imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CY7C1041B

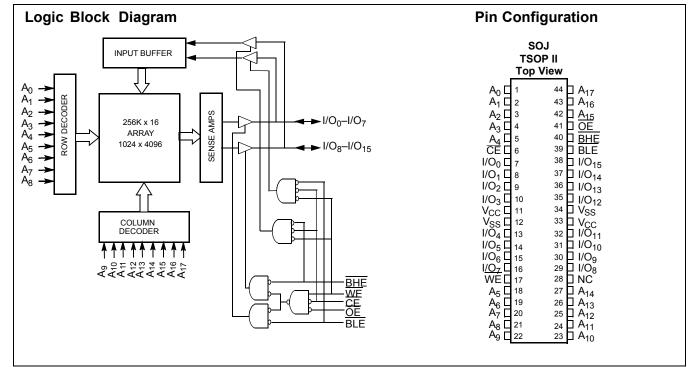
256K x 16 Static RAM

Features

- High speed
- t_{AA} = 12 ns
- Low active power
- 1540 mW (max.)
- Low CMOS standby power (L version)
- 2.75 mW (max.)
- + 2.0V Data Retention (400 μW at 2.0V retention)
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features

Functional Description

The CY7C1041B is a high-performance CMOS static RAM organized as 262,144 words by 16 bits.


 $\frac{\text{Writ}}{\text{(CE)}}$ and Write Enable (WE) inputs LOW. If Byte Low Enable

$(\overline{\text{BLE}})$ is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified <u>on the</u> address pins (A₀ through A₁₇). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₇).

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of read and write modes.

The input/output pins (I/O₀ through I/O₁₅) are placed in <u>a</u> high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1041B is available in a standard 44-pin 400-mil-wide body width SOJ and 44-pin TSOP II package with center power and ground (revolutionary) pinout.

3901 North First Street

Selection Guide

		7C1041B-12	7C1041B-15	7C1041B-17	7C1041B-20	7C1041B-25	Unit
Maximum Access Time	12	15	17	20	25	ns	
Maximum Operating Current	Com'l	200	190	180	170	160	mA
	Ind'l	220	210	200	190	180	
Maximum CMOS Standby	Com'l	3	3	3	3	3	mA
Current	Com'l L	-	0.5	0.5	0.5	0.5	
	Ind'l	-	6	6	6	6	

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied.....-55°C to +125°C Supply Voltage on V_{CC} to Relative $GND^{[1]}\,....\,-\!0.5V$ to +7.0V DC Voltage Applied to Outputs in High Z State $^{[1]}$ -0.5V to V_{CC} + 0.5V

DC Input Voltage^[1] –0.5V to V_{CC} + 0.5V Current into Outputs (LOW)...... 20 mA

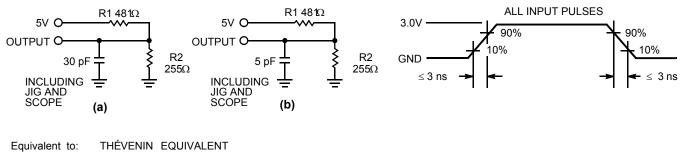
Operating Range

Range	Ambient Temperature ^[2]	v _{cc}
Commercial	0°C to +70°C	5V ± 0.5
Industrial	–40°C to +85°C	

Electrical Characteristics Over the Operating Range

					41B-12	7C10	41B-15	7C1041B-17		
Parameter	Description	Test Conditions		Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4	.0 mA	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0) mA		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.5	2.2	V _{CC} + 0.5	2.2	V _{CC} + 0.5	V	
V _{IL}	Input LOW Voltage ^[1]		-0.5	0.8	-0.5	0.8	-0.5	0.8	V	
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$		-1	+1	-1	+1	-1	+1	mA
I _{OZ}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC},$ Output Disabled		-1	+1	-1	+1	-1	+1	mA
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l		200		190		180	mA
	Supply Current	$f = f_{MAX} = 1/t_{RC}$	Ind'l		220		210		200	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{array}{l} \text{Max. } V_{CC}, \ \overline{\text{CE}} \geq V_{IH} \\ V_{IN} \geq V_{IH} \ \text{or} \\ V_{IN} \leq V_{IL}, \ \text{f} = \text{f}_{MAX} \end{array}$			40		40		40	mA
I _{SB2}	Automatic CE	<u>Ma</u> x. V _{CC} ,	Com'l		3		3		3	mA
	Power-Down Current —CMOS Inputs	$CE \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V,$	Com'l L		-		0.5		0.5	mA
		or $V_{IN} \le 0.3V$, f = 0	Ind'l		-		6		6	mA

Notes: 1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns. 2. T_A is the case temperature.


		Test Condition	ons	7C1	041B-20	7C1	041B-25	
Parameter	Description				Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -4.0	2.4		2.4		V	
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0	mA		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} + 0.5	2.2	V _{CC} + 0.5	V
V _{IL}	Input LOW Voltage ^[1]			-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$	-1	+1	-1	+1	mA	
I _{OZ}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC},$ Output Disabled	-1	+1	–1	+1	mA	
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l		170		160	mA
	Supply Current	$f = f_{MAX} = 1/t_{RC}$	Ind'l		190		180	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{array}{l} \text{Max. } V_{CC}, \ \overline{CE} \geq V_{IH} \\ V_{IN} \geq V_{IH} \ \text{or} \\ V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{array}$		40		40	mA	
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l		3		3	mA
	Power-Down Current —CMOS Inputs	$CE \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V,$	Com'l L		0.5		0.5	mA
		or $V_{IN} \le 0.3V$, f = 0	Ind'l		6		6	mA

Electrical Characteristics Over the Operating Range (continued)

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_{A} = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	I/O Capacitance	$V_{CC} = 5.0V$	8	pF

AC Test Loads and Waveforms

Note:

3. Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics^[4] Over the Operating Range

		7C104	41B-12	7C104	41B-15	7C104	7C1041B-17	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle)	·						•
t _{power}	V _{CC} (typical) to the First Access ^[5]	1		1		1		μS
t _{RC}	Read Cycle Time	12		15		17		ns
t _{AA}	Address to Data Valid		12		15		17	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE LOW to Data Valid		12		15		17	ns
t _{DOE}	OE LOW to Data Valid		6		7		7	ns
t _{LZOE}	OE LOW to Low Z	0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		6		7		7	ns
t _{LZCE}	CE LOW to Low Z ^[7]	3		3		3		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		6		7		7	ns
t _{PU}	CE LOW to Power-Up	0		0		0		ns
t _{PD}	CE HIGH to Power-Down		12		15		17	ns
t _{DBE}	Byte Enable to Data Valid		6		7		7	ns
t _{LZBE}	Byte Enable to Low Z	0		0		0		ns
t _{HZBE}	Byte Disable to High Z		6		7		7	ns
Write Cycle	[8, 9]	·						•
t _{WC}	Write Cycle Time	12		15		17		ns
t _{SCE}	CE LOW to Write End	10		12		14		ns
t _{AW}	Address Set-Up to Write End	10		12		14		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	10		12		14		ns
t _{SD}	Data Set-Up to Write End	7		8		8		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3		3		3		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		6		7		7	ns
t _{BW}	Byte Enable to End of Write	10		12		12		ns

Notes:

4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified l_{OL}/l_{OH} and 30-pF load capacitance.
 5. This part has a voltage regulator which steps down the voltage from 5V to 3.3V internally. t_{power} time has to be provided initially before a read/write operation is stated.

started.

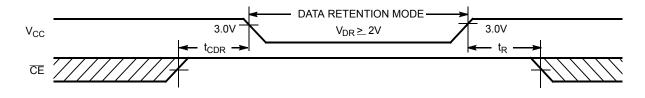
6. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.

HzoE, HzoE, and HzoE, and HzoE, and HzoE and voltage conditions that departialize to or prior the less than traces to base. This issue is instant to most the provided to the less than traces and the provided to the less than traces and the provided to the less than traces. This issue is the set to the less than traces and the provided to the less than traces and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
 The minimum write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of traces and traces and the transition of the transitio

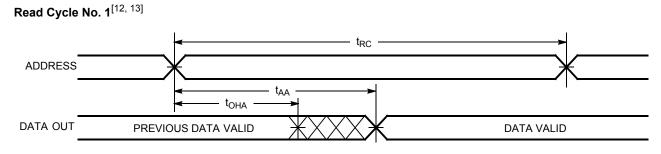
Switching Characteristics^[4] Over the Operating Range (continued)

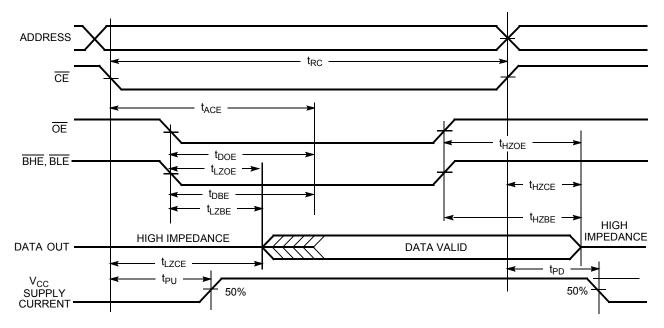
		7C104	41B-20	7C104	41B-25	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle					1	
t _{power}	V _{CC} (typical) to the First Access ^[5]	1		1		μs
t _{RC}	Read Cycle Time	20		25		ns
t _{AA}	Address to Data Valid		20		25	ns
t _{OHA}	Data Hold from Address Change	3		5		ns
t _{ACE}	CE LOW to Data Valid		20		25	ns
t _{DOE}	OE LOW to Data Valid		8		10	ns
t _{LZOE}	OE LOW to Low Z	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		8		10	ns
t _{LZCE}	CE LOW to Low Z ^[7]	3		5		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		8		10	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		20		25	ns
t _{DBE}	Byte Enable to Data Valid		8		10	ns
t _{LZBE}	Byte Enable to Low Z	0		0		ns
t _{HZBE}	Byte Disable to High Z		8		10	ns
WRITE CYC	LE ^[8, 9]					
t _{WC}	Write Cycle Time	20		25		ns
t _{SCE}	CE LOW to Write End	13		15		ns
t _{AW}	Address Set-Up to Write End	13		15		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	13		15		ns
t _{SD}	Data Set-Up to Write End	9		10		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3		5		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		8		10	ns
t _{BW}	Byte Enable to End of Write	13		15		ns

Data Retention Characteristics Over the Operating Range (L version only)


Parameter	Description			Conditions ^[11]	Min.	Max.	Unit
V _{DR}	V _{CC} for Data Retention				2.0		V
I _{CCDR}	Data Retention Current	Com'l	L	$\frac{V_{CC}}{CE} = V_{DR} = 3.0V,$ $CE \ge V_{CC} - 0.3V,$		200	mA
t _{CDR} ^[3]	Chip Deselect to Data Retention Time			$CE \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$	0		ns
t _R ^[10]	Operation Recovery Time				t _{RC}		ns

Notes:


10. $t_f \leq 3$ ns for the -12 and -15 speeds. $t_f \leq 5$ ns for the -20 and slower speeds. 11. No input may exceed V_{CC} + 0.5V.

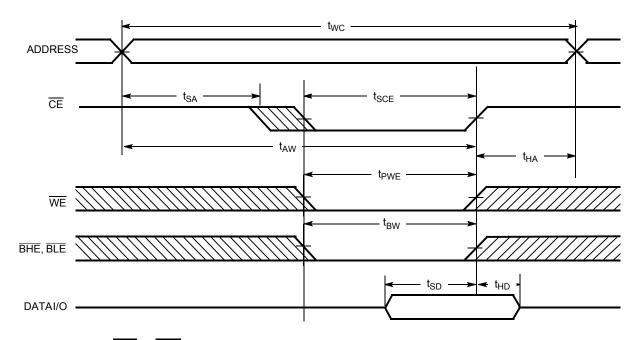

Data Retention Waveform

Switching Waveforms

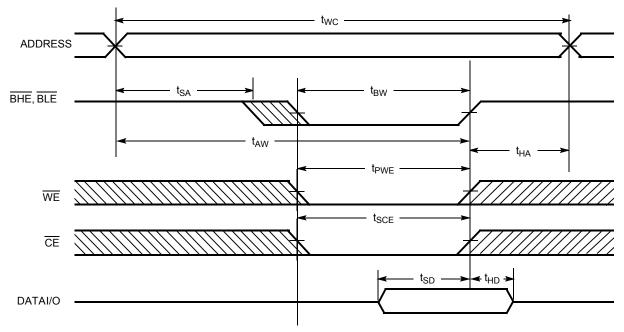
Read Cycle No. 2 (OE Controlled)^[13, 14]

Notes:

12. <u>Dev</u>ice is continuously selected. \overline{OE} , \overline{CE} , \overline{BHE} , and/or $\overline{BHE} = V_{IL}$.


13. WE is HIGH for read cycle.

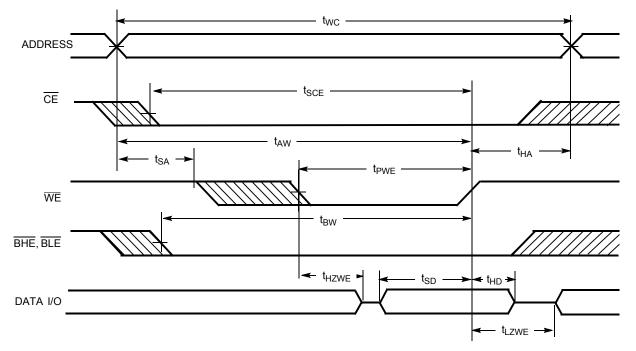
14. Address valid prior to or coincident with \overline{CE} transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)^[15, 16]

Write Cycle No. 2 (BLE or BHE Controlled)

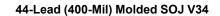

Notes:

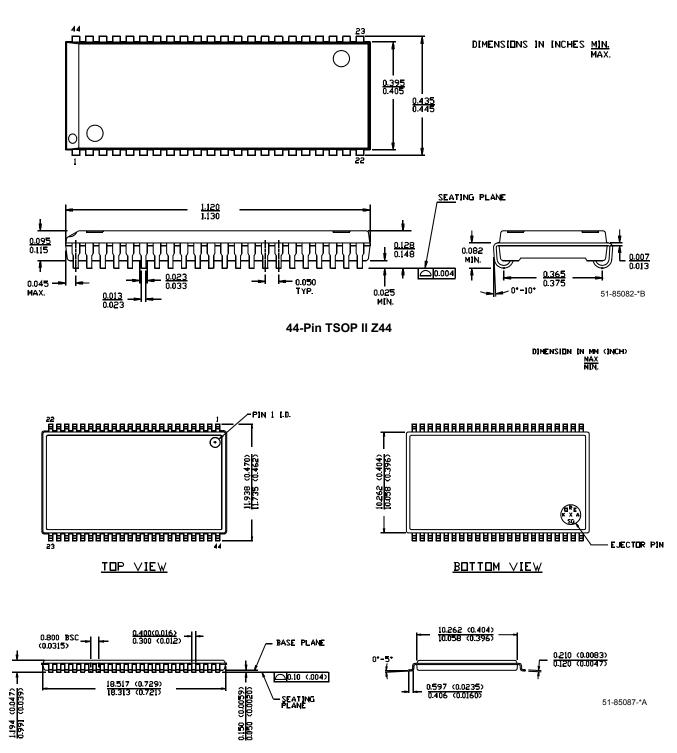
15. Data I/O is high impedance if OE or BHE and/or BLE = V_{IH}.
16. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Truth Table

CE	OE	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ –I/O ₁₅	Mode	Power
Н	Х	Х	Х	Х	High Z	High Z	Power Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read All bits	Active (I _{CC})
L	L	Н	L	Н	Data Out	High Z	Read Lower bits only	Active (I _{CC})
L	L	Н	Н	L	High Z	Data Out	Read Upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write All bits	Active (I _{CC})
L	Х	L	L	Н	Data In	High Z	Write Lower bits only	Active (I _{CC})
L	Х	L	Н	L	High Z	Data In	Write Upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})




Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C1041B-12VC	V34	44-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1041B-12VXC	V34	44-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1041B-12ZC	Z44	44-Lead TSOP Type II	
	CY7C1041B-12ZXC	Z44	44-Lead TSOP Type II (Pb-free)	
15	CY7C1041B-15VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041B-15VXC	V34	44-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1041BL-15VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041B-15ZC	Z44	44-Lead TSOP Type II	
	CY7C1041B-15ZXC	Z44	44-Lead TSOP Type II (Pb-free)	
	CY7C1041BL-15ZC	Z44	44-Lead TSOP Type II	
	CY7C1041BL-15ZXC	Z44	44-Lead TSOP Type II (Pb-free)	
17	CY7C1041B-17VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041BL-17VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041B-17ZC	Z44	44-Lead TSOP Type II	
	CY7C1041BL-17ZC	Z44	44-Lead TSOP Type II	
20	CY7C1041B-20VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041B-20VXC	V34	44-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1041BL-20VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041BL-20VXC	V34	44-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1041B-20ZC	Z44	44-Lead TSOP Type II	
	CY7C1041B-20ZXC	Z44	44-Lead TSOP Type II (Pb-free)	
	CY7C1041BL-20ZC	Z44	44-Lead TSOP Type II	
25	CY7C1041B-25VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041BL-25VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041B-25ZC	Z44	44-Lead TSOP Type II	
	CY7C1041BL-25ZC	Z44	44-Lead TSOP Type II	
15	CY7C1041B-15ZI	Z44	44-Lead TSOP Type II	Industrial
	CY7C1041B-15ZXI	Z44	44-Lead TSOP Type II (Pb-free)	
	CY7C1041B-15VI	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041B-15VXI	V34	44-Lead (400-Mil) Molded SOJ (Pb-free)	
17	CY7C1041B-17ZI	V34	44-Lead TSOP Type II	
	CY7C1041B-17VI	Z44	44-Lead (400-Mil) Molded SOJ	
20	CY7C1041B-20ZI	Z44	44-Lead TSOP Type II	
	CY7C1041B-20ZXI	Z44	44-Lead TSOP Type II (Pb-free)	
	CY7C1041B-20VI	Z44	44-Lead (400-Mil) Molded SOJ	
	CY7C1041B-20VXI	Z44	44-Lead (400-Mil) Molded SOJ (Pb-free)	
25	CY7C1041B-25ZI	Z44	44-Lead TSOP Type II	
	CY7C1041B-25VI	Z44	44-Lead (400-Mil) Molded SOJ	

Package Diagrams

All products and company names mentioned in this document may be the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

Document Title: CY7C1041B 256K x 16 Static RAM Document Number: 38-05142						
REV. ECN NO. Issue Date Orig. of Change Description of Change						
**	109886	09/15/01	SZV	Change from Spec number: 38-00938 to 38-05142		
*A	341401	See ECN	AJU	Added Pb-free ordering information		
