-bit

counter that is used to generate interrupts every five bit

times for detecting the slave non-response timeout

(DR_Bit_time_counter), and one RX8 User Module that

receives data (RX8). The DR_Baud_rate_counter is config-

ured to generate a clock eight times that of the baud clock

and feed the RX8 block’s clock input. The received bytes

are transferred to the temporary buffer inside the RX8 ISR.

When all the bytes indicated by the variable bNbDataToRe-

ceive have been received, the master processes the

received data. Also, the bit time counter generates an inter-

rupt every five bit times and a timeout counter is decre-

mented inside the DT_Bit_time_counter ISR. The timeout is

set as number of bit times according to the length of the

frame. If the frame is not completed within this timeout (if the

concerned slave stops transmitting), the Synchro Break

Configuration is loaded and the “Slave Not Responding”

error flag is set.

Figure 3-3. Data Reception Configuration

October 25, 2006 Cypress Semiconductor – Rev. ** 17

LIN Bus 2.0 Reference Design 3. Master Design IP

3.3 Firmware

3.3.1 Overview

The initiation of a frame is done by the l_sch_tick function.

This function first reads the Schedule table and loads the

frame parameters of the frame to transmit. It then loads the

Synchro Break Configuration and starts the synchro break

timer. This timer is configured to generate a dominant state

of 13 bit times and a recessive (logic high level on the bus)

state of one bit time. On the terminal count interrupt of this

timer, the Data Transmission Configuration is loaded and

the synch byte of 0x55 is transmitted. The protected identi-

fier is transmitted next. If the transfer is

MASTER_TO_SLAVE, all data bytes are transmitted one by

one with the checksum as the last byte. If the transfer type is

not MASTER_TO_SLAVE, then the Data Reception Config-

uration is loaded and the response from the slave is

received. Data is processed after all bytes are received.

Once the l_sch_tick function loads the Synchro Break Con-

figuration and starts the synchro break timer, the rest of the

frame is processed in the background, inside ISRs. More

about the ISRs will be explained in the following sections.

This enables the main function to run in the foreground.

There are four different interrupts processed inside the LIN

master. One or more of these interrupts may be active

depending upon the active state. The code inside each of

these ISRs is well commented so that it is very easy to

understand the operation.

3.3.2 Synchro Break Interrupt

The l_sch_tick function loads the Synchro Break Configura-

tion and starts the synchro break counter. The synch

counter clock is from the baud rate clock generator, which

runs at eight times the bit rate. The period of the synch

counter is set to 111. This is equal to 14 bit times. The com-

pare value of the counter is set to eight, which is equal to

one bit time. So the output of the counter remains low for 13

bit times and high for one bit time. At the terminal count, the

synchro break counter generates an interrupt. The Data

Transmission Configuration is loaded inside this ISR. 0x55

is then placed on the TX buffer to generate the synch field.

The rest of the frame is continued from the TX interrupt.

3.3.3 TX Interrupt

Inside the TX ISR, the program checks if this is the first

interrupt. If this is the first interrupt, 0x55 was placed in the

TX shift register and the buffer is empty. The bit time counter

is started and its interrupt enabled. This counter’s interrupt is

used to check for bit errors. The bNbDataToSend variable is

then checked. If this variable equals zero, no more bytes are

sent and the bfLAST_BYTE_SENT flag is set. The comple-

tion of the frame takes place inside the Bit_time_counter’s

ISR. If the bNbDataToSend is not zero, then the next byte

sent is transferred to the TX buffer. Then the bNbData-

ToSend variable is decremented by one before exiting the

ISR.

3.3.4 RX Interrupt

If a response is expected from the slave, the Data Reception

Configuration is loaded. This is done inside the

Bit_time_counter’s ISR for the Data Transmission Configu-

ration. When a byte is received from the slave, this interrupt

is generated. Inside the interrupt, the received data is placed

on a buffer in the RAM. The bNbDataToReceive variable is

decremented and checked if zero. If it is not zero, the ISR is

exited. If this value becomes zero, it means that all the bytes

were received and the Synchro Break Configuration is

loaded to allow for the next frame initiation. Then the

bfDATA_TO_COPY flag is checked. This flag is set if this is

a SLAVE_TO_MASTER transaction and is not set if this is a

SLAVE_TO_SLAVE transaction. For a SLAVE_TO_SLAVE

transaction, the master has nothing to do with the received

data so the data is discarded. For a SLAVE_TO_MASTER

transaction, the checksum of the received data is verified. If

the checksum is valid, the received data is transferred to the

corresponding frame buffer. The checksum of the data bytes

is compared with the last byte of the frame, which is the

checksum transmitted by the slave. If they are identical, the

data is valid. If the data is a slave’s response to a master’s

diagnostics request, the received data is processed for the

RSID, error code etc. of the slave response. Details of RSID

may be found in the LIN 2.0 specifications.

3.3.5 Bit Time Interrupt

The bit time interrupt is used in all the configurations.

3.3.5.1 Synchro Break Configuration

In the Synchro Break Configuration, the bit time counter

generates an interrupt every bit time. Inside the ISR, the TX

and RX pins are compared to check if there is a bit error. If a

bit error is found, the frame is aborted and the Synchro

Break Configuration is reloaded. Also, when the TX state is

sensed as logic high, the TX pin is disconnected from the

global bus and made StdCPU and the TX pin’s state is made

logic high. This is done to prevent the counter output from

becoming logic low upon terminal count before it is stopped

inside the synchro break ISR. This unwanted low transition

could be taken as the falling edge of the synch byte by the

slaves connected to the cluster and may lead to communi-

cation errors.

3.3.5.2 Data Transmission Configuration

In the Data Transmission Configuration, the bit time interrupt

is used to compare the TX and RX pins. The number of bits

compared is tracked by the bNbBitsAnalyzed variable. This

variable is initially set to 10, including the start and stop bits

of a byte. Whenever this variable becomes zero, a byte is

analyzed and the bfLAST_BYTE_TRANSMITTED flag is

checked. If this flag is set, the last byte of the frame was

sent. When this happens, the bNbDataToReceive variable is

checked. If this is zero, then the Synchro Break Configura-

tion is loaded. If this is not zero, then the Data Reception

Configuration is loaded to receive the slave’s response.

3. Master Design IP LIN Bus 2.0 Reference Design

18 Cypress Semiconductor – Rev. ** October 25, 2006

3.3.5.3 Data Reception Configuration

In the Data Reception Configuration, the bit time counter is

configured to generate an interrupt every five bit times.

Inside this ISR, a timeout counter is decremented by five.

This timeout counter is initialized by the l_sch_tick function

according to the number of data present in the frame. In a

normal frame transaction, the frame is completed before this

counter becomes zero. However, if the slave stops transmit-

ting in the middle of the frame for any reason, and the time-

out counter becomes zero, a timeout is detected, the

SLAVE_NOT_RESPONDING error flag is set and the Syn-

chro Break Configuration is loaded.

3.4 Source Code Files

Lin20CoreAPI.asm: This file has all the functions for the

LIN core API.

Lin20NodeConfiguration.asm: This file has all the func-

tions for the node configuration.

Lin20PhysicalLayer.asm: This file has all the code related

to the proper operation of the LIN firmware. This file has all

the ISRs described in section 3.3, Firmware on page 17.

RamVariables.asm: This file has all RAM variable alloca-

tions.

SignalTable.asm: This file has the Message table and the

Protected ID table. This file must be modified according to

the LDF.

ScheduleTable.asm: This file has the Schedule tables used

in the master design. This file must be modified according to

the LDF.

LinPowerManagement.c: This file has the functions that

are required for the go to sleep and wakeup operations of

the LIN master.

NodeConfigUtilities.c: This file has some functions that

can be used for node configuration functions.

3.5 Header Files

Lin20CoreAPI.h: This file has all the function prototypes for

the Lin20CoreAPI.asm file.

Lin20NodeConfiguration.h: This file has all the function

prototypes for the Lin20Nodeconfiguration.asm file.

Lin20Defines.h: This file has the variable types defined in

the LIN specifications.

Lin20Master.h: This file has the definitions of different con-

stants and flags used in the firmware.

LinPowerManagement.h: This file has the function proto-

types for the LinPowerManagement.c file.

NodeConfigUtilities.h: This file has the function prototypes

for the NodeConfigUtilities.c file.

SignalTable.h: This file has declarations of the signal buff-

ers and frame names used in the SignalTable.asm file.

ScheduleTable.h: This file has the declarations of the

Schedule table names used in the ScheduleTable.asm file.

Lin20Master.inc: This file has the definitions of all the con-

stants and flags used by the Lin20PhysicalLayer.asm file.

Of all source code and header files, you must modify the fol-

lowing files according to the LDF.

■ Lin20Master.inc

■ SignalTable.asm

■ SignalTable.h

■ ScheduleTable.asm

■ ScheduleTable.h

3.6 Creating a Project Using the

Design IP

Follow these steps to create a LIN master PSoC project

using the Design IP.

3.6.1 Importing the Design

There are two ways to import the design. One is to create a

new project in PSoC Designer and use the design-based

project option. The other is to create a project and then

import the design using the Design Browser. The recom-

mended method is to create a new design-based project.

1. Select

File >> New Project >> Create Design-Based Project.

2. Select the directory in which to create the project files.

3. Select the directory and name for a project.

4. The Design Browser opens. The Design Browser has

two windows. The window on the left side is the Design

Browser itself where you select the design. The window

on the right side shows the data sheet for the selected

design. On the top of the Design Browser window there

are two radio buttons that select between “Browse File

System” and “Select From Design Catalog.” Click the

"Browse File System" option. Navigate to the "\Design

IP\Lin2.0 Master" directory on the CD, and open the

folder corresponding to the device that you want to use.

Then select the .cfg file in this directory. Now the data

sheet window on the right shows the data sheet of the

LIN master design.

5. Below the Design Browser window, there are two radio

buttons, “Overwrite configurations with same name” and

“Resolve configuration name conflicts.” Use these

options when importing a design into an already-existing

project and if some of the configurations from the exist-

ing project have the same name as that of the imported

design.

6. Below this there are two windows, “Resolve name con-

flicts” and the “Specify base configuration.” The “Specify

base configuration” window has the Synchro Break Con-

figuration, Data Transmission Configuration and Data

Reception Configurations listed. Do not select any of

these options.

October 25, 2006 Cypress Semiconductor – Rev. ** 19

LIN Bus 2.0 Reference Design 3. Master Design IP

7. The “Resolve name conflicts” window lists functions in

the imported design that have the same name as func-

tions in the existing project. When there is a name con-

flict, clicking the “Auto Resolve” button automatically

renames the conflicting function names.

8. Below this, details of the design such as date of creation,

description and the base part number are displayed.

9. Click OK.

10. Now in the Device Selection window, select the device

for the project.

11. Select “Generate main file using C.”

12. Select “Device Editor” as the Designer State.

13. Click Finish.

14. A Design Import Status window opens and displays the

import status.

15. When the design is imported, PSoC Designer opens the

Device Editor.

16. Four configurations are visible. The base configuration

with the project name, the Synchro Break Configuration,

Data Transmission Configuration and the Data Recep-

tion Configuration.

17. Go to Project >> Settings, Device Editor tab. In the con-

figuration initialization type, select “Direct Write (Speed

Efficient).”

18. Now switch to the base configuration and select all the

user modules to include in the main application.

3.6.2 Configuring Global Resources

Now switch to the Interconnect View and select the base

configuration. First, configure all the global resources

related to the LIN design. Whatever changes made to the

base configuration, are reflected in the other three loadable

configurations.

1. Set CPU speed to 24 MHz. (Set the CPU speed to 12

MHz for the CY8C27x43 automotive grade device.)

2. Set 32 kHz to External.

3. Set the PLL to Enabled.

4. Set VC1 divider to 12.

These are the required global resources for the LIN master.

The clock VC1 is used as the source clock to LIN modules.

The divider is set to 12 in the firmware so that the output of

VC1 is 2 MHz. Take this into account when using VC1 and

VC2 in the main application. You can set all the other global

resources in your main application.

3.6.3 Configuring GPIO

Next, decide the TX and RX pins of the LIN bus. To properly

select their drive modes in all configurations, follow these

steps carefully.

1. Switch to the base configuration. Use the Config >>

Restore default pinout. All the pins in the GPIO configu-

ration pane become StdCPU, High Z Analog, DisableInt.

Repeat this step for the synchro break, data transmis-

sion and data reception configurations.

2. Return to the base configuration.

3. In the GPIO configuration pane, rename the port pin you

plan to use as the RX pin to “RX.” Then rename the pin

you plan to use as the TX pin as “TX.” Capitalize these

letters.

4. In the Select column of the RX pin, select the

GlobalInOdd_x or GlobalInEven_x. The drive mode

automatically becomes High Z.

5. In the Select column of the TX pin, select the

GlobalOutOdd_x or GlobalOutEven_x. The drive mode

automatically becomes Strong.

6. Switch to synchro break, data transmission and data

reception configurations and check that these changes

are reflected.

The GPIO configuration is done. After this, modify the GPIO

of the other port pins according to the main project require-

ments. Whenever a modification is done in the base configu-

ration, the same settings are updated in the other three

configurations. Thus, regardless of which configuration is

active, the GPIO state of the main application is maintained.

When the process is complete, the configuration of the TX

and RX pins looks like this:

3.6.4 Routing the Signals

The next step is to route the signals to the digital blocks of

the LIN configurations.

1. Go to the Synchro Break Configuration.

2. Route the Compare Out of the synchro break counter to

the appropriate Row_1_Output_x line. For example, if

you have configured P0[3] as TX pin, then route the

Compare out to Row_1_Output_3 net.

3. From this Row_1_Output_x net, route the signal to the

appropriate GlobalOut bus to which the TX pin is con-

nected.

4. Switch to the Data Transmission Configuration.

5. Route the output of the TX8 to the same

Row_1_Output_x line used by the synchro break

counter (step 2) and from there to the GlobalOut bus to

which TX pin is connected.

6. Switch to the Data Reception Configuration.

7. Route the Global_Input net to which RX is connected, to

an appropriate Row_1_Input_x net. Select Synch to

SysClk in the Synchronization box. For example, if P0[2]

is used as RX, then connect GlobalIn_Even_2 bus to

Row_1_Input_2 net.

Table 3-1. TX Pin

Configuration Name Port Select Drive Interrupt

Base TX As selected GlobalOut Strong DisableInt

Synchro Break TX As selected GlobalOut Strong DisableInt

Data Transmission TX As selected GlobalOut Strong DisableInt

Data Reception TX As selected GlobalOut Strong DisableInt

Table 3-2. RX Pin

Configuration Name Port Select Drive Interrupt

Base RX As selected GlobalIn High Z DisableInt

Synchro Break RX As selected GlobalIn High Z DisableInt

Data Transmission RX As selected GlobalIn High Z DisableInt

Data Reception RX As selected GlobalIn High Z DisableInt

3. Master Design IP LIN Bus 2.0 Reference Design

20 Cypress Semiconductor – Rev. ** October 25, 2006

8. Select Row_1_Input_x (step 7) as the input to the RX8

User Module.

9. Switch to the base configuration.

10. Make the connection from Row_1_Output_x net to the

Global bus as used by the Data Transmission and Syn-

chro Break configurations in the base configuration.

11. Make the connection from Global_In bus to the

Row_1_Input_x net as used by the Data Reception Con-

figuration.

With this routing of signals, the hardware configuration is

complete.

3.6.5 Setting the Baud Rate

In the Lin20Master.inc file, there are four constants:

BR2400, BR4800, BR9600, and BR19200. These corre-

spond to 2.4K, 4.8K, 9.6K, and 19.2K baud rates, respec-

tively. Set the value of one of these constants to 1 to

correspond to the baud rate. This constant is used to select

the period and compare values of the baud rate generator.

Make only one of these constants 1.

3.6.6 Adding the Schedule Timer

An important module necessary for the proper functioning of

the master is the schedule timer. This timer is used to gener-

ate the frame slot timings for the LIN bus. This is placed by

the user in the base configuration. Follow these steps.

1. Go to the base configuration.

2. Select a Counter8 User Module and add it to the project.

3. Rename it “ScheduleTimer.”

4. Place it in any of the available digital blocks. Avoid plac-

ing it in a digital block used by the LIN design in any of

the other configurations.

5. Configure the parameters for the counter as:

❐ Clock: according to the time base

❐ Enable: High

❐ CompareOut: None

❐ TerminalCountOut: None

❐ Period: As per time base

❐ CompareValue: ½ (Period + 1)

❐ CompareType: Less Than or Equal To

❐ InterruptType: Terminal Count

❐ ClockSync: As per the Clock source

❐ InvertEnable: Normal

3.6.7 Setting the Source Clock and
Period

Set the source clock and period according to the time base

specified in the LDF. In the example, the time base is 1 ms.

Make the counter output frequency 1 kHz. Since the config-

uration of the clock resources is very flexible, there are dif-

ferent combinations of clock source and period that

arepossible. For example:

■ Clock: VC2.

■ VC2 Divider = 10. As VC1’s divider is already set to 12

by the LIN firmware, the output frequency of VC2 is 200

kHz.

■ Period = 199. VC2 is divided by (Period + 1), i.e., 200 to

give an output frequency of 1 kHz.

3.6.8 Configuring the Signal Table

You now need to configure the frames used in the system in

the SignalTable.asm file. This configuration is done accord-

ing to the LDF. For this example, refer to the LDF provided in

section 5, LIN Description File (LDF) on page 43. According

to the LDF file, a total of four frames are used.

■ VL1_CEM_Frm1: This frame is published by the master

and is subscribed to by the slaves CPM and DIA. The

protected ID for this frame is 0xF0. The length of this

frame is eight bytes.

■ VL1_CPM_Frm1: This frame is published by slave CPM

and is subscribed to by the master. The protected ID of

this frame is 0x9C. The length of this frame is two bytes.

■ VL1_CPM_Frm2: This frame is published by slave CPM

and is subscribed to by the master. The protected ID of

this frame is 0x32. The length of this frame is one byte.

■ VL1_DIA_Frm1: This frame is published by slave DIA

and is subscribed to by the master. The protected ID of

this frame is 0x80. The length of this frame is two bytes.

3.6.9 RAM Allocation

First the buffers for these frames are allocated in RAM. A

name is given to each frame and the buffer is named as

Buffer<FrameName>. The frames are named Frame1,

Frame2, Frame3, and Frame4. The buffers for these frames

are BufferFrame1, BufferFrame2, BufferFrame3, and

BufferFrame4. When assigning RAM, one extra byte is allo-

cated for each frame. This byte is used as the status byte of

that particular frame. The LIN firmware updates the status of

transaction of each frame in this byte. The status byte is the

first byte of the array. Another buffer is used by the LIN firm-

ware for diagnostic frames. This buffer is named “abDiag-

Buffer.” The diagnostic frames always carry eight bytes. This

makes the total length of this buffer nine bytes.

Here is an example of RAM allocation.

area bss(ram)

_abDiagBuffer:

 abDiagBuffer: BLK 9; Buffer for Diagnostic

frames

_BufferFrame1:

 BufferFrame1: BLK 9; Buffer for Frame1

_BufferFrame2:

 BufferFrame2: BLK 3; Buffer for Frame2

_BufferFrame3:

 BufferFrame3: BLK 2; Buffer for Frame3

_BufferFrame4:

 BufferFrame4: BLK 2; Buffer for Frame4

3.6.10 Frame Definition

Now the frames are defined in the Signal table. Each frame

has the following parameters entered in this order:

October 25, 2006 Cypress Semiconductor – Rev. ** 21

LIN Bus 2.0 Reference Design 3. Master Design IP

A. Checksum Type: This entry defines the checksum type

used for the particular frame. There are two types of

checksums, CSUM_CLASSIC and CSUM_EXTENDED.

CSUM_CLASSIC is used for frames that belong to LIN

slaves of version 1.3 or less and for diagnostic frames.

CSUM_EXTENDED is used for LIN 2.0 slaves.

B. Data Count: This entry indicates the length of data car-

ried by the frame. For LIN1.x slaves, this parameter is

left as zero. When the l_sch_tick function finds that the

data count is zero, it calculates the standard length for

the frame from the protected ID.

C. Buffer Pointer: This entry is the pointer to the buffer for

this frame that is reserved in RAM. Enter the name of the

buffer in this entry. The compiler will translate this to the

RAM address and create the table.

D. Data Direction: This entry indicates the direction of data

flow. MASTER_TO_SLAVE indicates that the slave must

receive data from master and SLAVE_TO_MASTER

indicates that the slave must transmit a response to the

master. SLAVE_TO_SLAVE indicates that the data flow

is from one slave to another. In this type of transaction,

the master’s job is only to generate the header of the

frame.

E. Protected ID: This entry is for the protected ID for the

particular frame.

In addition to these user-defined frames, there are some

frames used by the master for diagnostics. They are the

master request and slave response frames. For both these

frames, the data count is eight, the checksum type is

extended, and the response buffer is abDiagBuffer.

_Frame1:

db 8 ;Data Count

 Frame1:

db CSUM_EXTENDED ; Checksum Type

db 0 ; Data count

db BufferFrame1 ; Buffer address

db MASTER_TO_SLAVE ; Direction

db 0xF0 ; ID

_Frame2:

 Frame2:

db CSUM_EXTENDED ; Checksum Type

db 2 ; Data count

db BufferFrame2 ; Buffer address

db SLAVE_TO_MASTER ; Direction

db 0x9C ; ID

_Frame3:

 Frame3:

db CSUM_EXTENDED ; Checksum Type

db 1 ; Data count

db BufferFrame3 ; Buffer address

db SLAVE_TO_MASTER ; Direction

db 0x32 ; ID

_Frame4:

 Frame4:

db CSUM_EXTENDED ; Checksum Type

db 2 ; Data count

db BufferFrame4 ; Buffer address

db SLAVE_TO_MASTER ; Direction

db 0x80 ; ID

3. Master Design IP LIN Bus 2.0 Reference Design

22 Cypress Semiconductor – Rev. ** October 25, 2006

Once the frame definition and the buffer allocations are

complete, export these names as Global so they are used in

the main application and the LIN API. All the frame names

and buffer names must be declared with and without an

underscore. The name with the underscore is to enable the

name to be used in C functions. For the above example, the

following names are exported.

export _MasterRequest

export MasterRequest

export _SlaveResponse

export SlaveResponse

export _Frame1

export Frame1

export _Frame2

export Frame2

export _Frame3

export Frame3

export _Frame4

export Frame4

export _abDiagBuffer

export abDiagBuffer

export _BufferFrame1

export BufferFrame1

export _BufferFrame2

export BufferFrame2

export _BufferFrame3

export BufferFrame3

export _BufferFrame4

export BufferFrame4

Once these names are exported, they are available to any

assembly function. To use these names in C, they must be

declared in a C header file. This is done in the SignalTable.h

file. All frame names are defined as “const char” as they are

in the Flash and the buffer names are defined as “BYTE” as

they are in the RAM. The following are the entries in the

SignalTable.h file.

// Definition of Frame Buffers to be used by

the main program

extern BYTE BufferFrame1[];

extern BYTE BufferFrame2[];

extern BYTE BufferFrame3[];

extern BYTE BufferFrame4[];

extern BYTE abDiagBuffer[];

// Definition of Frame names to be used by

the main program

extern const char Frame1[];

extern const char Frame2[];

extern const char Frame3[];

extern const char Frame4[];

3.6.11 Schedule Table

3.6.11.1 Structure of Schedule Table

Once the frames used in the cluster are defined, you need

to create Schedule tables. The Schedule tables are found in

the “ScheduleTable.asm” file. To create a Schedule table,

you first select a name. For the example, create a Schedule

table called Schedule1. The table entries are entered in this

order.

A. Frame Name: The name of the frame to be transmitted.

B. Frame Time Constant: The number of schedule timer

interrupts before the next frame is transmitted. This

value is derived from the “Node Capability File” of the

nodes. The node capability file has frames defined with

minimum and maximum frame times. If these values are

not given in the node capability file, then use the formula

given in “Section 2.2 Frame Slots” in the LIN 2.0 protocol

specification. The equations are:

THeader Nominal = 34 * TBit Equation 1

TRespone Nominal = 10 * (NData +1) * TBit Equation 2

TFrame Nominal = THeader Nominal + TRespone

Nominal Equation 3

This calculation does not consider the response space, byte

space or inter-frame space. The actual time used is accord-

ing to the LIN 2.0 protocol specification.

TFrame Maximum = 1.4 * TFrame Nominal Equation 4

From this time, calculate the number of schedule timer over-

flows based upon the schedule timer time base.

Frame Time Constant = Frame Time / Timebase

For example, if the frame time is calculated as 20 ms and

the time base is 1 ms, then the frame time constant is 20 ms

/ 1mS = 20.

_MasterRequest:

 MasterRequest:

db CSUM_CLASSIC ; Checksum Type

db 8 ; Data count

db abDiagBuffer ; Buffer address

db MASTER_TO_SLAVE ; Direction

db 0x3C ; ID

_SlaveResponse:

 SlaveResponse:

db CSUM_CLASSIC ; Checksum Type

db 8 ; Data count

db abDiagBuffer ; Buffer address

db SLAVE_TO_MASTER ; Direction

db 0x7D ; ID

October 25, 2006 Cypress Semiconductor – Rev. ** 23

LIN Bus 2.0 Reference Design 3. Master Design IP

3.6.11.2 An Example Schedule Table

Here is an example Schedule table. The name of the table is

Schedule1. This table has Frame1, Frame2, Frame3 and

Frame4 (which are defined in the SignalTable.asm file) in

the order they are entered in the Schedule table.

Schedule table example:

_Schedule1:

 Schedule1:

dw Frame1, 20

dw Frame3, 10

dw Frame2, 10

dw Frame4, 10

dw 0xFFFF

The last entry in the Schedule table is the table terminator.

When the l_sch_tick function comes across 0xFFFF, it goes

back to the start of the Schedule table.

3.6.11.3 Diagnostic Schedules

In addition to the user-defined Schedule tables defined in

the LDF, there are some tables defined in the API that are

available for other diagnostic functions. They are listed

below.

■ ScheduleNodeConfiguration: This schedule contains

a master request frame and a slave response frame.

■ ScheduleGoToSleep: This schedule contains a master-

request frame.

■ L_NULL_SCHEDULE: This schedule is null and does

not transmit any frame.

These schedules are at the end of ScheduleTable.asm file.

Set these tables using the l_sch_set function before calling

the node configuration functions or the l_goto_sleep func-

tion.

Once the Schedule table definitions are done, export the

schedule names so that they are referenced by the LIN

functions and the main program. This is done in the begin-

ning of the ScheduleTable.asm file.

; Export Schedule Names

export _L_NULL_SCHEDULE

export L_NULL_SCHEDULE

export _Schedule1

export Schedule1

export _ScheduleNodeConfiguration

export ScheduleNodeConfiguration

export _ScheduleGoToSleep

export ScheduleGoToSleep

Then declare these names in the ScheduleTable.h file so

that these schedules are referenced in the C program.

// Definition of Schedule Names to be used in

the main program.

extern const char L_NULL_SCHEDULE[];

extern const char Schedule1[];

extern const char ScheduleNodeConfigura-

tion[];

extern const char ScheduleGoToSleep[];

3.6.12 Adding the Main Application

Now that the LIN 2.0 master is configured, you can add the

main application. Follow the normal procedure of building an

application using PSoC Designer. Place the user modules in

the base configuration, finish the routing, and generate the

application.

In the main.c file, follow these steps to properly start the LIN

firmware and update the LIN frames.

1. Call the l_ifc_init function to initialize the LIN function.

2. Enable the Global Interrupts using the M8C_EnableGInt

macro.

3. Write a 0 to the first byte of all the frame buffers. This is

to clear the status bytes of the buffers.

4. Perform node configuration if necessary.

5. Set the schedule that the master must follow.

6. Inside an infinite loop, add the application code.

■ Keep checking for a completion of transaction of each

frame using the bfLAST_TRANSACTION_OK flag on

the first byte of the frame buffer, then process the data.

■ If polling is used to initiate a frame transfer, use the

LinMaster_fIsLinReady function to check if the current

time slot is over before calling the l_sch_tick function.

■ If using an interrupt-driven frame transfer, then call the

l_sch_tick function inside the ScheduleTimer_ISR func-

tion found in the FrameTiming.c file.

The example main file given in section 5, Demonstration

Projects on page 43, uses the polling method of frame trans-

fer.

3.6.13 Special Features

3.6.13.1 Low Power Management

For power management there are some functions available

in the LinPowerManagement.c file.

A. ShutdownLin: This function properly stops all the active

LIN resources and makes the pins HighZ so that the pro-

cessor enters a low power state. Inside this function,

there is an area into which the user must enter code to

stop all the resources used by the main application.

Also, if the main application uses analog resources, turn

off the analog reference and the analog buffers to mini-

mize current consumption during sleep state. It also dis-

ables all the interrupts except the GPIO interrupt. Call

this function to put the master in power-down mode after

it executes the l_goto_sleep function putting all the

slaves in the cluster to power-down mode.

B. SleepLoop: When this function is entered, the

M8C_Sleep macro is executed to put the processor to

sleep. Once the processor is put to sleep, it wakes up

only upon an interrupt. Since all interrupts are disabled

except the GPIO interrupt, when a slave in the cluster

issues a wakeup command (dominant state for a time of

250 µs to 5 ms), the processor wakes up and enters a

loop where it waits for the bus to go to recessive state.

When this happens, it checks the length of the dominant

state. If this length is within a specified limit, it returns

	Contact us
	Contents
	1. LIN Bus 2.0 Kit
	1.1 LIN Bus 2.0 Demonstration Kit Description
	1.1.1 Introduction

	1.2 Kit Contents
	1.3 Getting Started
	1.4 LIN Bus Demonstration
	1.5 Master Node Port Pin Usage
	1.6 Slave 1 Port Pin Usage
	1.7 Slave 2 Port Pin Usage
	1.8 Design IP
	1.9 Demonstration Projects
	1.10 Other Features
	1.11 Support

	2. System Architecture
	2.1 Overview
	2.2 Features of the PSoC LIN Bus 2.0 Design
	2.3 LIN Frame
	2.3.1 Basic LIN Frame
	2.3.2 Break Field
	2.3.3 Synch Byte
	2.3.4 Protected Identifier
	2.3.5 Data
	2.3.6 Checksum
	2.3.7 Frame Transfers on the LIN Bus

	2.4 Hardware Architecture
	2.4.1 LIN Transceiver
	2.4.2 Voltage Regulator
	2.4.3 External Pin Connections

	3. Master Design IP
	3.1 Software Architecture
	3.1.1 Overview
	3.1.2 Foreground Processing
	3.1.3 Timing and Interrupts

	3.2 Device Configurations
	3.2.1 Synchro Break Configuration
	3.2.2 Data Transmission Configuration
	3.2.3 Data Reception Configuration

	3.3 Firmware
	3.3.1 Overview
	3.3.2 Synchro Break Interrupt
	3.3.3 TX Interrupt
	3.3.4 RX Interrupt
	3.3.5 Bit Time Interrupt
	3.3.5.1 Synchro Break Configuration
	3.3.5.2 Data Transmission Configuration
	3.3.5.3 Data Reception Configuration

	3.4 Source Code Files
	3.5 Header Files
	3.6 Creating a Project Using the Design IP
	3.6.1 Importing the Design
	3.6.2 Configuring Global Resources
	3.6.3 Configuring GPIO
	3.6.4 Routing the Signals
	3.6.5 Setting the Baud Rate
	3.6.6 Adding the Schedule Timer
	3.6.7 Setting the Source Clock and Period
	3.6.8 Configuring the Signal Table
	3.6.9 RAM Allocation
	3.6.10 Frame Definition
	3.6.11 Schedule Table
	3.6.11.1 Structure of Schedule Table

