

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

2-Mbit (128K x 16) Static RAM

Features

· Temperature Ranges

- Industrial: -40°C to 85°C

- Automotive-A: -40°C to 85°C

- Automotive-E: -40°C to 125°C

· High speed: 55 ns

• Wide voltage range: 2.7V-3.6V

· Ultra-low active, standby power

• Easy memory expansion with CE and OE features

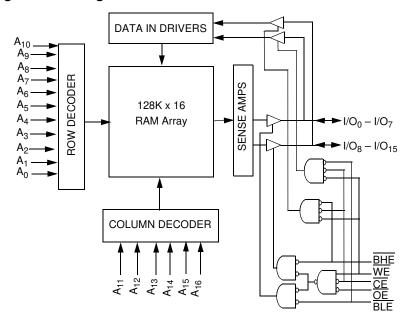
TTL-compatible inputs and outputs

· Automatic power-down when deselected

CMOS for optimum speed/power

 Available in standard Pb-free 44-pin TSOP Type II, Pb-free and non Pb-free 48-ball FBGA packages

Functional Description[1]


The CY62136VN is a high-performance CMOS static RAM organized as 128K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in

portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected ($\overline{\text{CE}}$ HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected ($\overline{\text{CE}}$ HIGH), outputs are disabled ($\overline{\text{OE}}$ HIGH), $\overline{\text{BHE}}$ and $\overline{\text{BLE}}$ are disabled ($\overline{\text{BHE}}$, $\overline{\text{BLE}}$ HIGH), or during a write operation ($\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW).

<u>Writing</u> to the device is <u>acc</u>omplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified <u>on the</u> address pins (A₀ through A₁₆). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₆).

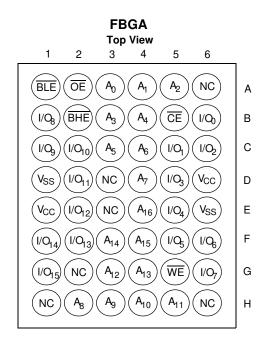
Reading from the device is accomplished by taking Chip Enable (\overline{OE}) and Output Enable (\overline{OE}) LOW while forcing the Write Enable (\overline{WE}) HIGH. If Byte Low Enable (\overline{BLE}) is LOW, then data from the memory location specified by the <u>address</u> pins will appear on I/O₀ to I/O₇. If Byte High Enable (\overline{BHE}) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the Truth Table at the back of this data sheet for a complete description of read and write modes.

Logic Block Diagram

PinConfigurations^[3]

TSOP II (Forward) **Top View** $\square A_5$ 43 🗖 A₆ 42 40 <u>BHE</u> 39 BLE 38 I/O ₀ □ ₇ ☐ I/O ₁₅ 37 □ I/O ₁₄ I/O 1 [36 □ I/O 13 I/O 2 🗆 9 35 | I/O ₁₂ I/O 3 🗖 10 □ v_{ss} 34 33 V_{CC} 32 1/O₁₁ I/O 5 | 14 I/O 6 | 15 I/O 7 | 16 WE | 17 ∃ I/O 10 31 30 | I/O₉ 29 | I/O₈ 28 □ NC □ A₈ A₁₆ 🗖 18 27 A₁₀ 26 25 □ A₁₁ A₁₂ 🗆 22

Note:


1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Product Portfolio

							Power Dis	ssipation	
	V	_{CC} Range	(V)			Operatin	ig, I _{CC} (mA)	Standb	y, I _{SB2} (μ A)
Product	Min	Typ. ^[2]	Max	Speed	Ranges	Typ. ^[2]	Maximum	Typ. ^[2]	Maximum
CY62136VNLL	2.7	3.0	3.6	55	Industrial	7	20	1	15
				55	Automotive-A	7	20	1	15
				70	Industrial	7	15	1	15
				70	Automotive-A	7	15	1	15
				70	Automotive-E	7	20	1	20

Pin Configurations^[3]

^{2.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} Typ, T_A = 25°C.

3. NC pins are not connected on the die.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage to Ground Potential -0.5V to +4.6V DC Input Voltage^[4].....-0.5V to V_{CC} + 0.5V

Output Current into Outputs (LOW)	. 20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current>	200 mA

Operating Range

Range	V _{cc}	
Industrial	−40°C to +85°C	2.7V to
Automotive-A	-40°C to +85°C	3.6V
Automotive-E	-40°C to +125°C	

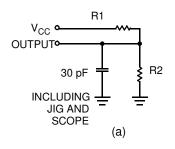
Electrical Characteristics Over the Operating Range

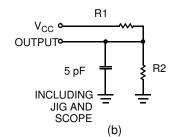
					-55						
Parameter	Description	Description Test Conditions		s	Min.	Typ . ^[2]	Max.	Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = 2.7$	$V_{CC} = 2.7V, I_{OH} = -1.0 \text{ mA}$					2.4			V
V _{OL}	Output LOW Voltage	$V_{CC} = 2.7$	V, I _{OL} = 2.1 m	A			0.4			0.4	٧
V _{IH}	Input HIGH Voltage	$V_{CC} = 3.6$	J		2.2		V _{CC} + 0.5V	2.2		V _{CC} + 0.5V	V
V_{IL}	Input LOW Voltage	$V_{CC} = 2.7$	/		-0.5		8.0	-0.5		0.8	V
I _{IX}	Input Leakage	GND ≤ V _I	< V _{CC}	Ind'l	-1		+1	-1		+1	μА
	Current			Auto-A	-1		+1	-1		+1	μА
				Auto-E				-10		+10	μА
I _{OZ}	Output Leakage	GND ≤ V _O	$SND \leq V_O \leq V_{CC}$		-1		+1	-1		+1	μА
Current	Output Disabled Au		Auto-A	-1		+1	-1		+1	μА	
				Auto-E				-10		+10	μА
I _{CC}	V _{CC} Operating	$f = f_{MAX}$	$V_{CC} = 3.6V,$	Ind'l		7	20		7	15	mA
	Supply Current	= 1/t _{RC}	I _{OUT} = 0 mA, CMOS	Auto-A		7	20		7	15]
	Carrone		Levels	Auto-E					7	20]
		f = 1 MHz		Ind'l		1	2		1	2	mA
				Auto-A		1	2		1	2]
				Auto-E					1	2]
I _{SB1}	Automatic CE	CE ≥ V _{CC}	– 0.3V,	Ind'l			100			100	μА
	Power-down Current—		– 0.3V or , f = f _{MAX}	Auto-A			100			100	μА
	CMOS Inputs	1111 = 0.01	, · - ·MAX	Auto-E						100	μА
I _{SB2}	Automatic CE	CE ≥ V _{CC}	- 0.3V	Ind'l		1	15		1	15	μА
	Power-down Current—		– 0.3V or . f = 0	Auto-A		1	15		1	15	1
	CMOS Inputs	110 = 0.00	, . · ·	Auto-E					1	20]

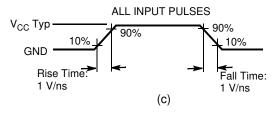
Capacitance^[6]

Parameter	eter Description Test Conditions		Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz,	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

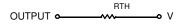
Notes:


- 4. V_{IL}(min) = -2.0V for pulse durations less than 20 ns.
 5. T_A is the "Instant-On" case temperature.
 6. Tested initially and after any design or process changes that may affect these parameters.

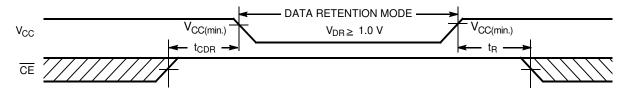



Thermal Resistance^[6]

Parameter	Description	Test Conditions	TSOPII	FBGA	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	60	55	°C/W
$\Theta_{\sf JC}$	Thermal Resistance (Junction to Case)		22	16	°C/W


AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT



Parameters	Value	Unit
R1	1105	Ohms
R2	1550	Ohms
R _{TH}	645	Ohms
V_{TH}	1.75	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions ^[9]	Min.	Typ. ^[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		1.0			V
I _{CCDR}	Data Retention Current	$V_{CC} = 1.0V, \overline{CE} \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V,$		0.5	7.5	μА
t _{CDR} ^[6]	Chip Deselect to Data Retention Time		0			ns
t _R ^[7]	Operation Recovery Time		70			ns

Data Retention Waveform

- Note: 7. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100$ ms or stable at $V_{CC(min)} \ge 100$ ms. 8. No input may exceed $V_{CC} + 0.3V$

Switching Characteristics Over the Operating Range [9]

		55	ns	70		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle	,			1		
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low-Z ^[10]	5		5		ns
t _{HZOE}	OE HIGH to High-Z ^[10, 11]		25		25	ns
t _{LZCE}	CE LOW to Low-Z ^[10]	10		10		ns
t _{HZCE}	CE HIGH to High-Z ^[10, 11]		25		25	ns
t _{PU}	CE LOW to Power-up	0		0		ns
t _{PD}	CE HIGH to Power-down		55		70	ns
t _{DBE}	BLE / BHE LOW to Data Valid		25		35	ns
t _{LZBE}	BLE / BHE LOW to Low-Z ^[10, 11]	5		5		ns
t _{HZBE}	BLE / BHE HIGH to High-Z ^[12]		25		25	ns
Write Cycle ^[12, 13]]	1		· I		I .
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE LOW to Write End	45		60		ns
t _{AW}	Address Set-up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		50		ns
t _{BW}	BLE / BHE LOW to Write End	50		60		ns
t _{SD}	Data Set-up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High-Z ^[10, 11]		20		25	ns
t _{LZWE}	WE HIGH to Low-Z ^[10]	5		10		ns

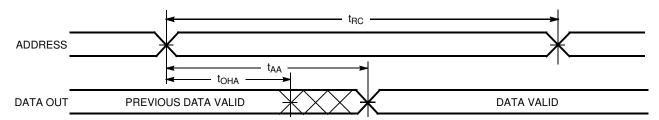
Notes:

Notes:

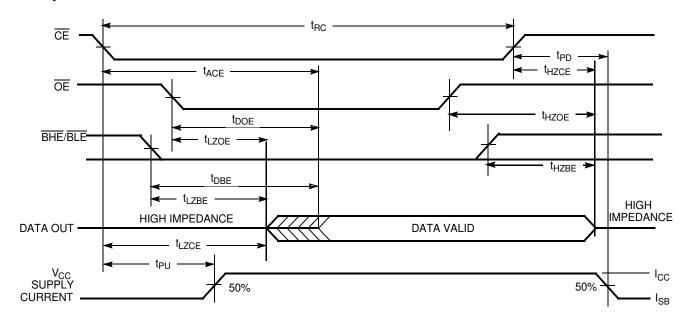
9. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC} typ., and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

10. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.

11. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.


12. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

13. The minimum write cycle time for write cycle 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.



Switching Waveforms

Read Cycle No. 1^[14, 15]

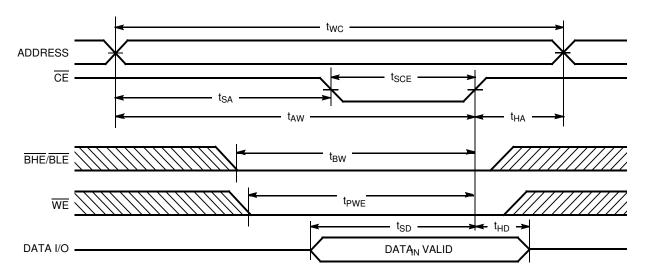
Read Cycle No. 2^[15, 16]

- Notes:

 14. <u>Dev</u>ice is continuously selected. \overline{OE} , $\overline{CE} = V_{|L}$.


 15. \overline{WE} is HIGH for read cycle.

 16. Address valid prior to or coincident with \overline{CE} transition LOW.

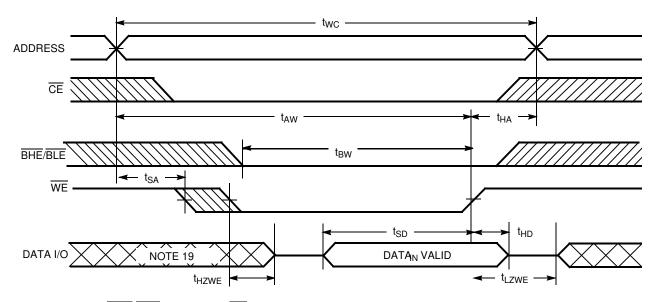


Switching Waveforms (continued)

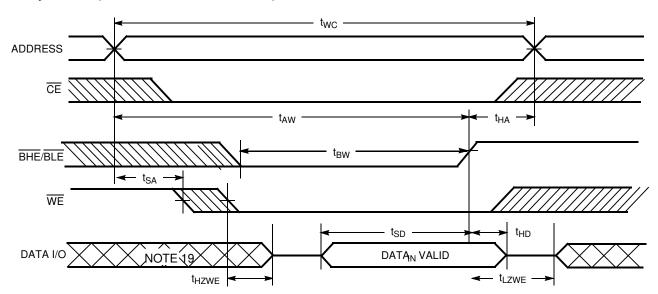
Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled) $^{[12,\ 17,\ 18]}$

Write Cycle No. 2 (CE Controlled)[12, 17, 18]

17. Data I/O is high impedance if $\overline{\text{OE}} = \text{V}_{\text{IH}}$.

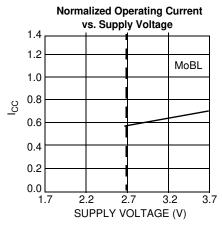

18. If $\overline{\text{CE}}$ goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

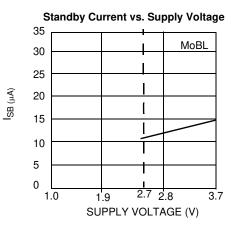
19. During this period, the I/Os are in output state and input signals should not be applied.

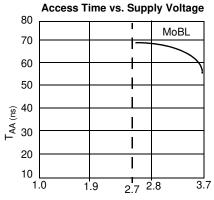


Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, OE LOW)[13, 18]




Write Cycle No. 4 ($\overline{BHE}/\overline{BLE}$ Controlled, \overline{OE} LOW)^[19]



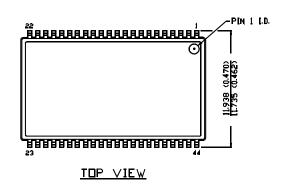
Typical DC and AC Characteristics

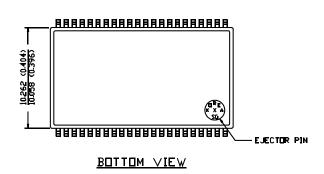
SUPPLY VOLTAGE (V)

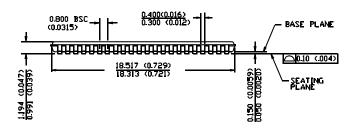
Truth Table

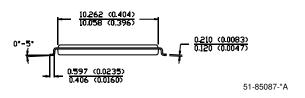
CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O ₀ -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O_0 – I/O_7); I/O_8 – I/O_{15} in High-Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ -I/O ₁₅); I/O ₀ -I/O ₇ in High-Z	Read	Active (I _{CC})
L	Н	L	Н	Н	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	L	L	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O ₀ -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O ₀ -I/O ₇); I/O ₈ -I/O ₁₅ in High-Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High-Z	Write	Active (I _{CC})

Ordering Information

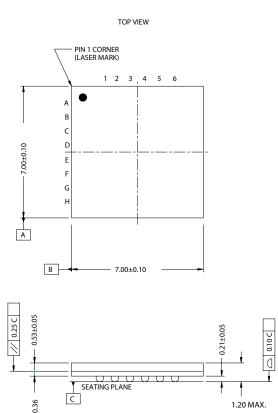

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62136VNLL-55ZXI	51-85087	44-pin TSOP II (Pb-Free)	Industrial
	CY62136VNLL-55BAI	51-85096	48-Ball (7.00 mm x 7.00 mm) FBGA	
	CY62136VNLL-55ZSXA	51-85087	44-pin TSOP II (Pb-Free)	Automotive-A
70	CY62136VNLL-70ZXI	51-85087	44-pin TSOP II (Pb-Free)	Industrial
	CY62136VNLL-70BAI	51-85096	48-Ball (7.00 mm x 7.00 mm) FBGA	
	CY62136VNLL-70BAXA	51-85096	48-Ball (7.00 mm x 7.00 mm) FBGA (Pb-Free)	Automotive-A
	CY62136VNLL-70ZSXA	51-85087	44-pin TSOP II (Pb-Free)	
	CY62136VNLL-70ZSXE	51-85087	44-pin TSOP II (Pb-Free)	Automotive-E

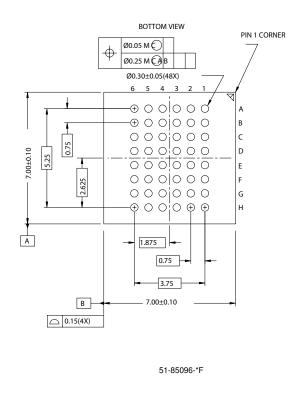

Please contact your local Cypress sales representative for availability of these parts


Package Diagrams


44-pin TSOP II (51-85087)

DIMENSION IN MM (INCH)





Package Diagrams (continued)

48-Ball (7.00 mm x 7.00 mm) FBGA (51-85096)

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the products of their respective holders.

Document History Page

	Document Title: CY62136VN MoBL [®] 2-Mbit (128K x 16) Static RAM Document Number: 001-06510								
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change					
**	426503	See ECN	RXU	New Data Sheet					
*A	488954	See ECN	NXR	Added Automotive product Updated ordering Information table					