# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

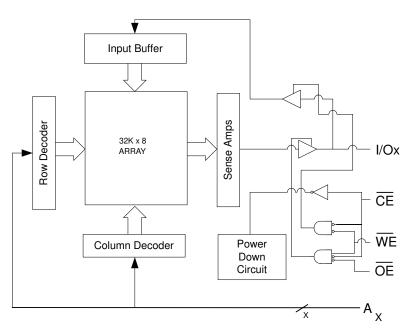




CY7C199C

## 256K (32K x 8) Static RAM

## Features


- · Fast access time: 12 ns
- Wide voltage range: 5.0V ± 10% (4.5V to 5.5V)
- · CMOS for optimum speed/power
- TTL-compatible Inputs and Outputs
- 2.0V Data Retention
- Low CMOS standby power
- Automated Power-down when deselected
- Available in Pb-free and non Pb-free 28-pin (300-Mil) Molded SOJ, 28-pin (300-Mil) DIP and 28-pin TSOP I packages

## Logic Block Diagram

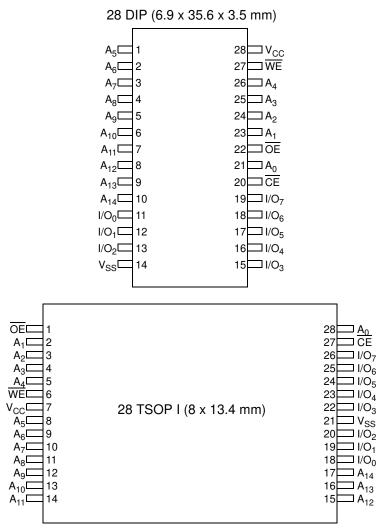
## **General Description**

The CY7C199C is a high-performance CMOS Asynchronous SRAM organized as 32K by 8 bits that supports an asynchronous memory interface. The device features an automatic power-down feature that significantly reduces power consumption when deselected.

See the Truth Table in this data sheet for a complete description of read and write modes



## **Product Portfolio**


|                                  | 12 ns | 15 ns | 20 ns | Unit |
|----------------------------------|-------|-------|-------|------|
| Maximum Access Time              | 12    | 15    | 20    | ns   |
| Maximum Operating Current        | 85    | 80    | 75    | mA   |
| Maximum CMOS Standby Current (L) |       | 500   |       | μA   |

Note:

1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.



## **Pin Layout and Specifications**



28 SOJ

|                   |    |    | 1                  |
|-------------------|----|----|--------------------|
| A <sub>5</sub>    | 1  | 28 | ⊐v <sub>cc</sub>   |
| A <sub>6</sub>    | 2  | 27 | WE                 |
| A <sub>7</sub> ⊏  | 3  | 26 | $\Box A_4$         |
| A <sub>8</sub> ⊏  | 4  | 25 | ⊐A <sub>3</sub>    |
| A <sub>9</sub> ⊏  | 5  | 24 | □ A <sub>2</sub>   |
| A <sub>10</sub> ⊏ | 6  | 23 | □ A <sub>1</sub>   |
| A <sub>11</sub> □ | 7  | 22 | OE                 |
| A <sub>12</sub>   | 8  | 21 | $\Box A_0$         |
| A <sub>13</sub>   | 9  | 20 | CE                 |
| A <sub>14</sub>   | 10 | 19 | □ I/O <sub>7</sub> |
| I/O₀□             | 11 | 18 | □ I/O <sub>6</sub> |
| I/O₁              | 12 | 17 | □ I/O <sub>5</sub> |
| I/O2              | 13 | 16 | □ I/O <sub>4</sub> |
| V <sub>SS</sub> ⊏ | 14 | 15 | □ I/O <sub>3</sub> |
|                   |    |    |                    |
|                   |    |    |                    |



## **Pin Description**

| Pin              | Туре               | Description           | DIP                                                  | SOJ                                                  | TSOP I                                                  |
|------------------|--------------------|-----------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|
| A <sub>X</sub>   | Input              | Address Inputs        | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,<br>21, 23, 24, 25, 26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,<br>21, 23, 24, 25, 26 | 2, 3, 4, 5, 8, 9, 10, 11, 12,<br>13, 14, 15, 16, 17, 28 |
| CE               | Control            | Chip Enable           | 20                                                   | 20                                                   | 27                                                      |
| I/O <sub>X</sub> | Input or<br>Output | Data<br>Input/Outputs | 11, 12, 13, 15, 16, 17,<br>18, 19                    | 11, 12, 13, 15, 16, 17, 18,<br>19                    | 18, 19, 20, 22, 23, 24, 25,<br>26                       |
| OE               | Control            | Output Enable         | 22                                                   | 22                                                   | 1                                                       |
| V <sub>CC</sub>  | Supply             | Power (5.0V)          | 28                                                   | 28                                                   | 7                                                       |
| V <sub>SS</sub>  | Supply             | Ground                | 14                                                   | 14                                                   | 21                                                      |
| WE               | Control            | Write Enable          | 27                                                   | 27                                                   | 6                                                       |

Maximum Ratings (Above which the useful life may be impaired. For user guidelines, not tested.)

| Parameter                          | Description                                                     | Value                         | Unit |
|------------------------------------|-----------------------------------------------------------------|-------------------------------|------|
| T <sub>STG</sub>                   | Storage Temperature                                             | -65 to +150                   | °C   |
| T <sub>AMB</sub>                   | Ambient Temperature with Power Applied (i.e., case temperature) | -55 to +125                   | °C   |
| V <sub>CC</sub>                    | Core Supply Voltage Relative to V <sub>SS</sub>                 | -0.5 to +7.0                  | V    |
| V <sub>IN</sub> , V <sub>OUT</sub> | DC Voltage Applied to any Pin Relative to V <sub>SS</sub>       | -0.5 to V <sub>CC</sub> + 0.5 | V    |
| I <sub>OUT</sub>                   | Output Short-Circuit Current                                    | 20                            | mA   |
| V <sub>ESD</sub>                   | Static Discharge Voltage (per MIL-STD-883, Method 3015)         | > 2001                        | V    |
| I <sub>LU</sub>                    | Latch-up Current                                                | > 200                         | mA   |

## **Operating Range**

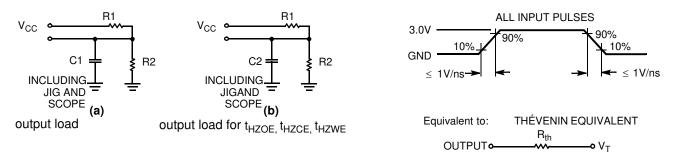
| Range      | Ambient Temperature (T <sub>A</sub> ) | Voltage Range (V <sub>CC</sub> ) |
|------------|---------------------------------------|----------------------------------|
| Commercial | 0°C to 70°C                           | 5.0V ± 10%                       |
| Industrial | –40°C to 85°C                         | 5.0V ± 10%                       |

## DC Electrical Characteristics Over the Operating Range <sup>[2]</sup>

|                  |                                             |                                                                                                                          |   | 12 ns |                       | 1    | 5 ns           | 20 ns |                |      |
|------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---|-------|-----------------------|------|----------------|-------|----------------|------|
| Parameter        | Description                                 | Condition                                                                                                                |   | Min.  | Max.                  | Min. | Max.           | Min.  | Max.           | Unit |
| V <sub>IH</sub>  | Input HIGH Voltage                          |                                                                                                                          |   | 2.2   | V <sub>CC</sub> + 0.3 | 2.2  | $V_{CC} + 0.3$ | 2.2   | $V_{CC} + 0.3$ | V    |
| V <sub>IL</sub>  | Input LOW Voltage                           |                                                                                                                          |   | -0.5  | 0.8                   | -0.5 | 0.8            | -0.5  | 0.8            | V    |
| V <sub>OH</sub>  | Output HIGH Voltage                         | $V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$                                                                                |   | 2.4   |                       | 2.4  |                | 2.4   |                | V    |
| V <sub>OL</sub>  | Output LOW Voltage                          | V <sub>CC</sub> = Min., I <sub>OL</sub> = 8.0 mA                                                                         |   |       | 0.4                   |      | 0.4            |       | 0.4            | V    |
| I <sub>IX</sub>  | Input Leakage<br>Current                    | $GND \le V_I \le V_{CC}$                                                                                                 |   | -5    | +5                    | -5   | +5             | -5    | +5             | μA   |
| I <sub>OZ</sub>  | Output Leakage<br>Current                   | $GND \le V_I \le V_{CC}$ , Output Disabled                                                                               |   | -5    | +5                    | -5   | +5             | -5    | +5             | μA   |
| I <sub>CC</sub>  | V <sub>CC</sub> Operating<br>Supply Current | $V_{CC} = Max., I_{OUT} = 0 mA,$<br>f = F <sub>MAX</sub> = 1/t <sub>RC</sub>                                             |   |       | 85                    |      | 80             |       | 75             | mA   |
| I <sub>SB1</sub> | Automatic CE                                | Max. $V_{CC}$ , $\overline{CE} \ge V_{IH}$ , $V_{IN} \ge 1$                                                              |   |       | 30                    |      | 30             |       | 30             | mA   |
|                  | Power-down Current<br>TTL Inputs            | $V_{IH}$ or $V_{IN} \le V_{IL}$ , f = F <sub>MAX</sub>                                                                   | L |       |                       |      | 10             |       |                | mA   |
| I <sub>SB2</sub> |                                             | Max. $V_{CC}$ , $\overline{CE} \ge V_{CC} - 0.3V$ ,                                                                      |   |       | 10                    |      | 10             |       | 10             | mA   |
|                  |                                             | $\label{eq:VIN} \begin{array}{l} V_{IN} \geq V_{CC} - 0.3 \text{V, or } V_{IN} \leq \\ 0.3 \text{V, } f = 0 \end{array}$ | L |       |                       |      | 500            |       |                | μA   |

Note: 2.  $V_{IL}$  (min) = -2.0V for pulse durations of less than 20 ns.




## Capacitance<sup>[3]</sup>

|                  |                    |                                         | Max.           |      |
|------------------|--------------------|-----------------------------------------|----------------|------|
| Parameter        | Description        | Conditions                              | ALL – PACKAGES | Unit |
| C <sub>IN</sub>  | Input Capacitance  | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 8              | pF   |
| C <sub>OUT</sub> | Output Capacitance | $V_{CC} = 5.0V$                         | 8              |      |

## Thermal Resistance<sup>[4]</sup>

| Parameter       | Description                              | Conditions TS                                                   |       | SOJ   | DIP   | Unit |
|-----------------|------------------------------------------|-----------------------------------------------------------------|-------|-------|-------|------|
| $\Theta_{JA}$   | (Junction to Ambient)                    | Still Air, soldered on a 3 × 4.5 square inch, two-layer printed | 88.6  | 79    | 69.33 | °C/W |
| Θ <sup>JC</sup> | Thermal Resistance<br>(Junction to Case) | circuit board                                                   | 21.94 | 41.42 | 31.62 |      |

## **AC Test Loads and Waveforms**



Notes:
3. Tested initially and after any design or process change that may affect these parameters.
4. Test Conditions assume a transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V.



## **AC Test Conditions**

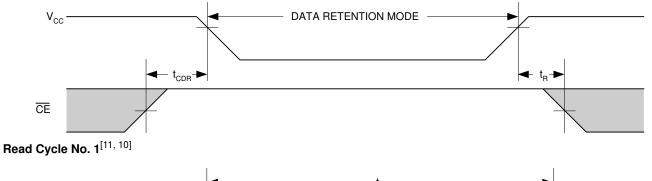
| Parameter       | Description       | Nom. | Unit |
|-----------------|-------------------|------|------|
| C1              | Capacitor 1       | 30   | pF   |
| C2              | Capacitor 2       | 5    |      |
| R1              | Resistor 1        | 480  | Ω    |
| R2              | Resistor 2        | 255  |      |
| R <sub>TH</sub> | Resistor Thevenin | 167  |      |
| V <sub>TH</sub> | Voltage Thevenin  | 1.73 | V    |

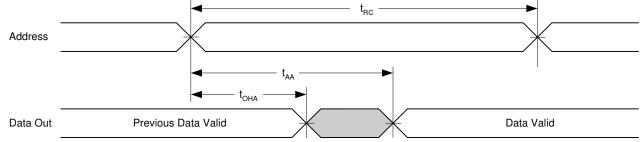
## AC Electrical Characteristics<sup>[5, 6, 7]</sup>

|                   |                               | 12  | ns  | 15  | ns  | 20  | ns  |      |
|-------------------|-------------------------------|-----|-----|-----|-----|-----|-----|------|
| Parameter         | Description                   | Min | Max | Min | Max | Min | Max | Unit |
| t <sub>RC</sub>   | Read Cycle Time               | 12  |     | 15  |     | 20  |     | ns   |
| t <sub>AA</sub>   | Address to Data Valid         |     | 12  |     | 15  |     | 20  | ns   |
| t <sub>OHA</sub>  | Data Hold from Addres Change  | 3   |     | 3   |     | 3   |     | ns   |
| t <sub>ACE</sub>  | CE to Data Valid              |     | 12  |     | 15  |     | 20  | ns   |
| t <sub>DOE</sub>  | OE to Data Valid              |     | 5   |     | 7   |     | 9   | ns   |
| t <sub>LZOE</sub> | OE to Low Z                   | 0   |     | 0   |     | 0   |     | ns   |
| t <sub>HZOE</sub> | OE to High Z                  |     | 5   |     | 7   |     | 9   | ns   |
| t <sub>LZCE</sub> | CE to Low Z                   | 3   |     | 3   |     | 3   |     | ns   |
| t <sub>HZCE</sub> | CE to High Z                  |     | 5   |     | 7   |     | 9   | ns   |
| t <sub>PU</sub>   | CE to Power-up                | 0   |     | 0   |     | 0   |     | ns   |
| t <sub>PD</sub>   | CE to Power-down              |     | 12  |     | 15  |     | 20  | ns   |
| t <sub>WC</sub>   | Write Cycle Time              | 12  |     | 15  |     | 20  |     | ns   |
| t <sub>SCE</sub>  | CE to Write End               | 9   |     | 10  |     | 15  |     | ns   |
| t <sub>AW</sub>   | Address Set-up to Write End   | 9   |     | 10  |     | 15  |     | ns   |
| t <sub>HA</sub>   | Address Hold from Write End   | 0   |     | 0   |     | 0   |     | ns   |
| t <sub>SA</sub>   | Address Set-up to Write Start | 0   |     | 0   |     | 0   |     | ns   |
| t <sub>PWE</sub>  | WE Pulse Width                | 8   |     | 9   |     | 15  |     | ns   |
| t <sub>SD</sub>   | Data Set-up to Write End      | 8   |     | 9   |     | 10  |     | ns   |
| t <sub>HD</sub>   | Data Hold from Write End      | 0   |     | 0   |     | 0   |     | ns   |
| t <sub>HZWE</sub> | WE LOW to High Z              |     | 7   |     | 7   |     | 10  | ns   |
| t <sub>LZWE</sub> | WE HIGH to Low Z              | 3   |     | 3   |     | 3   |     | ns   |

#### Notes:

At any given temperature and voltage condition, t<sub>HZCE</sub> is less than t<sub>LZCE</sub>, t<sub>HZCE</sub> is less than t<sub>LZCE</sub>, t<sub>HZCE</sub>, and t<sub>HZWE</sub> is less than t<sub>LZWE</sub> for any given device.
 The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set–up and hold timing should be referenced to the leading edge of the signal that terminates the write.
 t<sub>HZOE</sub>, t<sub>HZCE</sub>, t<sub>HZCE</sub>, t<sub>HZCE</sub>, t<sub>HZWE</sub> are specified as in part (b) of the A/C Test Loads. Transitions are measured ± 200 mV from steady state voltage.





## Data Retention Characteristics<sup>[8]</sup>

|                  |                                         |                                                                                                               | Α    | LL   |      |
|------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|------|------|------|
| Parameter        | Description                             | Condition                                                                                                     | Min. | Max. | Unit |
| V <sub>DR</sub>  | V <sub>CC</sub> for Data Retention      |                                                                                                               | 2.0  | -    | V    |
| ICCDR            | Data Retention Current                  | $V_{CC} = V_{DR} = 2.0V, \overline{CE} \ge V_{CC} - 0.3V,$<br>$V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$ | -    | 150  | μA   |
| t <sub>CDR</sub> | Chip Deselect to Data<br>Retention Time | $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$                                                               | 0    | -    | ns   |
| t <sub>R</sub>   | Operation Recovery Time                 |                                                                                                               | 200  | _    | μS   |

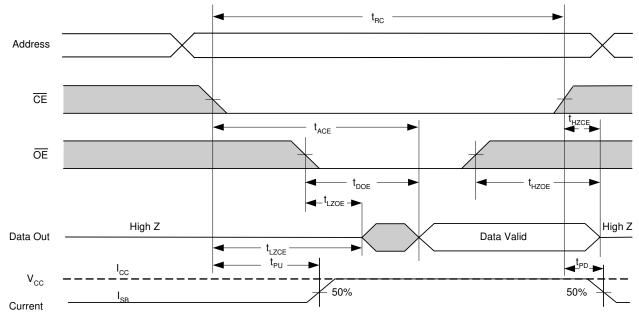
## **Timing Waveforms**

### **Data Retention Waveform**

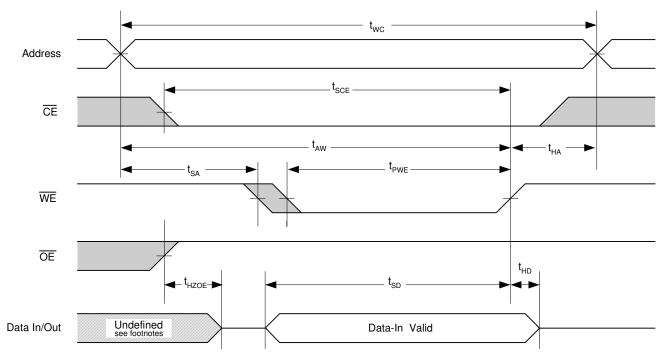




Notes:


8. L-version only. 9. Device is continuously selected.  $\overline{OE} = V_{|L} = \overline{CE}$ . 10. WE is HIGH for Read Cycle.




**CY7C199C** 

## Timing Waveforms (continued)

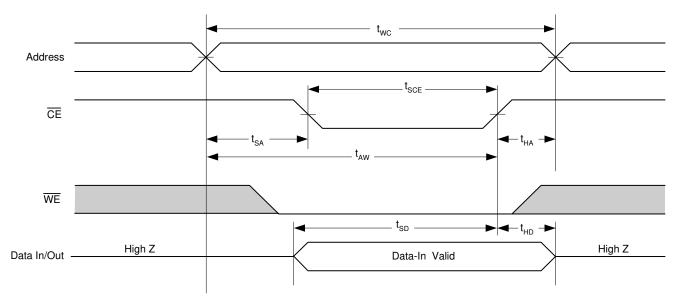
Read Cycle No. 2<sup>[11, 12]</sup>



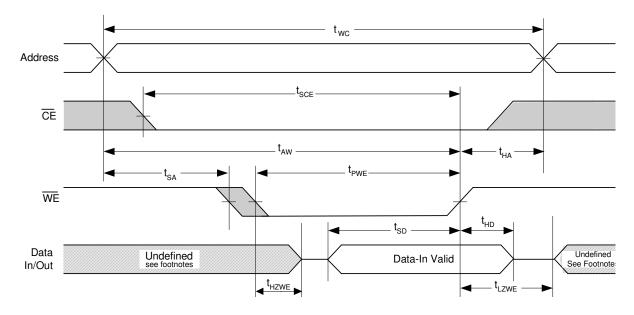




#### Notes:


- 11. This cycle is  $\overline{OE}$  Controlled and  $\overline{WE}$  is HIGH read cycle. 12. Address valid prior to or coincident with  $\overline{CE}$  transition LOW. 13. This cycle is  $\overline{WE}$  controlled,  $\overline{OE}$  is HIGH during write. 14. Data In/Out is high impedance if  $\overline{OE} = V_{IH}$ . 15. During this period the I/Os are in output state and input signals should not be applied.




**CY7C199C** 

## Timing Waveforms (continued)

Write Cycle No. 2 ( $\overline{CE}$  Controlled)<sup>[14, 16, 17]</sup>



Write Cycle No. 3 ( $\overline{\text{WE}}$  Controlled,  $\overline{\text{OE}}$  Low)<sup>[18]</sup>



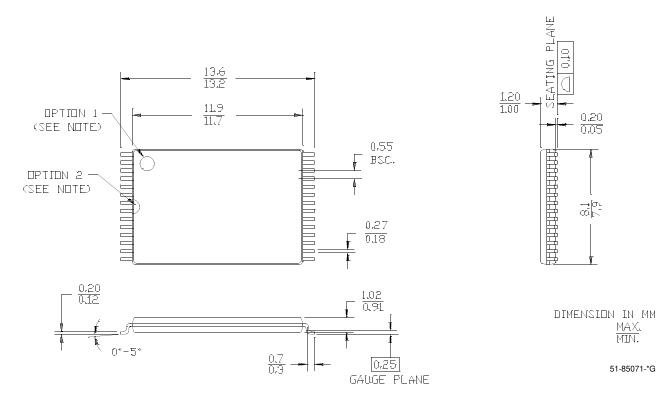
Notes:
16. This cycle is CE controlled.
17. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.
18. The cycle is WE controlled, OE LOW. The minimum write cycle time is the sum of t<sub>HZWE</sub> and t<sub>SD</sub>.



## **Truth Table**

| CE | WE | OE | Input/Output | Mode                | Power                      |
|----|----|----|--------------|---------------------|----------------------------|
| Н  | Х  | Х  | High Z       | Deselect/Power-Down | Standby (I <sub>SB</sub> ) |
| L  | Н  | L  | Data Out     | Read                | Active (I <sub>CC</sub> )  |
| L  | L  | Х  | Data In      | Write               | Active (I <sub>CC</sub> )  |
| L  | Н  | Н  | High Z       | Deselect            | Active (I <sub>CC</sub> )  |

## **Ordering Information**


| Speed | Ordering Code   | Package<br>Name | Package Type                          | Operating<br>Range |
|-------|-----------------|-----------------|---------------------------------------|--------------------|
| 12    | CY7C199C-12VC   | 51-85031        | 28-pin (300-Mil) Molded SOJ           | Commercial         |
|       | CY7C199C-12VXC  |                 | 28-pin (300-Mil) Molded SOJ (Pb-Free) |                    |
|       | CY7C199C-12ZXC  | 51-85071        | 28-pin TSOP I (Pb-Free)               |                    |
|       | CY7C199C-12VI   | 51-85031        | 28-pin (300-Mil) Molded SOJ           | Industrial         |
| 15    | CY7C199C-15PC   | 51-85014        | 28-pin (300-Mil) DIP                  | Commercial         |
|       | CY7C199C-15PXC  |                 | 28-pin (300-Mil) DIP (Pb-Free)        |                    |
|       | CY7C199C-15ZC   | 51-85071        | 28-pin TSOP I                         |                    |
|       | CY7C199C-15ZXC  |                 | 28-pin TSOP I (Pb-Free)               |                    |
|       | CY7C199C-15VC   | 51-85031        | 28-pin (300-Mil) Molded SOJ           |                    |
|       | CY7C199C-15VXC  |                 | 28-pin (300-Mil) Molded SOJ (Pb-Free) |                    |
|       | CY7C199CL-15VC  |                 | 28-pin (300-Mil) Molded SOJ           |                    |
|       | CY7C199CL-15VXC |                 | 28-pin (300-Mil) Molded SOJ (Pb-Free) |                    |
|       | CY7C199C-15VI   | 51-85031        | 28-pin (300-Mil) Molded SOJ           | Industrial         |
| 20    | CY7C199C-20ZXI  | 51-85071        | 28-pin TSOP I (Pb-Free)               | Industrial         |



## Package Diagrams

28-pin TSOP 1 (8 x 13.4 mm) (51-85071)

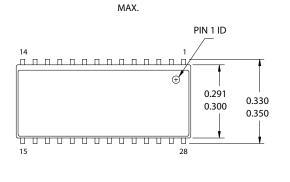
NATE: ORIENTATION I.D MAY BE LOCATED EITHER AS SHOWN IN OPTION 1 OR OPTION 2

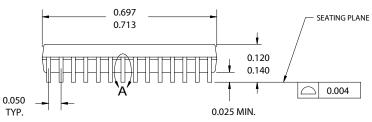


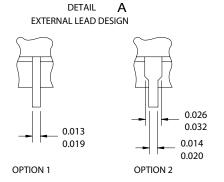


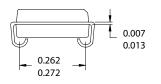
## Package Diagrams (continued)

### 28-pin (300-Mil) Molded SOJ (51-85031)


NOTE :


- 1. JEDEC STD REF MO088
- 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH

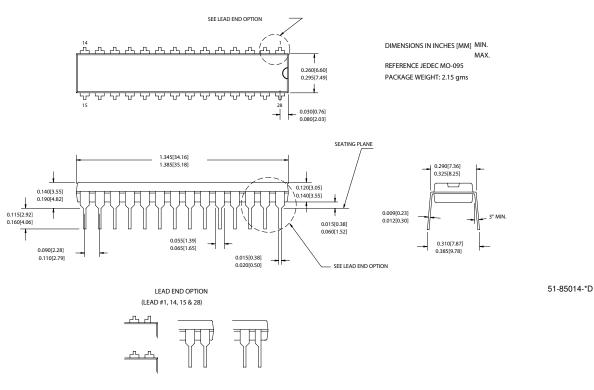

MIN.


MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.006 in (0.152 mm) PER SIDE

3. DIMENSIONS IN INCHES










51-85031-\*C



## Package Diagrams (continued)



28-pin (300-Mil) PDIP (51-85014)

All product and company names mentioned in this document may be the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.



## **Document History Page**

| REV. | ECN No. | Issue<br>Date | Orig. of<br>Change | Description of Change                                                                                                                                                                                                                                                                    |
|------|---------|---------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **   | 129233  | 09/11/03      | HGK                | New Data Sheet                                                                                                                                                                                                                                                                           |
| *A   | 129697  | 09/15/03      | KKV                | Minor change:<br>Move Product Portfolio from page 4 to page 1<br>Move Truth table from page 9 to page 3                                                                                                                                                                                  |
| *В   | 341574  | See ECN       | PCI                | Added Lead-Free part to Ordering info on Page #10                                                                                                                                                                                                                                        |
| *C   | 492500  | See ECN       | NXR                | Removed 25 ns speed bin<br>Changed the description of I <sub>IX</sub> from Input Load Current to Input Leakage<br>Current in DC Electrical Characteristics table<br>Removed I <sub>OS</sub> parameter from DC Electrical Characteristics table<br>Updated the ordering information table |