

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CY3268

PowerPSoC[®] Lighting Starter Kit Guide

Document No. 001-67149 Rev. *D

WARNING: HIGH BRIGHTNESS LEDS CAN CAUSE PERMANENT DAMAGE!

Do not look at the HBLEDs directly. The HBLEDs illuminate at a very high intensity and can cause permanent eye damage. Use a thick white sheet of paper as diffuser if there is no optical diffuser available.

WARNING: Generally all lab work in power electronics must be done with extreme care. Caution must be exercised when using power supplies and/or power related equipment.

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709

Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

Copyrights

© Cypress Semiconductor Corporation, 2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATE-RIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress PSoC Data Sheets. Cypress believes that its family of PSoC products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as 'unbreakable'.

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress are committed to continuously improving the code protection features of our products.

Contents

1.	Introduc	ction	5
	1.1	Kit Contents	5
	1.2	Additional Learning Resources	6
		1.2.1 References	
	1.3	Document History	7
	1.4	Documentation Conventions	7
2.	Getting	Started	9
	2.1	Introduction	q
	2.2	Kit Installation	
	2.3	PSoC Designer	
	2.4	PSoC Programmer	
	2.5	Install Hardware	
3	Kit Ope	ration	15
٥.	_		_
	3.1	Introduction	
	3.2 3.3	Programming PowerPSoC Device	
	3.3	CY3268 PowerPSoC Lighting Starter Kit Operation	17
4.	Hardwa		19
	4.1	System Block Diagram	
	4.2	Functional Description	
		4.2.1 Power Supply	
		4.2.2 PowerPSoC	
		4.2.3 Programming Interface	
		4.2.4 CapSense Sensors	
		4.2.5 HBLEDs	_
		4.2.6 RESET Button	
		4.2.7 Debug Port	
		4.2.8 Temperature Sensor	28
5.	Code Ex	xamples	29
	5.1	Code Example 1: CY3268_Example1	29
		5.1.1 Project Description	29
		5.1.2 Hardware Connections	29
		5.1.3 Program Flow Diagram	
		5.1.4 Verify Output	33
	5.2	Code Example 2: CY3268_Heartbeat	
		5.2.1 Project Description	
		5.2.2 Hardware Connections	
		5.2.3 Program Flow Diagram	
		5.2.4 Verify Output	38

Contents

A. Appendix				
	A.1	Schematic	39	
	A.2	Board Layout	40	
	A.3	Bill of Materials	42	
		Safety Precautions		

1. Introduction

Thank you for your interest in the CY3268 PowerPSoC[®] Lighting Starter Kit. You can use this kit with the help of guides and code examples that are provided. The project 'CY3268_Example1' is programmed on the CY3268 PowerPSoC Lighting Starter Kit as the default project for demonstration purposes. For more information on this project, see Chapter 5.

The CY3268 PowerPSoC Lighting Starter Kit demonstrates the ability of PowerPSoC to create scalable HBLED management solutions and enables designers to evaluate PowerPSoC. The PowerPSoC family of devices features high-performance power electronics including 1 A, 2 MHz rated power FETs, hysteretic controllers, current sense amplifiers, and PrISM™ technology to create a complete solution for HBLED power management.

This kit also enables designers to test and evaluate preliminary prototype designs using PowerPSoC and understand the design flow using PSoC Designer™ software for the PowerPSoC device family.

Chapter 2 describes how to install and configure software. Chapter 3 explains how to program a PowerPSoC device with PSoC Programmer and use the kit with the help of a code example. Chapter 4 details the hardware operation. Chapter 5 gives a description of the code examples. The Appendix section provides the schematics and bill of materials (BOM).

1.1 Kit Contents

The CY3268 PowerPSoC Lighting Starter Kit contains:

- CY3268 PowerPSoC board
- 12 V, 1 A power supply
- Two jumper shunts
- Five PowerPSoC CY8CLED04D01-56LTXI samples
- Kit CD, which includes:
 - PSoC Designer
 - PSoC Programmer
 - Demo firmware
 - Design files
 - Related documents

Inspect the contents of the kit; if any parts are missing, contact your nearest Cypress sales office for help.

This kit does not contain the MiniProg, a device that is required to program PowerPSoC. You can purchase the MiniProg online from the Cypress web store: http://www.cypress.com/go/CY3217-Miniprog1.

1.2 Additional Learning Resources

Visit www.cypress.com/go/powerpsoc for additional learning resources in the form of data sheets, technical reference manuals, and application notes.

1.2.1 References

- CY3268_PowerPSoC Lighting Starter Kit_Board Schematic.pdf http://www.cypress.com/?rID=36572
- CY3268_PowerPSoC Lighting Starter Kit_Board Layout.zip http://www.cypress.com/?rID=36572
- CY3268 Kit documentation
 - http://www.cypress.com/go/CY3268
- For a list of PSoC Designer-related trainings, see http://www.cypress.com/?rID=40543
- PowerPSoC Intelligent LED Driver data sheet http://www.cypress.com/?rID=41013
- For more information regarding PSoC Designer functionality and releases, refer to the user guide and release notes on the PSoC Designer web page:
 - www.cypress.com/go/psocdesigner
- For more information regarding PSoC Programmer, supported hardware, and COM layer, go to the PSoC Programmer web page:
 - www.cypress.com/go/psocprogrammer
- PrISMTM Technology for LED Dimming AN47372 http://www.cypress.com/?rID=2922
- Multi Channel Color Mixing Using HB LEDs AN51188 http://www.cypress.com/?rID=34809
- PowerPSoC Firmware Design Guidelines AN51012 http://www.cypress.com/?rID=35365
- Switching Regulators Component Design Guide AN50099 http://www.cypress.com/?rID=34331
- Modulation Techniques for LED Dimming AN49262 http://www.cypress.com/?rID=34683

1.3 Document History

Revision	PDF Creation Date	Origin of Change	Description of Change	
**	02/02/2011	SNVN	Initial version of kit guide	
*A	02/11/2011	SNVN	Updated document properties	
*B	04/25/2011	SNVN	Content updates throughout the document to implement review comments	
*0	05/25/2011	SNVN	Section 2.2: CD long name corrected to short name. 'CY3268 PowerPSoC'. Removed redundant step 3 in installation.	
*C			Section 4.2.3.1. ISSP/I2C changed to ISSP.	
			Section 5.2.4 : 'Example code' changed to 'code example'	
*D	06/02/2011	SNVN	Corrected formatting in table of contents	

1.4 Documentation Conventions

Table 1-1. Document Conventions for Guides

Convention	Usage	
Courier New	Displays file locations, user entered text, and source code: C:\cd\icc\	
Italics	Displays file names and reference documentation: Read about the sourcefile.hex file in the PSoC Designer User Guide.	
[Bracketed, Bold]	Displays keyboard commands in procedures: [Enter] or [Ctrl] [C]	
File > Open	Represents menu paths: File > Open > New Project	
Bold	Displays commands, menu paths, and icon names in procedures: Click the File icon and then click Open .	
Times New Roman	Displays an equation: $2 + 2 = 4$	
Text in gray boxes	Describes cautions or unique functionality of the product.	

2. Getting Started

2.1 Introduction

This chapter describes how to install and configure the CY3268 PowerPSoC Lighting Starter kit.

2.2 Kit Installation

To install the kit software, follow these steps:

- Insert the kit CD into the CD drive of your PC. The CD is designed to auto-run and the kit installer startup screen appears; you can also download the latest kit installer ISO file from http://www.cypress.com/go/CY3268 and create the installer CD; the other option is to extract the ISO using WinRar and install the executables.
- 2. Click Install the CY3268 PowerPSoC to start the installation, as shown in Figure 2-1.

Figure 2-1. Kit Installer Startup Screen

Note If auto-run does not execute, double-click the *cyautorun.exe* file on the root directory of the CD, as shown in Figure 2-2.

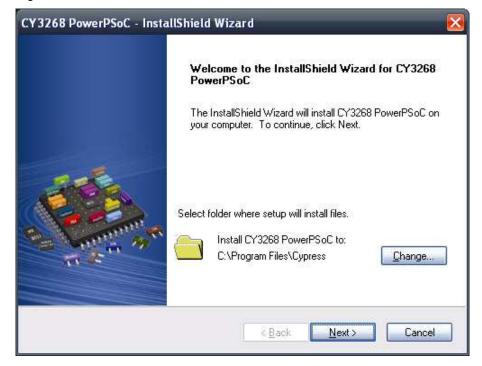


Figure 2-2. Root Directory of the CD

- 3. The CY3268 PowerPSoC InstallShield Wizard screen appears. Choose the folder location to install the setup files. You can change the location of the folder for the setup files using Change, as shown in Figure 2-3.
- 4. Click **Next** to launch the kit installer.

Figure 2-3. CY3268 PowerPSoC - InstallShield Wizard

- 5. On the **Product Installation Overview** screen, select the installation type that best suits your requirement. The drop-down menu has the options **Typical**, **Complete**, and **Custom**, as shown in Figure 2-4.
- 6. Click Next to start the installation.

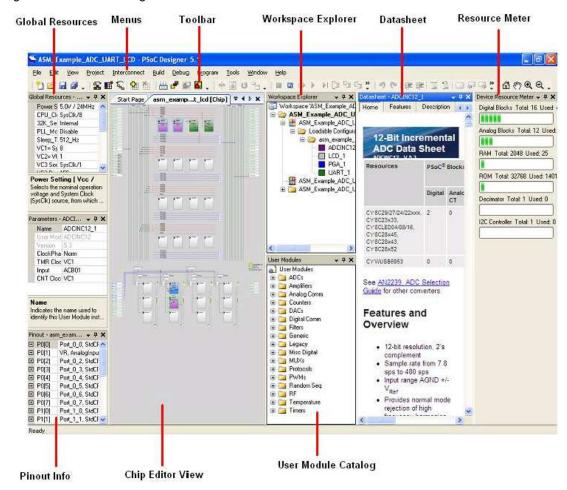
Figure 2-4. Installation Type Options

- 7. When the installation begins, a list of all packages appears on the Installation Page.
- 8. A green check mark appears adjacent to every package that is downloaded and installed, as shown in Figure 2-5.
- 9. Wait until all the packages are downloaded and installed successfully.

Figure 2-5. Installation Page

10. Click Finish to complete the installation, as shown in Figure 2-6.

Figure 2-6. Installation Completion Page


After installing the software, verify that you have all hardware and drivers set up for the MiniProg by connecting the MiniProg to your PC through its USB interface. Because this is the first time you have connected the board to this PC, initial drivers are installed. Follow the on-screen dialogs for USB detection to complete the installation process.

Verify your installation and setup by opening PSoC Programmer with the MiniProg attached over USB.

2.3 PSoC Designer

- Click Start > All Programs > Cypress > PSoC Designer <version> > PSoC Designer <version> (Figure 2-7)
- 2. Click **File** > **New Project** to create a new project or go to **File** > **Open Project/Workspace** to work with an existing project

Figure 2-7. PSoC Designer Interconnect View

3. To experiment with the code examples, go to Code Examples chapter on page 29


Note For more details on PSoC Designer, go to **Help Topics** from the following directory: <Install_Dir>\Cypress\PSoC Designer\<version>\PSoC Designer 5\Help

2.4 PSoC Programmer

- 1. Click Start > All Programs > Cypress > PSoC Programmer <version> > PSoC Programmer <version> (Figure 2-8)
- 2. Connect to the MiniProg listed from the **Port Selection** tab of PSoC Programmer, as shown in Figure 2-8

Figure 2-8. PSoC Programmer Window

- 3. Click on the File Load button to load the hex file
- 4. Use the **Program** button to program the hex file on to the chip
- 5. When the file is successfully programmed, **Programming Succeeded** appears on the Action pane
- 6. Close PSoC Programmer

Note For more details on PSoC Programmer, go to Help Topics from the following path:

<Install_Dir>\Cypress\Programmer\<version>\PSoc_Programmer.chm.

2.5 Install Hardware

No hardware installation is required for this kit.

3. Kit Operation

3.1 Introduction

The CY3268 PowerPSoC Lighting Starter Kit examples help you develop applications using the PowerPSoC family of devices. The kit is designed to develop lighting applications using PowerPSoC.

This chapter assists you in understanding the functionality of the kit.

3.2 Programming PowerPSoC Device

The PowerPSoC device on the board can be programmed using a MiniProg. To use MiniProg for programming, use the ISSP programming header J2 on the board, as shown in the following figure.

Figure 3-1. ISSP (J2) Programming Header

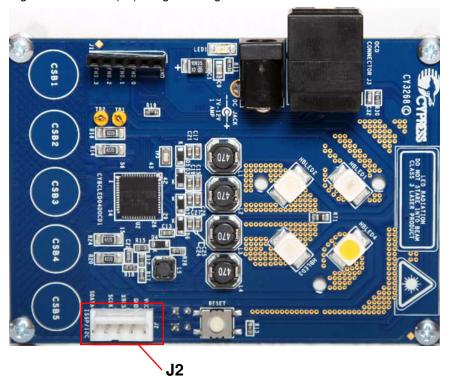


Figure 3-2. Connect MiniProg



Connect the MiniProg, as shown in the Figure 3-2 and program the board using PSoC Programmer.

3.3 CY3268 PowerPSoC Lighting Starter Kit Operation

Figure 3-3. Kit Board

The code example 1 is pre-loaded in the kit, when shipped.

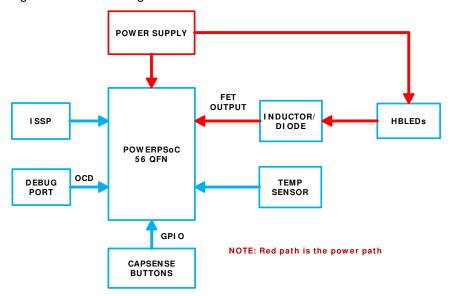
- 1. Connect the power supply to a wall outlet and to the board.
- 2. Touch the CapSense® buttons CSB1 to CSB4 to turn on the HBLEDs initially.
- 3. Touch the CapSense buttons CSB1 to CSB4 to select/deselect corresponding HBLEDs. The HBLEDs blink when selected.
- 4. Touch the CapSense button CSB5 to increase/decrease the brightness of the selected HBLED. Touching CSB5 repeatedly increases the brightness of the selected HBLED. When the maximum brightness is reached, further touching CSB5 decreases the brightness.
- 5. Turn off the board by removing the power supply from the wall outlet.

WARNING: HIGH BRIGHTNESS LEDS CAN CAUSE PERMANENT DAMAGE!

Do not look at the HBLEDs directly. The HBLEDs illuminate at a very high intensity and can cause permanent eye damage. Use a thick white sheet of paper as diffuser if there is no optical diffuser available.

WARNING: Generally all lab work in power electronics must be done with extreme care. Caution must be exercised when using power supplies and/or power related equipment.

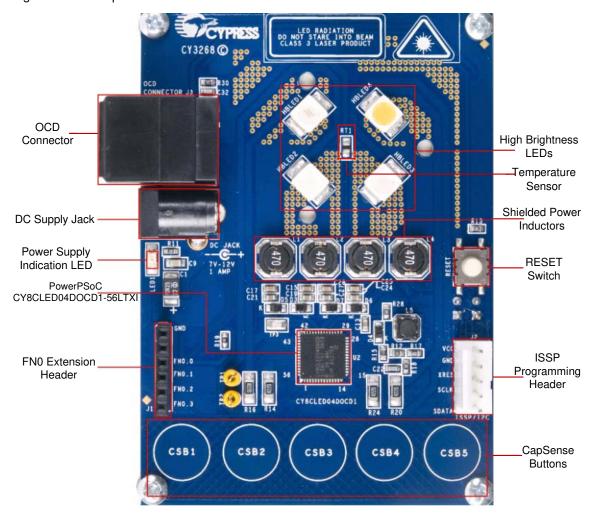
4. Hardware



4.1 System Block Diagram

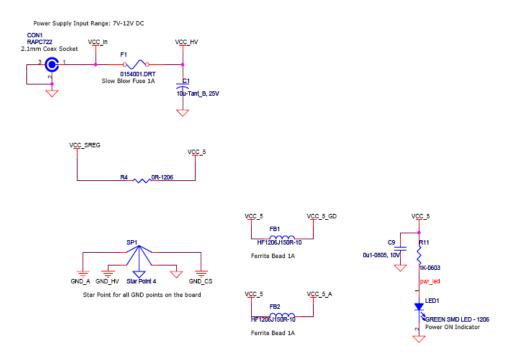
The CY3268 PowerPSoC Lighting Starter Kit has the following sections:

- Power supply system
 - □ Power on indicator LED (green)
- Programming interface
 - □ ISSP/I²C header
- Four HBLEDs (300 mA rating)
- Five CapSense buttons
- One reset switch
- Debug port
- Temperature sensor


Figure 4-1. Block Diagram

4.2 Functional Description

Figure 4-2. Components on the CY3268 PowerPSoC Board



4.2.1 Power Supply

The power supply system on this board is versatile. It takes input supply from the following source:

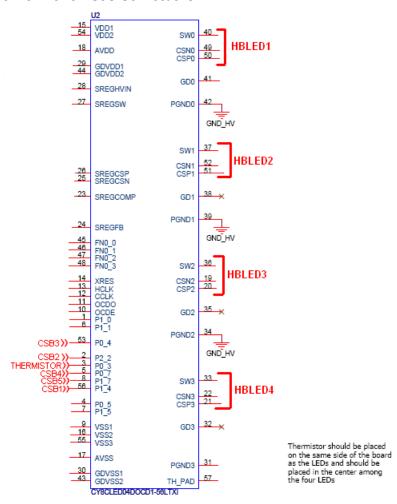
7 V - 12 V wall wart supply using connector CON1

Figure 4-3. Power System Structure

4.2.1.1 Grounding Scheme

Star Point for all GND points on the board.

Figure 4-4. Star Grounding Scheme


4.2.2 PowerPSoC

The CY3268 PowerPSoC Lighting Starter Kit is designed as the HBLED driver circuit. The specifications of the driver circuit in this design are:

- Input voltage: 7 V minimum and 12 V maximum
- HBLED output current per channel: 300 mA maximum
- Expected efficiency: > 90%
- Expected switching frequency: 800 kHz
- Inductor current ripple: 30% of load current, that is, 30% of 300 mA = 90 mA

Figure 4-5. PowerPSoC Connections

4.2.2.1 Applications of PowerPSoC

- Stage lighting
- Architectural lighting
- General purpose lighting
- Automotive and emergency vehicle lighting
- Landscape lighting
- Display lighting
- Effects lighting
- Signage lighting

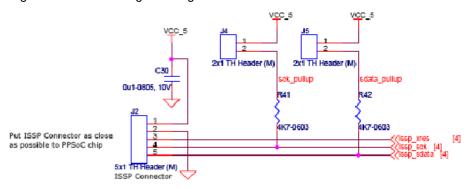
4.2.2.2 Pin Details

Table 4-1. Pin Description

Pin No.	Name	Description	Connected To
1	P1[0]	GPIO/I2C SDA (Secondary)/ISSP SDATA	ISSP SDATA (J2)
2	P2[2]	GPIO/Direct Switch Cap connection	CSB2
3	P0[3]	GPIO/Analog Input (Column 0)/ Analog Output (Column 0)	Thermistor
4	P0[5]	GPIO/Analog Input (Column 0)/ Analog Output (Column 1) / CapSense Ref Cap	GND
5	P0[7]	GPIO/Analog Input (Column 0)/CapSense Ref Cap	CSB4
6	P1[1]	GPIO/I2C SCL (Secondary)/ISSP SCLK	ISSP_SCK (J2)
7	P1[5]	GPIO/I2C SDA (Primary)	GND
8	P1[7]	GPIO/I2C SCL (Primary)	CSB5
9	VSS	Digital Ground	
10	OCDE	On Chip Debugger Port	J3 (Used to interface with the ICE for debugging)
11	OCDO	On Chip Debugger Port	J3 (Used to interface with the ICE for debugging)
12	CCLK	On Chip Debugger Port	J3 (Used to interface with the ICE for debugging)
13	HCLK	On Chip Debugger Port	J3 (Used to interface with the ICE for debugging)
14	XRES	External Reset	ISSP_XRES(J2, J3, Reset push button)
15	VDD	Digital Power Supply	
16	VSS	Digital Ground	
17	AVSS	Analog Ground	
18	AVDD	Analog Power Supply	
19	CSN2	Current Sense Negative Input 2	
20	CSP2	Current Sense Positive Input and Power Supply - CSA2	
21	CSP3	Current Sense Positive Input and Power Supply - CSA3	
22	CSN3	Current Sense Negative Input 3	
23	SREGCOMP	Voltage Regulator Error Amp Comp	
24	SREGFB	Regulator Voltage Mode Feedback Node	
25	SREGCSN	Current Mode Feedback Negative	
26	SREGCSP	Current Mode Feedback Positive	
27	SREGSW	Switch Mode Regulator OUT	
28	SREGHVIN	Switch Mode Regulator IN	
29	GDVDD	Gate Driver Power Supply	
30	GDVSS	Gate Driver Ground	
31	PGND3[2]	Power FET Ground 3	

Table 4-1. Pin Description

Name	Description	Connected To
GD3	External Low Side Gate Driver 3	
SW3	Power Switch 3	
PGND2[2]	Power FET Ground 2	
GD2	External Low Side Gate Driver 2	
SW2	Power Switch 2	
SW1	Power Switch 1	
GD1	External Low Side Gate Driver 1	
PGND1[2]	Power FET Ground 1	
SW0	Power Switch 0	
GD0	External Low Side Gate Driver 0	
PGND0[2]	Power FET Ground 0	
GDVSS	Gate Driver Ground	
GDVDD	Gate Driver Power Supply	
FN0[0]	Function I/O	J1 (GPIO 6x1 TH Header (F))
FN0[1]	Function I/O	J1 (GPIO 6x1 TH Header (F))
FN0[2]	Function I/O	J1 (GPIO 6x1 TH Header (F))
FN0[3]	Function I/O	J1 (GPIO 6x1 TH Header (F))
CSN0	Current Sense Negative Input 0	
CSP0	Current Sense Positive Input and Power Supply - CSA0	
CSP1	Current Sense Positive Input and Power Supply - CSA1	
CSN1	Current Sense Negative Input 1	
P0[4]	GPIO/Analog Input (Column 1) / Bandgap Output	CSB3
VDD	Digital Power Supply	
VSS	Digital Ground	
P1[4]	GPIO / External Clock Input	CSB1
	GD3 SW3 PGND2[2] GD2 SW2 SW1 GD1 PGND1[2] SW0 GD0 PGND0[2] GDVSS GDVDD FN0[0] FN0[1] FN0[2] FN0[3] CSN0 CSP0 CSP1 CSN1 P0[4] VDD VSS	GD3 External Low Side Gate Driver 3 SW3 Power Switch 3 PGND2[2] Power FET Ground 2 GD2 External Low Side Gate Driver 2 SW2 Power Switch 2 SW1 Power Switch 1 GD1 External Low Side Gate Driver 1 PGND1[2] Power FET Ground 1 SW0 Power Switch 0 GD0 External Low Side Gate Driver 0 PGND0[2] Power FET Ground 0 GDVSS Gate Driver Ground GDVDD Gate Driver Power Supply FN0[0] Function I/O FN0[1] Function I/O FN0[2] Function I/O CSN0 Current Sense Negative Input 0 CSP0 Current Sense Positive Input and Power Supply - CSA1 CSN1 Current Sense Negative Input 1 P0[4] GPIO/Analog Input (Column 1) / Bandgap Output VDD Digital Power Supply VSS Digital Ground


4.2.3 Programming Interface

This kit allows programming using the ISSP/I²C programming interface that uses a MiniProg.

4.2.3.1 ISSP Programming

The board also provides the option of using the MiniProg. This interface is faster and the ISSP programming is done through the 5-pin connector, J2.

Figure 4-6. ISSP Programming

The ISSP programming using J2 requires a programmer that can be purchased from here.

Connector	Functionality	
J4	Used with issp_sck pin for programming; short pins 1 and 2 to enable pull-ups on I ² C	
J5	Used with issp_sdata pin for programming; short pins 1 and 2 to enable pull-ups on I ² C	

4.2.4 CapSense Sensors

The board has five CapSense buttons. The board layout has considered the special requirements for CapSense. The CapSense button (CSB1) is connected to pin P1[4], CapSense button (CSB2) is connected to P2[2], CapSense button (CSB3) is connected to P0[4], CapSense button (CSB4) is connected to P0[7], and CapSense button (CSB5) is connected to P1[7].

CSB 1	LED 1	ON/OFF
CSB 2	LED 2	ON/OFF
CSB 3	LED 3	ON/OFF
CSB 4	LED 4	ON/OFF
CSB 5	DIM	CYCLE COLORS