mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CY62162G/CY62162GE MoBL[®]

16-Mbit (512 K \times 32) Static RAM with Error-Correcting Code (ECC)

Features

- Ultra-low standby power
 Typical standby current: 5.5 μA
 Maximum standby current: 16 μA
- High speed: 45 ns / 55 ns
- Embedded error-correcting code (ECC) for single-bit error correction
- Wide voltage range: 1.65 V to 2.2 V, 2.2 V to 3.6 V
- 1.0-V data retention
- Transistor-transistor logic (TTL) compatible inputs and outputs
- ERR pin to indicate 1-bit error detection and correction
- Easy memory expansion with \overline{CE}_1 and CE_2 features
- Available in Pb-free 119-ball PBGA package, 512 K × 32 bits SRAM

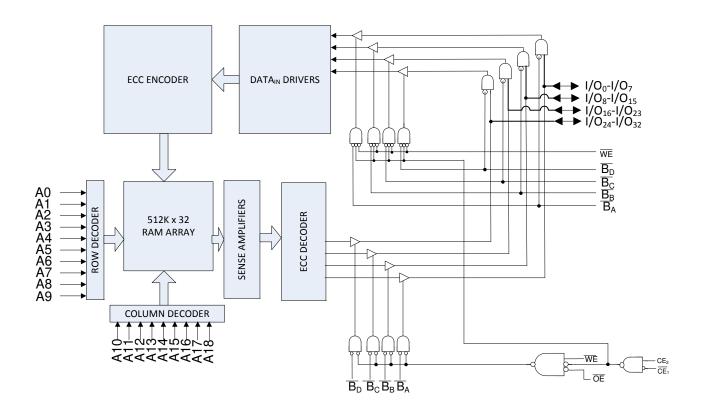
Functional Description

The CY62162G and CY62162GE devices are high performance CMOS MoBL SRAM organized as 512K words by 32-bits. Both CY62162G and CY62162GE are available with dual chip enables. CY62162GE includes an error indication pin that signals the host processor in the case of a single bit error-detection and correction event. It is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power down

feature that reduces power consumption when addresses are not toggling. Placing the device into standby mode reduces power consumption by more than 99% when deselected (\overline{CE}_1 HIGH or CE_2 LOW or \overline{B}_{A-D} HIGH). The input and output pins (I/O₀ through I/O₃₁) are placed in a high impedance state when deselected (\overline{CE}_1 HIGH or CE_2 LOW) or outputs are disabled (\overline{OE} HIGH) or the byte selects are disabled (\overline{B}_{A-D} HIGH).

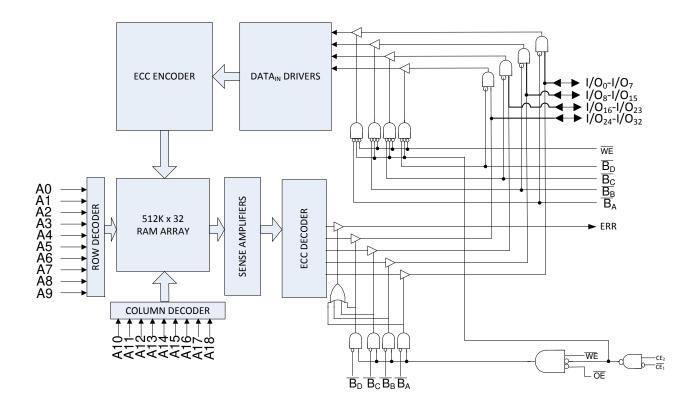
To write to the device, take chip enables ($\overline{CE}_1 \text{ LOW}$, $\underline{CE}_2 \text{ HIGH}$) and write enable (WE) input LOW. If byte enable A (\overline{B}_A) is LOW, then data from I/O pins (I/O₀ through I/O₇) is written into the location specified on the address pins (A₀ through A₁₈). If byte enable B (\overline{B}_B) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₈). Likewise, \overline{B}_C and \overline{B}_D correspond with the I/O pins I/O₁₆ to I/O₂₃ and I/O₂₄ to I/O₃₁, respectively.

To read from the device, take chip enables (\overline{CE}_1 LOW, CE_2 HIGH), and output enable (\overline{OE}) LOW while forcing the write enable (\overline{WE}) HIGH. If the first byte enable (\overline{B}_A) is LOW, then data from the memory location specified by the address pins appear on I/O₀ to I/O₇. If byte enable (\overline{B}_B) is LOW, then data from memory appears on I/O₈ to I/O₁₅. Likewise, \overline{B}_C and \overline{B}_D correspond to the third and fourth bytes. During Read operation, in case of a single bit error detection and correction, ERR is asserted HIGH^[1]. See the Truth Table – CY62162G / CY62162GE on page 15 for a complete description of read and write modes.


CY62162G and CY62162GE devices are available in a 119-ball PBGA package with center power and ground pinout.

Note

^{1.} This device does not support automatic write-back on error detection.



Logic Block Diagram – CY62162G

Logic Block Diagram – CY62162GE

CY62162G/CY62162GE MoBL®

Contents

Pin Configurations	5
Product Portfolio	6
Maximum Ratings	
Operating Range	7
Electrical Characteristics	7
Capacitance	8
Thermal Resistance	
AC Test Loads and Waveforms	8
Data Retention Characteristics	9
Data Retention Waveform	9
Switching Characteristics	10
Switching Waveforms	
Truth Table - CY62162G / CY62162GE	
ERR Output - CY62162GE	15
•	

Ordering Information	16
Ordering Code Definitions	16
Package Diagram	17
Acronyms	18
Document Conventions	18
Units of Measure	18
Document History Page	19
Sales, Solutions, and Legal Information	20
Worldwide Sales and Design Support	20
Products	20
PSoC® Solutions	20
Cypress Developer Community	20
Technical Support	

Pin Configurations

	1	2	3	4	5	6	7
Α	I/O ₁₆	A ₄	A ₃	A ₂	A ₁	A ₀	I/O ₀
В	I/O ₁₇	A ₁₈	A ₁₇	CE ₁	A ₁₆	A ₁₅	I/O ₁
С	I/O ₁₈	B _c	CE ₂	NC	NC	B _a	I/O ₂
D	I/O ₁₉	V _{DD}	V _{SS}	V _{SS}	V _{SS}	V_{DD}	I/O ₃
E	I/O ₂₀	V _{SS}	V _{DD}	V _{SS}	V _{DD}	V _{SS}	I/O ₄
F	I/O ₂₁	V _{DD}	V _{SS}	V _{SS}	V _{SS}	V _{DD}	I/O ₅
G	I/O ₂₂	V _{SS}	V _{DD}	V _{SS}	V _{DD}	V _{SS}	I/O ₆
н	I/O ₂₃	V _{DD}	V _{SS}	V _{SS}	V _{SS}	V_{DD}	I/O ₇
J	NC	V _{SS}	V _{DD}	V _{SS}	V _{DD}	V _{SS}	NC
К	I/O ₂₄	V _{DD}	V _{SS}	V _{SS}	V _{SS}	V _{DD}	I/O ₈
L	I/O ₂₅	V _{SS}	V _{DD}	V _{SS}	V _{DD}	V _{SS}	I/O ₉
М	I/O ₂₆	V_{DD}	V _{SS}	V _{SS}	V _{SS}	V_{DD}	I/O ₁₀
Ν	I/O ₂₇	V _{SS}	V _{DD}	V _{SS}	V _{DD}	V _{SS}	I/O ₁₁
Р	I/O ₂₈	V _{DD}	V _{SS}	V _{SS}	V _{SS}	V_{DD}	I/O ₁₂
R	I/O ₂₉	A ₁₄	B _d	NC	B _b	A ₁₃	I/O ₁₃
Т	I/O ₃₀	A ₁₂	A ₁₁	WE	A ₁₀	A ₉	I/O ₁₄
U	I/O ₃₁	A ₈	A ₇	OE	A ₆	A ₅	I/O ₁₅

Figure 1. 119-ball FBGA pinout ^[2] CY62162G (512 K × 32)

Figure 2. 119-ball FBGA pinout ^[2, 3] CY62162GE (512 K × 32)

	1	2	3	4	5	6	7
Α	I/O ₁₆	A ₄	A ₃	A ₂	A ₁	A ₀	I/O ₀
В	I/O ₁₇	A ₁₈	A ₁₇	CE ₁	A ₁₆	A ₁₅	I/O ₁
С	I/O ₁₈	B _c	CE ₂	NC	NC	B _a	I/O ₂
D	I/O ₁₉	V_{DD}	V _{SS}	V_{SS}	V _{SS}	V_{DD}	I/O ₃
Е	I/O ₂₀	V _{SS}	V _{DD}	V _{SS}	V _{DD}	V _{SS}	I/O ₄
F	I/O ₂₁	V _{DD}	V _{SS}	V _{SS}	V _{SS}	V _{DD}	I/O ₅
G	I/O ₂₂	V _{SS}	V _{DD}	V _{SS}	V _{DD}	V _{SS}	I/O ₆
Н	I/O ₂₃	V_{DD}	V _{SS}	V _{SS}	V _{SS}	V _{DD}	I/O ₇
J	ERR	V _{SS}	V _{DD}	V _{SS}	V _{DD}	V _{SS}	NC
К	I/O ₂₄	V _{DD}	V _{SS}	V _{SS}	V _{SS}	V_{DD}	I/O ₈
L	I/O ₂₅	V _{SS}	V_{DD}	V _{SS}	V _{DD}	V _{SS}	I/O ₉
М	I/O ₂₆	V_{DD}	V _{SS}	V_{SS}	V _{SS}	V_{DD}	I/O ₁₀
Ν	I/O ₂₇	V _{SS}	V _{DD}	V _{SS}	V _{DD}	V _{SS}	I/O ₁₁
Р	I/O ₂₈	V_{DD}	V _{SS}	V _{SS}	V _{SS}	V_{DD}	I/O ₁₂
R	I/O ₂₉	A ₁₄	B _d	NC	B _b	A ₁₃	I/O ₁₃
Т	I/O ₃₀	A ₁₂	A ₁₁	WE	A ₁₀	A ₉	I/O ₁₄
U	I/O ₃₁	A ₈	A ₇	OE	A ₆	A ₅	I/O ₁₅

Note

NC pins are not connected internally to the die.
 ERR is an Output pin. If not used, this pin should be left floating.

Product Portfolio

Product	Features and Options (see the Pin Configurations Section)			Speed (ns)	Power Dissipation				
		Range	V _{CC} Range (V)		Operating I _{CC} , (mA) f = f _{max}		Standby, I _{SB2} (µA)		
					Typ ^[4]	Max	Typ ^[4]	Мах	
CY62162G(E)18	Optional Error indication	Optional Error indication Industri		1.65 V–2.2 V	55	29	32	7	26
CY62162G(E)30			Industrial	2.2 V–3.6 V	45	29	36	5.5	16

Note 4. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 1.8 V (for V_{CC} range of 1.65 V–2.2 V), V_{CC} = 3 V (for V_{CC} range of 2.2 V–3.6 V), T_A = 25 °C.

CY62162G/CY62162GE MoBL®

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage temperature65 °C to +150 °C
Ambient temperature with power applied55 °C to +125 °C
Supply voltage to ground potential $\dots -0.5$ V to V _{CC} + 0.5 V
DC voltage applied to outputs in high Z State $^{[6]}$ 0.5 V to V_{CC} + 0.5 V
DC input voltage $^{[6]}$ 0.5 V to V_{CC}+ 0.5 V

Output current into outputs (LOW)	20 mA
Static discharge voltage	
(per MIL-STD-883, method 3015)	> 2001 V
Latch-up current	> 140 mA

Operating Range

Device	Range	Ambient Temperature	V_{CC} ^[7]
CY62162G	Industrial	–40 °C to +85 °C	1.65 V to 2.2 V, 2.2 V to 3.6 V

Electrical Characteristics

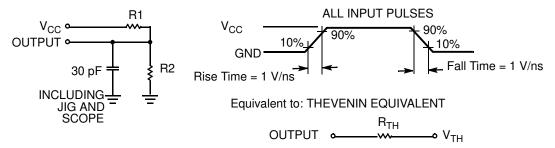
Over the Operating Range

Parameter	Dese	cription	Test Cond	ditions	Min	Typ ^[8]	Max	Unit
		1.65 V to 2.2 V	V _{CC} = Min, I _{OH} = -0.1 m	A	1.4	-	_	
V _{OH}	Output HIGH voltage	2.2 V to 2.7 V	$V_{CC} = Min, I_{OH} = -1.0 \text{ mA}$			-	_	
	voltage	2.7 V to 3.6 V	V _{CC} = Min, I _{OH} = -4.0 m/	Α	2.2	_	-	
		1.65 V to 2.2 V	$V_{CC} = Min, I_{OL} = 0.1 mA$		-	_	0.2	
V _{OL}	Output LOW voltage	2.2 V to 2.7 V	V _{CC} = Min, I _{OL} = 2 mA		-	_	0.4	
	voltage	2.7 V to 3.6 V	V _{CC} = Min, I _{OL} = 8 mA		-	_	0.4	v
		1.65 V to 2.2 V	_		1.4	_	V _{CC} + 0.2	V
V _{IH}	Input HIGH voltage	2.2 V to 2.7 V	_		2.0	_	V _{CC} + 0.3	
	voltage	2.7 V to 3.6 V	_		2.0	_	V _{CC} + 0.3	
		1.65 V to 2.2 V	_		-0.2	_	0.4	
V _{IL}	Input LOW voltage ^[6]	2.2 V to 2.7 V	-		-0.3	_	0.6	
	Vollage	2.7 V to 3.6 V	_		-0.3	_	0.8	
I _{IX}	Input leakage of	current	GND <u><</u> V _{IN} ≤ V _{CC}		-1.0	_	+1.0	•
I _{OZ}	Output leakage	ecurrent	GND <u><</u> V _{OUT} <u><</u> V _{CC} , Out	out disabled	-1.0	_	+1.0	μA
			f = 22.22 MHz (45 ns)	$V_{CC} = V_{CC(max)},$	-	29.0	36.0	
I _{CC}	V _{CC} operating	supply current	f = 18.18 MHz (55 ns)	$I_{OUT} = 0 \text{ mA}$	_	29.0	32.0	mA
			f = 1 MHz	CMOS levels	_	7.0	9.0	
		er down current – V _{CC} = 2.2 to 3.6 V	$\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V or CE}$	² 2 ≤ 0.2 V	-	5.5	16.0	
I _{SB1} ^[9]		er down current – V _{CC} = 1.65 to 2.2 V	or $B_{A-D} \ge V_{CC} - 0.2 V$, $V_{IN} \ge V_{CC} - 0.2 V$, $V_{IN} \le 0.2 V$, $f = f_{max}$ (address and data only), $f = 0$ (OE, and WE), $V_{CC} = V_{CC(max)}$		-	7.0	26.0	μA
1. [9]		er down current – V _{CC} = 2.2 to 3.6 V	$\overline{CE}_{1} \ge V_{CC} - 0.2V \text{ or CE}$ or $\overline{B}_{A-D} \ge V_{CC} - 0.2 V$,		-	5.5	16.0	
I _{SB2} ^[9]		er down current – V _{CC} = 1.65 to 2.2 V	$V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN}$	<u>≤</u> 0.2 V,	-	7.0	26.0	

Notes

^{5.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = 1.8 \text{ V}$ (for V_{CC} range of 1.65 V–2.2 V), $V_{CC} = 3 \text{ V}$ (for V_{CC} range of 2.2 V–3.6 V), $T_A = 25 \text{ °C}$. 6. $V_{IL(min)} = -2.0 \text{ V and } V_{IH(max)} = V_{CC} + 2 \text{ V}$ for pulse durations of less than 2 ns. 7. Full device AC operation assumes a 100-µs ramp time from 0 to V_{CC} (min) and 200-µs wait time after V_{CC} stabilizes to its operational value. 8. Indicates the value for the center of distribution at 3.0 V, 25 °C and not 100% tested. 9. Chip enables (\overline{CE}_1 and CE_2) must be tied to CMOS levels to meet the $I_{SB1} / I_{SB2} / I_{CCDR}$ spec. Other inputs can be left floating.

Capacitance


Parameter ^[10]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 \text{ °C}, f = 1 \text{ MHz}, V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output capacitance			

Thermal Resistance

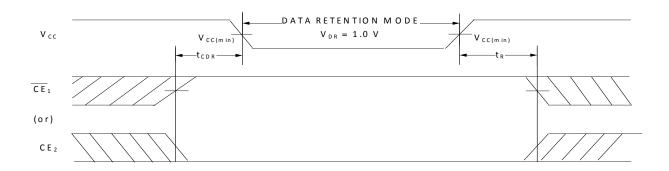
Parameter ^[10]	Description	Test Conditions	119-ball BGA	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still air, soldered on a 3×4.5 inch, 2-layer printed circuit board	20.92	°C/W
Θ _{JC}	Thermal resistance (junction to case)		15.84	

AC Test Loads and Waveforms

Figure 3. AC Test Loads and Waveforms

Table 1. AC Test Loads

Parameter	1.8 V	2.5 V	3.0 V	Unit
R1	13500	16667	1103	Ω
R2	10800	15385	1554	
R _{TH}	6000	8000	645	
V _{TH}	0.8	1.2	1.75	V


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Typ ^[11]	Max	Unit
V _{DR}	V _{CC} for data retention		1.0	-	-	V
I _{CCDR} ^[12, 13]	Data retention current	$\begin{array}{l} \underline{1.0} \ V \leq V_{CC} \leq 2.2 \ V, \\ \underline{CE}_1 \geq V_{CC} - 0.2 \ V \ \text{or} \ CE_2 \leq 0.2 \ V \ \text{or} \\ \overline{B}_{A-D} \geq V_{CC} - 0.2 \ V, \\ V_{IN} \geq V_{CC} - 0.2 \ V \ \text{or} \ V_{IN} \leq 0.2 \ V \end{array}$	_	7.0	26.0	μA
		$\begin{array}{l} \underline{2.2} \ V < V_{CC} \leq 3.6 \ V, \\ \underline{CE}_1 \geq V_{CC} - 0.2 \ V \ \text{or} \ CE_2 \leq 0.2 \ V \ \text{or} \\ B_{A-D} \geq V_{CC} - 0.2 \ V, \\ V_{IN} \geq V_{CC} - 0.2 \ V \ \text{or} \ V_{IN} \leq 0.2 \ V \end{array}$	_	5.5	16.0	μu τ
t _{CDR} ^[14]	Chip deselect to data retention time	-	0	-	-	ns
t _R ^[14, 15]	Operation recovery time	-	45 / 55	-	-	

Data Retention Waveform

Figure 4. Data Retention Waveform

Notes

11. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 1.8 V for the range 1.7 V to 2.2 V; 3 V for the range 2.2 V to 3.6 V, T_A = 25 °C.

12. Only chip enables (\overline{CE}_1 and CE_2) and all byte enables (\overline{B}_{A-D}) need to be tied to CMOS levels to meet the I_{SB2}/I_{CCDR} spec. Other inputs can be left floating.

13. \overline{B}_{A-D} is the AND of \overline{B}_A , \overline{B}_B , \overline{B}_C and \overline{B}_D . Chip is deselected by either disabling the chip enable signals or by disabling all byte enables together. 14. These parameters are guaranteed by design and are not tested. 15. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} \geq 100 µs or stable at V_{CC(min)} \geq 100 µs.

Switching Characteristics

Over the Operating Range

Parameter [16, 17]	Description	45	ns	55	55 ns		
Parameter [10, 11]	Description	Min	Max	Min	Мах	Unit	
Read Cycle		·				•	
t _{RC}	Read cycle time	45.0	-	55.0	-		
t _{AA}	Address to data/ERR valid	-	45.0	-	55.0		
t _{OHA}	Data/ERR hold from address change	10	-	10.0	_		
t _{ACE}	\overline{CE}_1 LOW and CE_2 HIGH to data/ERR valid	-	45.0	_	55.0		
t _{DOE}	OE LOW to data/ERR valid	_	22.0	_	25.0		
t _{LZOE}	OE LOW to low Z ^[17, 18]	5.0	_	5.0	_		
t _{HZOE}	OE HIGH to high Z ^[17, 18, 19]	_	18.0	_	18.0		
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to low Z ^[17, 18]	10.0	_	10.0	_	ns	
t _{HZCE}	CE ₁ HIGH and CE ₂ LOW to high Z ^[17, 18, 19]	_	18.0	_	18.0		
t _{PU}	CE ₁ LOW and CE ₂ HIGH to power-up ^[20]	0	_	0	_		
t _{PD}	CE ₁ HIGH and CE ₂ LOW to power-down ^[20]	_	45.0	_	55.0		
t _{DBE}	Byte enable LOW to data valid	_	45.0	_	55.0		
t _{LZBE}	Byte enable LOW to low Z ^[17]	5.0	_	5.0	_		
t _{HZBE}	Byte enable HIGH to high Z ^[17, 19]	_	18.0	_	18.0		
Write Cycle [21, 22	2]						
t _{WC}	Write cycle time	45.0	_	55.0	_		
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to write end	35.0	-	40.0	_		
t _{AW}	Address setup to write end	35.0	_	40.0	_		
t _{HA}	Address hold from write end	0	-	0	_		
t _{SA}	Address setup to write start	0	-	0	_		
t _{PWE}	WE pulse width	35.0	_	40.0	_	ns	
t _{BW}	Byte enable LOW to write end	35.0	-	40.0	_		
t _{SD}	Data setup to write end	25.0	-	25.0	_		
t _{HD}	Data hold from write end	0	-	0	_		
t _{HZWE}	WE LOW to high Z ^[17, 19, 18]	-	18.0	_	20.0		
t _{LZWE}	WE HIGH to low Z [17, 18]	10.0	-	10.0	-		

Notes

21. The internal write time of the memory is defined by the overlap of \overline{CE} and \overline{WE} LOW. Chip enable must be active and \overline{WE} and byte enables must be LOW to initiate a write, and the transition of any of these signals terminate the write. The input data setup and hold timing are referenced to the leading edge of the signal that terminates the write.

22. The minimum write cycle pulse width for Write Cycle No. 2 (WE Controlled, \overline{OE} LOW) should be equal to sum of t_{HZWE} and t_{SD}.

^{16.} Test conditions for all parameters other than tri-state parameters assume signal transition time of 1 V/ns, timing reference levels of V_{TH}, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} as shown in Table 1 on page 8.
17. At any temperature and voltage condition, t_{HZCE} is less than t_{LZEE}, t_{HZEE} is less than t_{LZDE}, t_{HZDE} is less than t_{LZDE}, and t_{HZWE} is less than t_{LZWE} for any given device.
18. Tested initially and after any design or process changes that may affect these parameters.
19. t_{HZCE}, t_{HZEE}, t_{HZEE}, t_{HZEE}, and t_{HZWE} transitions are measured when the outputs enter a high impedence state.
20. These parameters are guaranteed by design and are not tested.
21. The interval write time of the memory is defined by the overlap of CE and WE LOW. Chin enable must be active and WE and by the analyses must be LOW to initiate a state.

Switching Waveforms

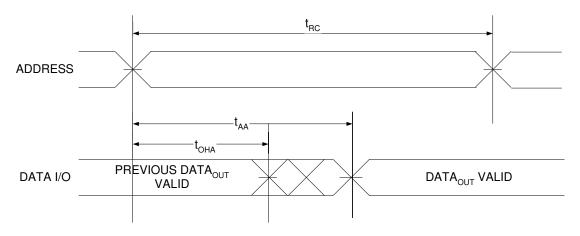
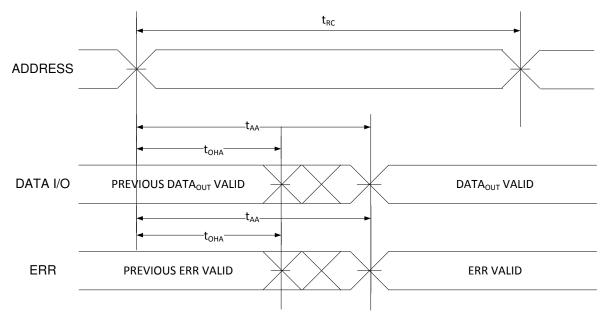



Figure 6. Read Cycle No. 1 of CY62162GE (Address Transition Controlled) ^[23, 24]

Notes

23. Device is continuously selected. $\overline{OE} = V_{IL}$, $\overline{CE} = V_{IL}$. 24. WE is HIGH for read cycle.

Switching Waveforms (continued)

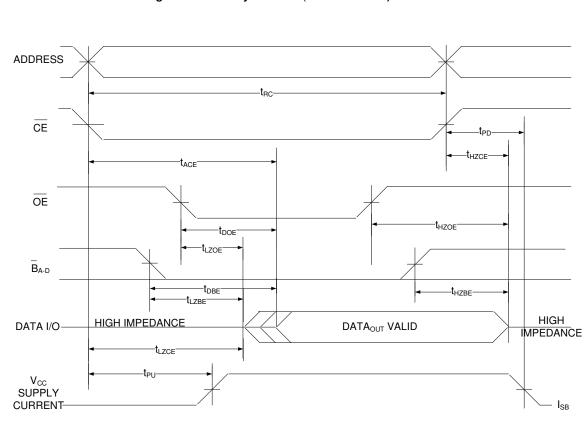


Figure 7. Read Cycle No. 2 (OE Controlled) ^[25, 26, 27]

Notes 25. WE is HIGH for read cycle. 26. Address valid before or similar to $\overline{\text{CE}}$ transition LOW.

27. \overline{CE} refers to a combination of \overline{CE}_1 and CE_2 . \overline{CE} is LOW when \overline{CE}_1 is LOW and CE_2 is HIGH. \overline{CE} is HIGH when \overline{CE}_1 is HIGH or CE_2 is LOW.

Switching Waveforms (continued)

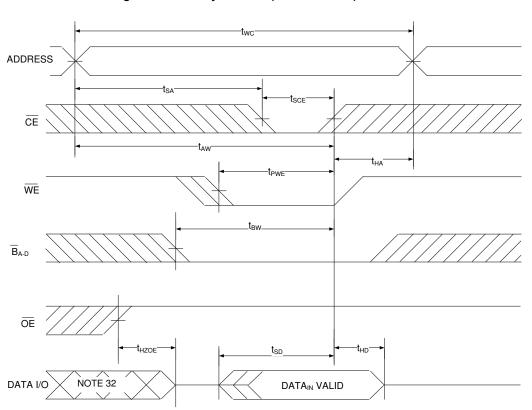
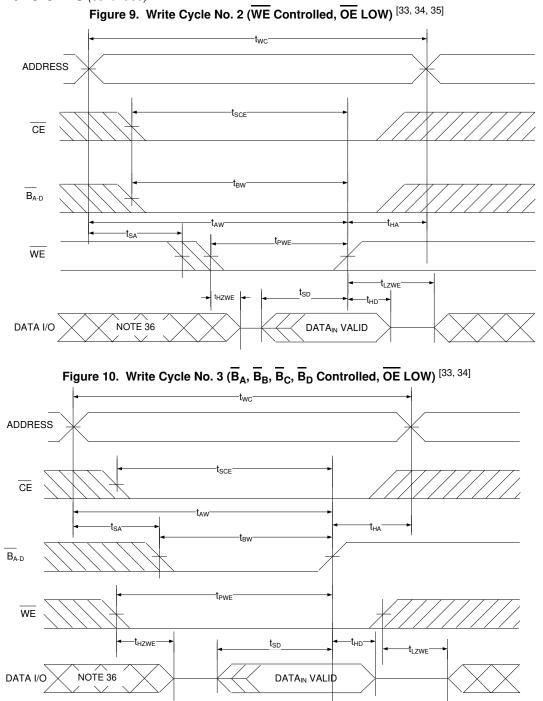


Figure 8. Write Cycle No. 1 (CE Controlled) ^[28, 29, 30, 31]

Notes


- 28. The internal write time of the memory is defined by the overlap of \overline{CE} and \overline{WE} LOW. Chip enable must be active and \overline{WE} and byte enables must be LOW to initiate a write, and the transition of any of these signals terminate the write. The input data setup and hold timing are referenced to the leading edge of the signal that terminates the write.
- 29. Data I/O is high impedance if \overline{OE} or \overline{B}_A , \overline{B}_B , \overline{B}_C , $\overline{B}_D = V_{IH}$.

30. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ going HIGH, the output remains in a high impedance state.

- 31. \overline{CE} refers to a combination of \overline{CE}_1 and CE_2 . \overline{CE} is LOW when \overline{CE}_1 is LOW and CE_2 is HIGH. \overline{CE} is HIGH when \overline{CE}_1 is HIGH or CE_2 is LOW. 32. During this period the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)

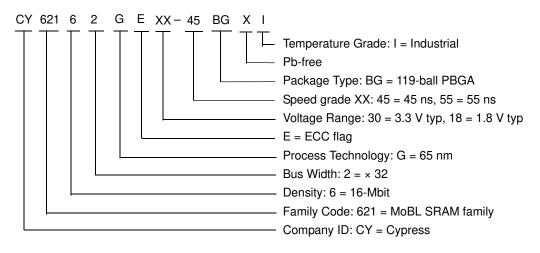
- Notes_____33. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ going HIGH, the output remains in a high impedance state.
- 34. \overline{CE} refers to a combination of \overline{CE}_1 and CE_2 . \overline{CE} is LOW when \overline{CE}_1 is LOW and CE_2 is HIGH. \overline{CE} is HIGH when \overline{CE}_1 is HIGH or CE_2 is LOW.
- 35. The minimum write cycle pulse width should be equal to the sum of $t_{\mbox{HZWE}}$ and $t_{\mbox{SD}}$
- 36. During this period the I/Os are in output state and input signals should not be applied.

CE ^[37]	OE	WE	B _A	B _B	B _C	B _D	I/O ₀ -I/O ₇	I/O ₈ -I/O ₁₅	I/O ₁₆ -I/O ₂₃	I/O ₂₄ -I/O ₃₁	Mode	Power
Н	Х	Х	X ^[38]	X ^[38]	X ^[38]	X ^[38]	High Z	High Z	High Z	High Z	Standby	(I _{SB})
X ^[38]	Х	Х	Н	Н	Н	Н	High Z	High Z	High Z	High Z	Standby	(I _{SB})
L	L	Н	L	L	L	L	Data out	Data out	Data out	Data out	Read all bits	(I _{CC})
L	L	Н	L	Н	Н	Н	Data out	High Z	High Z	High Z	Read byte A bits only	(I _{CC})
L	L	Н	Н	L	Н	Н	High Z	Data out	High Z	High Z	Read byte B bits only	(I _{CC})
L	L	Н	Н	Н	L	Н	High Z	High Z	Data out	High Z	Read byte C bits only	(I _{CC})
L	L	Н	Н	Н	Н	L	High Z	High Z	High Z	Data out	Read byte D bits only	(I _{CC})
L	Х	L	L	L	L	L	Data in	Data in	Data in	Data in	Write all bits	(I _{CC})
L	Х	L	L	Н	Н	Н	Data in	High Z	High Z	High Z	Write byte A bits only	(I _{CC})
L	Х	L	Н	L	Н	Н	High Z	Data in	High Z	High Z	Write byte B bits only	(I _{CC})
L	Х	L	н	н	L	Н	High Z	High Z	Data in	High Z	Write byte C bits only	(I _{CC})
L	Х	L	Н	Н	Н	L	High Z	High Z	High Z	Data in	Write byte D bits only	(I _{CC})
L	Н	Н	X ^[38]	X ^[38]	X ^[38]	X ^[38]	High Z	High Z	High Z	High Z	Selected, outputs disabled	(I _{CC})

Truth Table - CY62162G / CY62162GE

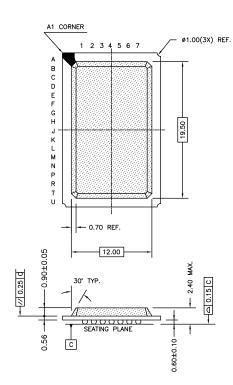
ERR Output – CY62162GE

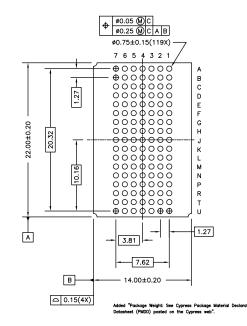
Output ^[39]	Mode
0	Read Operation, no single bit error in the stored data.
1	Read Operation, single bit error detected and corrected.
Z	Device deselected / Outputs disabled / Write Operation.


Note 37. \overline{CE} refers to a combination of \overline{CE}_1 and CE_2 . \overline{CE} is LOW when \overline{CE}_1 is LOW and CE_2 is HIGH. \overline{CE} is HIGH when \overline{CE}_1 is HIGH or \underline{CE}_2 is LOW. 38. \underline{X} refers to V_{IL} or V_{IL} or V_{IH} . For CMOS voltage levels refer to I_{SB2} test conditions in Electrical Characteristics on page 7. Chip enables (\overline{CE}_1 and CE_2) and all Byte Enables (B_{A-D}) must be in CMOS voltage levels to meet the I_{SB2}/I_{CCDR} spec. 39. ERR is an Output pin. If not used, this pin should be left floating.

Ordering Information

Speed (ns)	Voltage Range	Ordering Code	Package Diagram	Package Type (All Pb-free)	Operating Range
45	2.2 V–3.6 V	CY62162G30-45BGXI	51-85115	119-ball PBGA (14 × 22 × 2.4 mm)	Industrial
55	1.65 V–2.2 V	CY62162G18-55BGXI			Industrial


Ordering Code Definitions



Package Diagram

Figure 11. 119-ball PBGA (14 × 22 × 2.4 mm) BG119 Package Outline, 51-85115

NOTE:

Package Weight: See Cypress Package Material Declaration Datasheet (PMDD) posted on the Cypress web.

51-85115 *D

Acronyms

Acronym	Description
CE	Chip Enable
CMOS	Complementary Metal Oxide Semiconductor
FBGA	Fine-Pitch Ball Grid Array
I/O	Input/Output
OE	Output Enable
SRAM	Static Random Access Memory
WE	Write Enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
mA	milliampere
MHz	megahertz
mm	millimeter
μA	microampere
μs	microsecond
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

Document Title: CY62162G/CY62162GE MoBL [®] , 16-Mbit (512 K × 32) Static RAM with Error-Correcting Code (ECC) Document Number: 001-81598						
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
*C	4863821	NILE	07/31/2015	Changed status from Preliminary to Final.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2012-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems applications in life support and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-81598 Rev. *C

Revised July 31, 2015

Page 20 of 20

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All products and company names mentioned in this document may be the trademarks of their respective holders.