

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CY3687

MoBL-USB® FX2LP18 Development Kit User Guide

Doc. # 001-68582 Rev. *B

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709

Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600

www.cypress.com

Copyrights

© Cypress Semiconductor Corporation, 2011-2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATE-RIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

All trademarks or registered trademarks referenced herein are property of the respective corporations.

Contents

1.	Introdu	ction	7
	1.1 1.2 1.3 1.4	Introduction Kit Contents 1.2.1 Hardware 1.2.2 Software on CD-ROM 1.2.3 Required Tools Not Included 1.2.4 Other Suggested Tools Document Revision History Documentation Conventions	7 7 8 8
2.	Getting	Started	9
	2.1 2.2	Kit InstallationInstall Hardware	
3.	Develop	oment Board	17
	3.1	Introduction	
	3.2	Schematic Summary	
	3.3	Jumpers	18
	3.4	EEPROM Select and Enable Switches SW1 and SW2	
	3.5	Interface Connectors	
	3.6 3.7	ATA Connector P7	
	3.8	LED Indicators	
4.	Develop	oment Kit Contents	27
	4.1	Bin	27
	4.2	Documentation	28
	4.3	Drivers	
	4.4	Firmware	
	4.5	GPIF_Designer	
	4.6 4.7	Hardware	
	4.7 4.8	SuiteUSB Target	
	4.0 4.9	Utilities	
	4.10	uV2_4k	
5.	MoBL-U	JSB FX2LP18 Firmware Frameworks	33
	5.1	Frameworks Overview	33
	5.2	Building FrameWorks	
	5.3	Function Hooks	
		5.3.1 Task Dispatcher Functions	
		5.3.1.1 TD_Init()	36

				TD_Poll()	
				TD_Suspend()	
				TD_Resume()	
		5.3.2		Request Functions	
				DR_GetDescriptor()	
			5.3.2.2	DR_GetInterface()	37
			5.3.2.3	DR_SetInterface()	37
			5.3.2.4	DR_GetConfiguration()	37
			5.3.2.5	DR_SetConfiguration()	37
			5.3.2.6	DR_GetStatus()	37
			5.3.2.7	DR_ClearFeature()	37
			5.3.2.8	DR_SetFeature()	37
			5.3.2.9	DR_VendorCmnd()	38
		5.3.3	ISR Fun	ections	38
			5.3.3.1	ISR_Sudav()	38
				ISR_Sof()	
				ISR_Ures()	
				ISR_Susp()	
				ISR_Highspeed()	
	5.4	EZ-US		/	
		5.4.1		the Library	
		5.4.2		Functions	
				EZUSB_Delay()	
				EZUSB_Discon()	
				EZUSB GetStringDscr()	
				EZUSB_Susp()	
				EZUSB_Resume()	
				I2C Routines	
6.	Cypress	USB	Drivers	for MoBL-USB FX2LP18 Kit	41
-	6.1			iver Package for MoBL-USB FX2LP18 Devices	
	6.2		•	ware Examples and Default Connect Mode MoBL-USB	41
	0.2			gurationguration sand Delauit Connect Mode Mobb-036	40
		6.2.1		Cypress USB Driver to MoBL-USB Development Board	
	6.3			Monitor Automatic Download using Script Files	
	0.3				
		0.3.1		Generate and Play Script Files (.spt)	
				Script File Generation using Cyscript Tool	
				Script File Generation and Play using CyConsole	
				Script Generation and Play using CyControlCenter	47
		6.3.2		oug Monitor Download using Script and CyMonfx2lp18 Driver	40
	C 4	C:t-a.l		9	
	6.4	Suitet	12B DLIVE	r Packages	48
7	HCB DC	Host	Hilitio	s and SuiteUSB Applications	49
1.				• •	_
	7.1			ons in MoBL-USB FX2LP18 Development Kit	
	7.2			cations	
		7.2.1	•	ble Utility	
			•	olCenter Utility	
				er Utility	
				Application	
		705	Cydoco	Utility	56
		7.2.5	Cydesc	Cumy	

8.	MoBL-U	JSB De	evelopment Kit Firmware Examples	59
	8.1	Metho	d to Verify the Code Example Functionality	60
	8.2	hid_kb	Code Example	60
		8.2.1		
			RAM and External EEPROM.	61
		8.2.2	Method to Download Firmware Image to MoBL-USB Internal RAM	
			Memory	
		8.2.3	Method to Download Firmware Image to External I2C EEPROM	
		8.2.4	Binding Cypress USB Driver for the Downloaded Firmware Image	
	0.0	8.2.5	Testing the hid_kb Firmware Example Functionality	
	8.3	8.3.1	rmware Example	
		8.3.2	Building Firmware Example Code for MoBL-USB FX2LP18 Internal	65
		0.3.2	RAM and EEPROM	67
		8.3.3	Method to Download Firmware Image to MoBL-USB FX2LP18 device	07
		0.0.0	Internal RAM and External EEPROM	67
		8.3.4	Binding Cypress USB Driver for the Downloaded Firmware Image	
		8.3.5	Testing the IBN Firmware Functionality	
	8.4		ak Firmware Example	
		8.4.1	Description	
		8.4.2	· ·	
			RAM and EEPROM	70
		8.4.3	Method to Download Firmware Image to MoBL-USB FX2LP18 Internal	
			RAM and External EEPROM	70
		8.4.4	Binding Cypress USB Driver for the Downloaded Firmware Image	
		8.4.5	Testing the pingnak Firmware Functionality	
	8.5		op Example	
		8.5.1	Description	71
		8.5.2	Building Bulkloop Firmware Example Code for MoBL-USB FX2LP18	
			Internal and EEPROM	73
		8.5.3	Method to Download Bulkloop Firmware Image to Internal RAM or	70
		0.5.4	EEPROM	
		8.5.4	Binding Cypress USB Driver for the Downloaded Firmware Image	
		8.5.5	Testing the Bulkloop Firmware Functionality	
			8.5.5.1 Test using Cyconsole PC Application	
			8.5.5.3 Testing Bulkloop Example using Bulkloop C# .NET Application	
	8.6	Rulker	c Firmware Example	
	0.0	8.6.1	Description	
		8.6.2	Building Bulksrc Firmware Example Code for MoBL-USB FX2LP18	
			Internal RAM Memory and EEPROM	79
		8.6.3	Method to Download Bulksrc Firmware Image to MoBL-USB FX2LP18	
			Internal RAM and EEPROM	79
		8.6.4	Binding Cypress USB Driver for the Downloaded Firmware Image	79
		8.6.5	Testing the Bulksrc Firmware Functionality	79
	8.7	Bulkex	t Firwmare Example	80
		8.7.1	Description	80
		8.7.2	Building Bulkext fIrmware Example Code for MoBL-USB FX2LP Internal	
			RAM Memory and EEPROM	81
		8.7.3	Method to Download Firmware Image to MoBL-USB FX2LP18 Internal	
			RAM and EEPROM	
		8.7.4	Binding Cypress USB Driver for the Downloaded Firmware Image	
		8./.5	Testing the Bulkext Firmware Functionality	82

	8.8	EP_Interrupts Example	82
		8.8.1 Description	
		8.8.2 Building EP Interrupts Firmware Example Code for MoBL-USB FX2LP	
		Internal RAM and EEPROM	82
		8.8.3 Method to Program EP Interrupts Firmware Image to MoBL-USB FX2LP	
		Internal RAM and EEPROM	
		8.8.4 Binding Cypress USB Driver for the Downloaded Firmware Image	82
		8.8.5 Testing the EP_Interrupts Firmware Functionality	
	8.9	iMemtest Firmware Example	
	8.10	Dev_IO Firmware Example	
	8.11	extr_intr Firmware Example	
		8.11.1 Testing the Example	
	8.12		
		8.12.1 Testing the vend_ax Example	
	8.13	Debugging Using Keil Monitor Program	
9.	Resour	ces	97
	9.1	Hardware Resources	97
	9.2	Reference Designs	
	0.2	9.2.1 CY4625 - MoBL-USB Bridge Reference Design	
	9.3	Application Notes	
Α.	Append	ix	103
	A.1	Board Layout	
	A.1 A.2	Schematic	
		PCB BOM	405

1. Introduction

1.1 Introduction

The CY3687 MoBL-USB™ FX2LP18 Development Kit (DVK) is the best starting point for developing a MoBL-USB based product. The DVK includes a development board, code example, a generic device driver, documentation, and assorted tools. This guide provides a general overview and installation help for the DVK. The software installation of the kit includes additional help files and documentation more specific to the various components in the kit.

1.2 Kit Contents

The following list shows the components supplied in the CY3687 MoBL-USB FX2LP18 Development Kit. They represent most of the development tools required to build a USB system.

1.2.1 Hardware

- MoBL-USB FX2LP18 development board
- Prototyping board ('breadboard'). This board is compatible with the EZ-USB (FX1/FX2LP) developments kits as well.
- USB cable
- RS-232 cable
- Software Installation CD-ROM
- Quick start Guide Booklet
- 3 sample MOBL-USB FX2LP18 IC(CY7C68053-56BAXI)

1.2.2 Software on CD-ROM

- Firmware library and firmware frameworks
- Firmware sample code
- Microsoft certified Signed Cypress generic USB driver (3.4.5.000) for Windows XP, Vista and 7 OS platforms.
- Cypress USB C++ library (CyApi.lib)
- SuiteUSB 3.4.7 Development tools for Visual Studio
- Cypress GPIF Designer
- Cypress firmware and Keil monitor download driver sample
- MOBL-USB FX2LP18 documentation
- Keil uVision2 trail version IDE with 4k code limit

1.2.3 Required Tools Not Included

- Full retail Keil Development System (Keil uVision2)
- Microsoft Visual C++ (all PC sample codes are developed on this platform)
- USB capable PC running Windows XP or 2000

1.2.4 Other Suggested Tools

■ CATC USB Protocol Analyzer.

1.3 Document Revision History

Table 1-1. Revision History

Revision	PDF Creation Date	Origin of Change	Description of Change	
**	02/07/2011	ROSM	Initial version of user guide	
*A	06/21/2012	NMMA	The document has to be updated with the OOB review comments.	
*B	06/28/2012	NMMA	Minor text edits as per IC samples listed in UG	

1.4 Documentation Conventions

Table 1-2. Document Conventions for Guides

Convention	Usage
Courier New	Displays file locations, user entered text, and source code: C:\cd\icc\
Italics	Displays file names and reference documentation: Read about the sourcefile.hex file in the PSoC Designer User Guide.
[Bracketed, Bold]	Displays keyboard commands in procedures: [Enter] or [Ctrl] [C]
File > Open	Represents menu paths: File > Open > New Project
Bold	Displays commands, menu paths, and icon names in procedures: Click the File icon and then click Open .
Times New Roman	Displays an equation: $2 + 2 = 4$
Text in gray boxes	Describes Cautions or unique functionality of the product.

2. Getting Started

This chapter describes the installation of the CY3687 MoBL-USB FX2LP18 development Kit CD/DVD Software.

2.1 Kit Installation

To install the kit software, follow these steps:

- 1. Insert the kit CD/DVD into the CD/DVD drive of your PC. The CD/DVD is designed to auto-run and the kit installer startup screen appears.
 - You can also download the latest kit installer ISO file for CY3687 Create an installer CD/DVD or extract the ISO using WinRar and install the executables.
- 2. Click **Install CY3687 MoBL-USB[™] FX2LP18 DVK** to start the installation, as shown in Figure 2-1.

Figure 2-1. Kit Installer Startup Screen

Note: If auto-run does not execute, double-click on the cyautorun.exe file in the root directory of the CD.

3. The InstallShield Wizard screen appears. The default location for setup is shown on the InstallShield Wizard screen. You can change the location for setup using **Change**, as shown in Figure 2-2. Click **Next** to launch the kit installer.

Figure 2-2. InstallShield Wizard

4. On the Product Installation Overview screen, select the installation type that best suits your requirement. The drop-down menu has three options - **Typical**, **Complete**, and **Custom**, as shown in Figure 2-3. In the current installer all 3 installation types would result in same set of softwares getting installed. Select the default **Typical** installation and click **Next**.

Figure 2-3. Installation Type Options

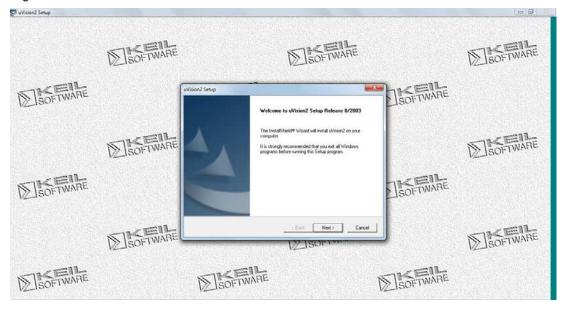
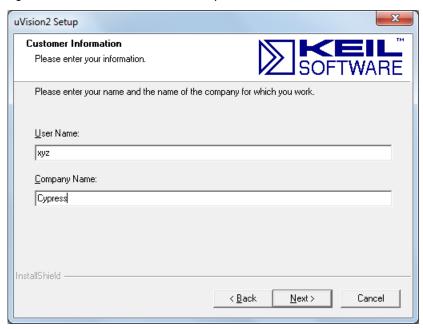

5. When the installation begins, all packages are listed on the Installation page. A green check mark appears adjacent to every package that is downloaded and installed, as shown in Figure 2-4. Wait until all the packages are downloaded and installed successfully.

Figure 2-4. Installation Page

6. Keil uVision2 trial version IDE triggers at this stage. If the PC already has the software installed then the installer will not trigger the installation. If the PC does not contain the software then keil welcome screen appears as shown in Figure 2-5.Click **Next**.


Figure 2-5. Keil Welcome screen

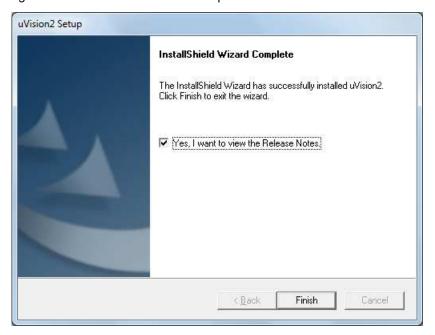

7. Enter the User name and company Name credentials as shown in Figure 2-6 to proceed further with the installation.

Figure 2-6. Keil User Information Input Window

8. The keil software proceeds with the installation and copies necessary packages at default directory **C:\Keil**. After completion click on **Finish** as shown in Figure 2-7.

Figure 2-7. Keil User Information Input Window

9. GPIF designer software is triggered after keil installation. This software is used to create State machine waveforms to communicate between MoBL-USB FX2LP device and devices such as FPGA, Image sensors, FIFO, and so on. If the PC already has the software installed then the installer will not trigger the installation. If the PC does not contain the software then GPIF designer welcome screen appears as shown in Figure 2-8. Click Next.

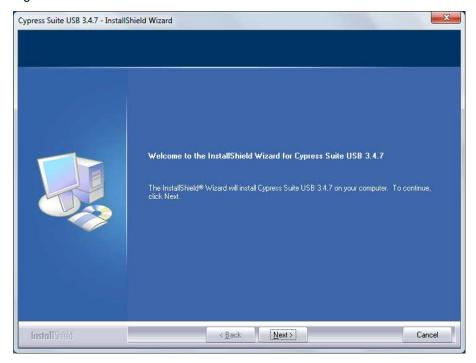
Figure 2-8. GPIF Designer Welcome Window

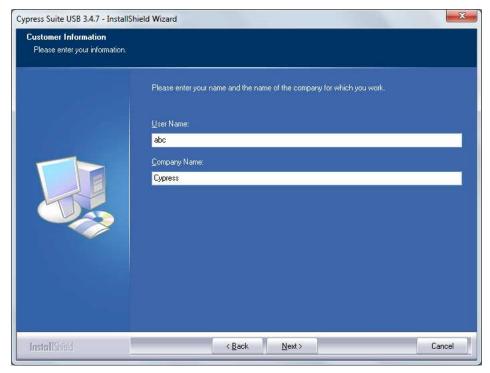
10. Click Next in the subsequent windows and Finish window appears as shown in Figure 2-9. Figure 2-9. GPIF Designer Welcome Window

Install GPIF Designer InstallShield Wizard Complete Setup has finished installing GPIF Designer on your computer. Finish c Back Cancel

11. SuiteUSB 3.4.7 package install shield gets triggered after GPIF designer software installation. If the PC already has the software installed then the installer will not trigger the installation. If the PC does not contain the software then SuiteUSB welcome screen appears as shown in Figure 2-10. Click Next and accept Cypress Software license agreement as shown in Figure 2-11.

Figure 2-10. SuiteUSB Welcome Window





Figure 2-11. SuiteUSB License Agreement Window

12.Enter User credentials in the SuiteUSB window as shown in Figure 2-12. Click Next. The default directory of the SuiteUSB is C:\Cypress\Cypress Suite USB 3.4.7. The default directory can be changed at this stage. Click Next after selecting the directory. Click Install button in the subsequent window. The SuiteUSB package installation progress is shown in the next window. Finally the SuiteUSB Finish window appears. Click Finish button to complete the installation process of SuiteUSB.

Figure 2-12. SuiteUSB User Login Window

13. The CY3687 MoBL-USB FX2LP18 development Kit. CY3687 **Finish** window appears after installing Kit content, Keil software, GPIF designer and SuiteUSB 3.4.7 package.

Figure 2-13. CY3687 Finish Window

2.2 Install Hardware

Refer to section Binding Cypress USB Driver to MoBL-USB Development Board on page 43 for hardware installation for this kit.

3. Development Board

3.1 Introduction

The Cypress Semiconductor MoBL-USB Development Board provides expansion and interface signals on six 20-pin headers. A mating prototype board allows quick construction and testing of USB designs. The board may be powered from the USB connector or an external power supply. Note that some of the signals driven by the MoBL-USB FX2LP18 device on the Advanced Development board have been replaced by VCC-IO and 1.8 V supplies.

The MoBL-USB Development Board is supplied as part of the Cypress Semiconductor MoBL-USB Development Kit, which includes an evaluation version of Cypress-customized software development tools from Keil Software Inc. The Keil 8051 assembler, C Compiler, and debugger work in concert with the development board to provide a complete code development environment. The evaluation version of the Keil tools that ships with the DVK has several restrictions that make it inappropriate for real-world development. Most significantly, it limits the compiled object size to 4 KB. The full retail version allows code of any size.

3.2 Schematic Summary

This description should be read while referring to the MoBL-USB Development Board schematic and the MoBL-USB Development Board Assembly drawing. Both drawings are attached to the end of this document and are available in PDF format in the DVK hardware directory.

U3 is the MoBL-USB 56-pin device. Although there is a large (100-pin) FX2LP on the board (U11), this chip is only used for I²C to serial translation, it is not available as a USB device.

Power to the MoBL-USB device comes from two or three different supplies. The AVCC pins draw 3.3 V through jumper JP4. The VCCCore supply requires 1.8 V, which it receives from JP2. The I/O pins (VCCIO) can run on voltages ranging from 1.8 V to 3.3 V. JP10 provides the ability to select the input voltage to VCCIO from the 1.8 V, 3.3 V or 2.5 V (adjustable) regulator.

U6, U9, and U10 provide power to the board. All of these devices can provide up to 500 mA, so there is plenty of spare power on all of the supplies to handle any devices on the prototype board. The output voltage of U9 can be varied by changing the ratio of R29 and R34. See the LT1763 data sheet for more information.

U7 and U8 are socketed EEPROMS, used for MoBL-USB FX2LP18 initialization and 8051 general purpose access. U5 is another EEPROM, used for factory initialization. This part is required because the MoBL-USB chip starts up disconnected from USB and it requires an EEPROM load to connect to USB. JP6 prevents this part from accidental programming.

U2 and U4 are Philips PCF8574 IO expanders, which attach to the MoBL-USB FX2LP18 I2C bus and provide eight GPIO pins. U2 reads the four push-button switches S2-S5, and U11 drives the seven-segment readout U1.

U11 is used only for converting the I^2C signals to RS-232 for running the Keil debugger. It is not used for USB access. U12 converts the 3.3 V 8051 serial port signals to bipolar RS-232 levels. U13 contains the I^2C to RS-232 conversion program. U13 is not intended to be user-programmable.

Six 20-pin headers, P1-P6, provide interface signals to the plug-in prototyping board supplied in this kit, as well as serving as connection points for HP(Agilent) logic analyzer pods. P8 contains a subset of signals from P1-P6 on a connector that is pinned out for connection to a 'straight- through' ATA cable. Two slide switches, SW1 and SW2, control the connection and selection of the three socketed EEPROMS at U5, U7, and U8.

3.3 Jumpers

Table 3-1. Jumper Settings

Jumper	Function	Default	Notes
JP1	Current measurement point for VCCIO	IN (1-2)	This jumper may be removed and replaced with ammeter probes in series to measure current for this supply.
Current measurement IN (1-2) This jumper ma		IN (1-2)	This jumper may be removed and replaced with ammeter probes in series to measure current for this supply.
JP3	Removed		This jumper has been removed from the schematic
JP4	Current measurement point for AVCC	IN (1-2)	This jumper may be removed and replaced with ammeter probes in series to measure current for this supply.
JP5	Board power source	IN (1-2)	If this jumper is in place, the board is bus-powered from the USB connector (J2). If this jumper is removed, the board must be powered via JP5.1 or another 5v jumper.
JP6	SAFE_WP	IN (1-2)	Removing this jumper allows the SAFE EEPROM to be reprogrammed. Reprogramming the SAFE EEPROM is not recommended. If the SAFE EEPROM contents are lost, the EEPROMs cannot be reprogrammed via USB.
JP7	EEPROM WP	PA7 (1-2)	This jumper selects the WP input for the 'normal' EEPROMs. Position 1-2 ties WP to PA7. In this position, PA7 must be driven low to reprogram the EEPROM. The Cypress programming tools will drive PA7 low during programming. If PA7 is used by your application, you can remove this jumper during normal use and move it to position (2-3) during EEPROM programming.
JP8	Current measurement point or alter-nate power input for 3.3 V supply	IN (1-2)	This jumper may be removed and replaced with ammeter probes in series to measure current for this supply. This point may be used to provide an external source for the 3.3 V supply.

Table 3-1. Jumper Settings

Jumper	Function	Default	Notes
JP9	Current measurement point or alter-nate power input for 2.5V supply	IN (1-2)	This jumper may be removed and replaced with ammeter probes in series to measure current for this supply. This point may be used to provide an external source for the 2.5 V supply.
JP10	Voltage selection for VCCIO 1.8V		Selects the input voltage for VCCIO.
JP11	Current measurement point or alter-nate power input for 1.8V supply	IN (1-2)	This jumper may be removed and replaced with ammeter probes in series to measure current for this supply. This point may be used to provide an external source for the 1.8 V supply.
JP12	WP for debug FX2LP	IN (1-2)	When this jumper is in place, the debug firmware in the 100-pin FX2LP is protected from accidental writes. Removing this jumper allows the debug firmware to be overwritten.

3.4 EEPROM Select and Enable Switches SW1 and SW2

SW1 selects between two socketed EEPROMs, one strapped to address 000 (U8), and the other strapped to address 001(U7).

SW2 enables or disables the EEPROM selected by SW1. When the SW1 EEPROMs are disabled, the 'Safe' EEPROM is enabled.

The MoBL-USB chip has various start-up modes, which depend on the existence of an EEPROM connected to its SCL and SDA lines. Switches SW1 and SW2 select among three EEPROMs on the board. Each of these EEPROMs has a specific purpose:

- U5 -- SAFE -- Used to select the default VID/PID for the board. Do not overwrite this EEPROM.
- U7 -- Large -- Used for firmware download. User programmable.
- U8 -- Small -- Used for VID/PID programming only. Used for reNumeration or default configuration. The VID/PID allows the operating system to identify your device. You must have your own VID assigned by the USB I/F. The 'Using Cypress' VID is not permitted.

On reset, the MoBL-USB I2C controller loads the image from one of these three EEPROMs. As this process completes, the 8051 firmware can use the I²C controller to access the EEPROMs or both devices on the I²C bus. The MoBL-USB bootloader accommodates two EEPROM types, in 'Small' and 'Large' versions shown in Table 3-2.

Table 3-2. Typical MoBL-USB external EEPROMS

EEPROM Type	Size	A2A1A0	Typical P/N (2.5-3.3v)	Typical P/N (1.8v)
'Small'	128x8	000	24LC01	24AA01
	256x8	000	24LC02	24AA02
'Large'	16Kx8	001	24LC128	24AA128

The MoBL-USB loader determines the EEPROM size by first initiating an I²C transfer to address Alignment not proper between these 2 lines.

If the above transfer does not return an ACK pulse, the MoBL-USB loader initiates a second I²C transfer, this time to address 10100001 (1010=EEPROM, sub-address 001). If an ACK is returned by the I²C device, the MoBL-USB loader writes two EEPROM address bytes to initialize the internal EEPROM address pointer to '0'.

If neither transfer returns an ACK pulse, the MoBL-USB Development Board does not connect to USB. MoBL-USB requires a 0xC2 format EEPROM to connect. Three MoBL-USB startup sequences, and the associated settings for SW1 and SW2, are as follows:

1. Safe Mode:SW2 = SAFE, SW1 = either position

This setting selects the EEPROM located in socket U5. Since the MoBL-USB chip comes out of reset disconnected from USB, an EEPROM is required to connect to the USB. The 'Safe' EEPROM is used for this purpose. The 'Safe' EEPROM contains simple firmware that connects to the USB and responds to descriptor requests with the Cypress VID and the MoBL-USB PID. 'Safe' mode is used to allow the development board to enumerate when no action other than a USB connect is required. For example, the 'safe' setting could be used if one of the other EEPROMs on the board is accidentally programmed with malfunctioning firmware. Once it is running, SW2 can be switched to the LG-SM position to allow 8051 programming or other access to the other EEPROMs. The source firmware for this EEPROM is located in the <Installed_directory>\<Version>\Firmware\Connect directory. The actual EEPROM image is stored in the LP18 safe.iic file.

2. C2 Load Small EEPROM:SW2 = LG-SM, SW1 = SMALL

This setting selects the EEPROM located in socket U8. The I²C EEPROM address pins for this socket are strapped to '000'. This socket only supports single-byte address EEPROMs. This EEPROM is pre-programmed at manufacturing with simple firmware which connects to USB and responds to descriptor requests with the Cypress VID (0x04B4) and the MoBL-USB Development Kit PID (0x0086). This VID/PID is associated with a driver which automatically downloads the Keil debug monitor to the development board. The source firmware for this EEPROM is located in the <Installed_directory>\<Version>\Firmware\Connect directory. The actual EEPROM image is stored in the LP18 dvk.iic file.

3. C2 Load Large EEPROM:SW2 = LG-SM, SW1 = LARGE

This setting selects the EEPROM located in socket U8. The I²C EEPROM address pins for this socket are strapped to '001'. This socket only supports double-byte address EEPROMs. This EEPROM is pre-programmed at manufacturing with the bulkloop example firmware (VID=0x04B4, PID=0x1004). The source firmware for this EEPROM is located in the following directory:

<Installed_directory>\<Version>\Firmware\bulkloop.

The actual EEPROM image is stored in the *bulkloop.iic* file. Note that if an EEPROM is connected to the SCL and SDA lines, but does not contain an 0xC2 formatted EEPROM, the device does not connect to USB. Therefore, it cannot be programmed. Always connect to the SAFE EEPROM if you are not using one of the programmed EEPROMs. See the MoBL-USB datasheet or MoBL-USB Technical Reference Manual for additional information on supported EEPROM formats.

3.5 Interface Connectors

Table 3-3. Logic Analyzer Pinout

Agilent 01650-63203 Pod Pins							
CLK1	3	4	D15				
D14	5	6	D13				
D12	7	8	D11				
D10	9	10	D9				
D8	11	12	D7				
D6	13	14	D5				
D4	15	16	D3				
D2	17	18	D1				
D0	19	20	GND				

Six 20-pin headers P1-P6 on the MoBL-USB FX2LP18 Development Board have pins assigned to be compatible with HP (Agilent) logic analyzers, as shown in Table 3-3. The slight bulge in the middle rows of the table (pins 9 and 11) indicates the connector key. The six headers P1-P6 serve three purposes:

- They mate with the prototyping board supplied in the MoBL-USB Development Kit or the one supplied in the CY3687 MoBL-USB FX2LP18 Development Kit.
- They allow direct connection of HP (Agilent) logic analyzer pods (Agilent P/N 01650- 63203).
- They allow general purpose probing by other logic analyzers or oscilloscopes.

Table 3-3 shows the logic analyzer pod pin designations. The MoBL-USB signals on P1-P6 are arranged to fulfill the following requirements:

- High-speed MoBL-USB strobe signals (CLKOUT and IFCLK) are connected to pin 3 of each of the five connectors P1-P6, so that they may be used as the logic analyzer clock CLK1.
- CLK2 is not used. Instead, each connector brings 3.3 V power from the MoBL-USB Development Board up to the prototype board using pin 2.
- The signals are logically grouped. For example, the MoBL-USB FIFO data (which shares PORTB and PORTD pins) is on P1.

Because the 20-pin headers on the prototyping board are stackable, it is possible to build custom circuitry on the proto board, plug the board into the MoBL-USB development board, and still plug logic analyzer pods into the six connectors P1-P6.

Table 3-4 through Table 3-9 show the MoBL-USB pin designations for P1 through P6. For dual-mode pins, the power-on default signal names are shown in bold type, and the alternate pin names are shown in the outside columns.

Table 3-4. P1 Pin Designations

Alternate	Default	P1		Default	Alternate
	NC	1	2	3.3 V	
	VCCIO	3	4	PD7	FD[15]
FD[14]	PD6	5	6	PD5	FD[13]
FD[12]	PD4	7	8	PD3	FD[11]
FD[10]	PD2	9	10	PD1	FD[9]
FD[8]	PD0	11	12	PB7	FD[7]

Table 3-4. P1 Pin Designations (continued)

Alternate	Default	F	21	Default	Alternate
FD[6]	PB6	13	14	PB5	FD[5]
FD[4]	PB4	15	16	PB3	FD[3]
FD[2]	PB2	17	18	PB1	FD[1]
FD[0]	PB0	19	20	GND	

Table 3-5. P2 Pin Designations

Alternate	Default	P2		Default	Alternate
	NC	1	2	3.3 V	
	NC	3	4	RDY1	SLWR
SLRD	RDY0	5	6	N.C.	
	NC	7	8	N.C.	
FLAGC	CTL2	9	10	CTL1	FLAGB
FLAGA	CTL0	11	12	PA7	FLAGD
PKTEND	PA6	13	14	PA5	FIFOADR1
FIFOADR0	PA4	15	16	PA3	WU2
SLOE	PA2	17	18	PA1	INT1#
INT0#	PA0	19	20	GND	

Table 3-6. P3 Pin Designations

Alternate	Default	P3		Default	Alternate
	NC	1	2	3.3 V	
	VCCIO	3	4	N.C.	
	NC	5	6	N.C.	
	NC	7	8	N.C.	
	RESET#	9	10	N.C.	
	NC	11	12	N.C.	
	NC	13	14	N.C.	
	NC	15	16	N.C.	
	NC	17	18	N.C.	
	NC	19	20	GND	

Table 3-7. P4 Pin Designations

Alternate	Default	P	P4		Alternate
	N.C.	1	2	3.3 V	
	CLKOUT	3	4	GND	
	N.C.	5	6	NC	
	5 V	7	8	5 V	
	NC	9	10	NC	
	NC	11	12	NC	

Table 3-7. P4 Pin Designations (continued)

Alternate	Default	P4		Default	Alternate
	NC	13	14	NC	
	NC	15	16	NC	
	NC	17	18	NC	
	NC	19	20	GND	

Table 3-8. P5 Pin Designations

Alternate	Default	P	P5		Alternate
	NC	1	2	3.3 V	
	IFCLK	3	4	NC	
	NC	5	6	NC	
	NC	7	8	NC	
	NC	9	10	NC	
	NC	11	12	NC	
	NC	13	14	NC	
	NC	15	16	NC	
	1.8 V	17	18	1.8 V	
	1.8 V	19	20	GND	

Table 3-9. P6 Pin Designations

Alternate	Default	Р	6	Default	Alternate
	NC	1	2	3.3 V	
	VCCIO	3	4	NC	
	NC	5	6	NC	
	NC	7	8	NC	
	WAKEUP#	9	10	SDA	
	SCL	11	12	NC	
	NC	13	14	NC	
	NC	15	16	NC	
	NC	17	18	NC	
	NC	19	20	GND	

3.6 ATA Connector P7

Table 3-10 shows the pinout for P7, a 40-pin connector that interfaces with a standard ATA cable. **Note** This is for ATA use only. SP1, 2, 3, and 4 should be bridged with solder to connect the appropriate pull-up or pull-down resistors required for ATA. An 80-pin cable is required for UDMA transfer modes and recommended for all transfer modes.

Table 3-10. ATA Connector Pinout

	P7 (ATA)					
RESET#	PA7	1	2	GND	GND	
DD7	PB7	3	4	PD0	DD8	
DD6	PB6	5	6	PD1	DD9	
DD5	PB5	7	8	PD2	DD10	
DD4	PB4	9	10	PD3	DD11	
DD3	PB3	11	12	PD4	DD12	
DD2	PB2	13	14	PD5	DD13	
DD1	PB1	15	16	PD6	DD14	
DD0	PB0	17	18	PD7	DD15	
GND	GND	19	20	N.C.	KEYPIN	
DMARQ	RDY1	21	22	GND	GND	
DIOW#	CTL0	23	24	GND	GND	
DIOR#	CTL1	25	26	GND	GND	
IORDY	RDY0	27	28	GND	CSEL	
DMACK#	CTL2	29	30	GND	GND	
INTRQ	PA0	31	32	N.C.	RESERVED	
DA1	PA2	33	34	N.C.	PDIAG#	
DA0	PA1	35	36	PA3	DA2	
CS0#	PA4	37	38	PA5	CS1#	
DASP#	10K Pull-up	39	40	GND	GND	

3.7 I²C Expanders

U2 and U4 are Philips PCF8574 I/O expanders. They connect to the I²C bus SCL and SDA pins, and provide eight general-purpose input-output pins. U4 provides eight output bits, connected to the seven-segment readout U1. U2 provides eight input bits, four of which connect to push buttons S1-S4, and four of which are available for your use. U4 connects to the 7-segment readout (U1) using the following bit assignments.

U4 has the group address 0100 and is strapped to unit address 001. Therefore to write a value to the 7-segment readout, 8051 firmware sends a control byte of 01000010 (the LSB indicates a write operation), followed by the data byte.

U2 uses its I/O pins as inputs connected to S1-S4 according to the following table:

Bit	Switch
0	S1
1	S2
2	S3
3	S4

U2 has the group address 0100, and is strapped to unit address 000. Therefore to read the switch values, 8051 firmware sends a control byte of 01000001 (the LSB indicates a read operation), and then reads the data byte.

3.8 LED Indicators

LEDs D1, D2, and D4 indicate available power on the three power rails (3.3 V, 2.5 V, and 1.8 V).

LED D3 indicates drive activity on the ATA connector. LED D5 indicates that the debugger is active.