## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

## Features

■ 3.3 V operation for low-power consumption and easy integration into low-voltage systems
■ High-speed, low-power, first-in first-out (FIFO) memories

- 16K $\times 9$ (CY7C4261V)

■ 64K $\times 9$ (CY7C4281V)
■ 128K $\times 9$ (CY7C4291V)
■ 0.35-micron CMOS for optimum speed or power
■ High-speed $100-\mathrm{MHz}$ operation (10-ns read/write cycle times)

- Low power
$\square I_{C C}=25 \mathrm{~mA}$
$\square I_{S B}=4 \mathrm{~mA}$
- Fully asynchronous and simultaneous read and write operation

■ Empty, full, and programmable Almost Empty and Almost Full status flags
■ Output-enable ( $\overline{\mathrm{OE}})$ pin

- Independent read- and write-enable pins
- Supports free-running 50\% duty cycle clock inputs
- Width-expansion capability

■ Pin-compatible 3.3 V solutions for CY7C4261/81/91

- Pin-compatible density upgrade within the CY7C42X1V family
- Pb-free packages available


## Functional Description

The CY7C4261/81/91V are high-speed, low-power FIFO memories with clocked read and write interfaces. All are nine bits wide. The CY7C4261/81/91V are pin-compatible with the lower densities in the CY7C42x1V Synchronous FIFO family. Programmable features include Almost Full/Almost Empty flags. These FIFOs provide solutions for a wide variety of data buffering needs, including high-speed data acquisition, multiprocessor interfaces, and communications buffering.

These FIFOs have 9-bit input and output ports that are controlled by separate clock and enable signals. The input port is controlled by a free-running clock (WCLK) and two write-enable pins (WEN1, WEN2/LD).
When $\overline{W E N 1}$ is LOW and WEN2/LD is HIGH, data is written into the FIFO on the rising edge of the WCLK signal. While WEN1 and WEN2/LD are held active, data is continually written into the FIFO on each WCLK cycle. The output port is controlled in a similar manner by a free-running read clock (RCLK) and two read-enable pins ( $\overline{R E N 1}, \quad$ REN2). In addition, the CY7C4261/81/91V has an output-enable pin ( $\overline{\mathrm{OE}}$ ). The read (RCLK) and write (WCLK) clocks may be tied together for single-clock operation or the two clocks may be run independently for asynchronous read/write applications. Clock frequencies up to 100 MHz are achievable. Depth expansion is possible using one enable input for system control, while the other enable is controlled by expansion logic to direct the flow of data.
The CY7C4261/81/91V provides four status pins: Empty, Full, Programmable Almost Empty, and Programmable Almost Full. The Almost Empty/Almost Full flags are programmable to single word granularity. The programmable flags default to Empty +7 and Full -7 .
The flags are synchronous, that is, they change state relative to either the read clock (RCLK) or the write clock (WCLK). When entering or exiting the Empty and Almost Empty states, the flags are updated exclusively by the RCLK. The flags denoting Almost Full, and Full states are updated exclusively by WCLK. The synchronous flag architecture guarantees that the flags maintain their status for at least one cycle.
All configurations are fabricated using an advanced $0.35 \mu$ CMOS technology. Input ESD protection is greater than 2001 V, and latch-up is prevented by the use of guard rings.
For a complete list of related documentation, click here.

## Selection Guide

| Description | 7C4261/81V-10 | 7C4261/91V-15 | Unit |
| :--- | :---: | :---: | :---: |
| Maximum frequency | 100 | 66.7 | MHz |
| Maximum access time | 8 | 10 | ns |
| Minimum cycle time | 10 | 15 | ns |
| Minimum data or enable setup | 3.5 | 4 | ns |
| Minimum data or enable hold | 0 | 0 | ns |
| Maximum flag delay | 8 | 10 | ns |
| Active power supply current $\left(\mathrm{I}_{\mathrm{CC} 1}\right)$ | 25 | 25 | mA |


|  | CY7C4261V | CY7C4281V | CY7C4291V |
| :--- | :---: | :---: | :---: |
| Density | $16 \mathrm{~K} \times 9$ | $64 \mathrm{~K} \times 9$ | $128 \mathrm{~K} \times 9$ |
| Package | $32-$ pin PLCC | $32-$ pin PLCC | $32-$ pin PLCC |

## Logic Block Diagram



## Contents

Pin Configuration ..... 4
Pin Definitions ..... 4
Architecture ..... 5
Resetting the FIFO ..... 5
FIFO Operation ..... 5
Programming ..... 5
Programmable Flag (PAE, PAF) Operation ..... 6
Width-Expansion Configuration ..... 7
Flag Operation .....  .7
Full Flag ..... 7
Empty Flag ..... 7
Maximum Ratings ..... 8
Operating Range ..... 8
Electrical Characteristics ..... 8
Capacitance ..... 8
AC Test Loads and Waveforms ..... 9
Switching Characteristics ..... 10
Switching Waveforms ..... 11
Ordering Information ..... 18
Ordering Code Definitions ..... 18
Package Diagram ..... 19
Acronyms ..... 20
Document Conventions ..... 20
Units of Measure ..... 20
Document History Page ..... 21
Sales, Solutions, and Legal Information ..... 22
Worldwide Sales and Design Support ..... 22
Products ..... 22
PSoC®Solutions ..... 22
Cypress Developer Community ..... 22
Technical Support ..... 22

## Pin Configuration

Figure 1．32－pin PLCC pinout（Top View）
PLCC
Top View

ローロロロロー
$\mathrm{D}_{1}{ }_{5}$

| $D_{1}$ | 5 |
| :--- | :--- |
| PAF |  |

PAE
GND
REN1 10 CY7C4281V $250 \mathrm{v}_{\mathrm{CC}}$
RCLK ${ }_{11}^{10}$ CY7C4291V ${ }_{23}^{24}{ }^{Q_{8}}$
REN2 12
OE $13 \quad 22 \mathrm{Q}_{6}$
14151617181920


## Pin Definitions

| Pin No． | Signal Name | Description | I／O | Description |
| :---: | :---: | :---: | :---: | :---: |
| 1－6，30－32 | $\mathrm{D}_{0-8}$ | Data inputs | 1 | Data inputs for 9－bit bus． |
| 16－24 | $Q_{0-8}$ | Data outputs | 0 | Data outputs for 9－bit bus． |
| 28 | WEN1 | Write enable 1 | 1 | The only write enable when device is configured to have programmable flags． Data is written on a LOW－to－HIGH transition of WCLK when WEN1 is asserted and $\overline{\mathrm{FF}}$ is HIGH．If the FIFO is configured to have two write enables，data is written on a LOW－to－HIGH transition of WCLK when WEN1 is LOW and WEN2／LD and $\overline{\mathrm{FF}}$ are HIGH． |
| 26 | WEN2／드 Dual mode pin | Write enable 2 <br> Load | 1 | If HIGH at reset，this pin operates as a second write enable．If LOW at reset， this pin operates as a control to write or read the programmable flag offsets． WEN1 must be LOW and WEN2 must be HIGH to write data into the FIFO．Data will not be written into the FIFO if the $\overline{\mathrm{FF}}$ is LOW．If the FIFO is configured to have programmable flags，WEN2／LD is held LOW to write or read the programmable flag offsets． |
| 10， 12 | $\overline{\mathrm{REN} 1}, \overline{\mathrm{REN}}$ 2 | Read enable inputs | 1 | Enables the device for Read operation．Both $\overline{\mathrm{REN} 1}$ and $\overline{\mathrm{REN} 2}$ must be asserted to allow a read operation． |
| 27 | WCLK | Write clock | 1 | The rising edge clocks data into the FIFO when $\overline{\text { WEN } 1 ~ i s ~ L O W ~ a n d ~ W E N 2 / \overline{L D}}$ is HIGH and the FIFO is not full．When LD is asserted，WCLK writes data into the programmable flag－offset register． |
| 11 | RCLK | Read clock | 1 | The rising edge clocks data out of the FIFO when $\overline{\mathrm{REN} 1}$ and $\overline{\mathrm{REN} 2}$ are LOW and the FIFO are not Empty．When WEN2／LD is LOW，RCLK reads data out of the programmable flag－offset register． |
| 14 | $\overline{\mathrm{EF}}$ | Empty flag | O | When $\overline{\mathrm{EF}}$ is LOW，the FIFO is empty．$\overline{\mathrm{EF}}$ is synchronized to RCLK． |
| 15 | $\overline{\text { FF }}$ | Full flag | O | When $\overline{\mathrm{FF}}$ is LOW，the FIFO is full．$\overline{\mathrm{FF}}$ is synchronized to WCLK． |
| 8 | PAE | Programmable almost empty | O | When $\overline{\text { PAE }}$ is LOW，the FIFO is almost empty based on the almost empty offset value programmed into the FIFO．PAE is synchronized to RCLK． |
| 7 | $\overline{\text { PAF }}$ | Programmable almost full | O | When $\overline{\text { PAF }}$ is LOW，the FIFO is almost full based on the almost full offset value programmed into the FIFO．PAF is synchronized to WCLK． |
| 29 | $\overline{\mathrm{RS}}$ | Reset | 1 | Resets device to empty condition．A reset is required before an initial read or write operation after power－up． |
| 13 | $\overline{\mathrm{OE}}$ | Output enable | 1 | When $\overline{\mathrm{OE}}$ is LOW，the FIFO＇s data outputs drive the bus to which they are connected．If $\overline{\mathrm{OE}}$ is HIGH，the FIFO＇s outputs are in High Z（high－impedance） state． |

## Architecture

The CY7C4261/81/91V consists of an array of $16 \mathrm{~K}, 64 \mathrm{~K}$, or 128 K words of nine bits each (implemented by a dual-port array of SRAM cells), a read pointer, a write pointer, control signals (RCLK, WCLK, REN1, REN2, WEN1, WEN2, RS), and flags (EF, PAE, PAF, FF).

## Resetting the FIFO

Upon power-up, the FIFO must be reset with a Reset ( $\overline{\mathrm{RS}}$ ) cycle. This causes the FIFO to enter the Empty condition signified by $\overline{E F}$ being LOW. All data outputs $\left(Q_{0-8}\right)$ go LOW $t_{R S F}$ after the rising edge of RS. In order for the FIFO to reset to its default state, the user must not read or write while $\overline{\mathrm{RS}}$ is LOW. All flags are guaranteed to be valid $t_{\text {RSF }}$ after $\overline{R S}$ is taken LOW.

## FIFO Operation

When the $\overline{\text { WEN1 }}$ signal is active LOW, WEN2 is active HIGH, and $\overline{F F}$ is active HIGH, data present on the $\mathrm{D}_{0-8}$ pins is written into the FIFO on each rising edge of the WCLK signal. Similarly, when the $\overline{R E N 1}$ and REN2 signals are active LOW and EF is active HIGH, data in the FIFO memory will be presented on the $Q_{0-8}$ outputs. New data will be presented on each rising edge of RCLK while REN1 and REN2 are active. REN1 and REN2 must set up $t_{\text {ENS }}$ before RCLK for it to be a valid read function. WEN1 and WEN2 must occur $t_{\text {ENS }}$ before WCLK for it to be a valid write function.

An output enable ( $\overline{\mathrm{OE}}$ ) pin is provided to three-state the $\mathrm{Q}_{0-8}$ outputs when $\overline{O E}$ is asserted. When $\overline{O E}$ is enabled (LOW), data in the output register will be available to the $Q_{0-8}$ outputs after $\mathrm{t}_{\mathrm{OE}}$. If devices are cascaded, the OE function will only output data on the FIFO that is read enabled.
The FIFO contains overflow circuitry to disallow additional writes when the FIFO is full, and underflow circuitry to disallow additional reads when the FIFO is empty. An empty FIFO maintains the data of the last valid read on its $Q_{0-8}$ outputs even after additional reads occur.
Write Enable 1 (WEN1). If the FIFO is configured for programmable flags, Write Enable 1 (WEN1) is the only write enable control pin. In this configuration, when Write Enable 1 (WEN1) is LOW, data can be loaded into the input register and RAM array on the LOW-to-HIGH transition of every write clock (WCLK). Data is stored is the RAM array sequentially and independently of any on-going read operation.
Write Enable 2/Load (WEN2/LD). This is a dual-purpose pin. The FIFO is configured at Reset to have programmable flags or to have two write enables, which allows for depth expansion. If Write Enable 2/Load (WEN2/LD) is set active HIGH at Reset (RS = LOW), this pin operates as a second write enable pin.

If the FIFO is configured to have two write enables, when Write Enable ( $\overline{\mathrm{WEN}}$ ) is LOW and Write Enable 2/Load (WEN2/LD) is HIGH, data can be loaded into the input register and RAM array on the LOW-to-HIGH transition of every write clock (WCLK). Data is stored in the RAM array sequentially and independently of any on-going read operation.

## Programming

When WEN2/LD is held LOW during Reset, this pin is the load (LD) enable for flag offset programming. In this configuration, WEN2/LD can be used to access the four 9-bit offset registers contained in the CY7C4261/81/91V for writing or reading data to these registers.

When the device is configured for programmable flags and both WEN2/LD and WEN1 are LOW, the first LOW-to-HIGH transition of WCLK writes data from the data inputs to the empty offset least significant bit (LSB) register. The second, third, and fourth LOW-to-HIGH transitions of WCLK store data in the empty offset most significant bit (MSB) register, full offset LSB register, and full offset MSB register, respectively, when WEN2/LD and WEN1 are LOW. The fifth LOW-to-HIGH transition of WCLK while WEN2/LD and WEN1 are LOW writes data to the empty LSB register again. Figure 2 shows the registers sizes and default values for the various device types.

Figure 2. Offset Register Location and Default Values
16k x 9


64k x 9


It is not necessary to write to all the offset registers at one time. A subset of the offset registers can be written; then by bringing the WEN2/LD input HIGH, the FIFO is returned to normal read

CY7C4261V
CY7C4281V/CY7C4291V
and write operation. The next time WEN2/ $\overline{\mathrm{LD}}$ is brought LOW, a write operation stores data in the next offset register in sequence.
The contents of the offset registers can be read to the data outputs when WEN2/LD is LOW and both REN1 and REN2 are LOW. LOW-to-HIGH transitions of RCLK read register contents to the data outputs. Writes and reads should not be performed simultaneously on the offset registers.

## Programmable Flag (PAE, PAF) Operation

Whether the flag offset registers are programmed as described in Table 1 or the default values are used, the programmable almost-empty flag (PAE) and programmable almost-full flag (PAF) states are determined by their corresponding offset registers and the difference between the read and write pointers.

Table 1. Writing the Offset Registers [1]

| $\overline{\text { LD }}$ | $\overline{\text { WEN }}$ | WCLK | Selection |
| :---: | :---: | :---: | :--- |
| 0 | 0 |  | Empty offset (LSB) <br> Empty offset (MSB) <br> Full offset (LSB) <br> Full offset (MSB) |
| 0 | 1 | $\longrightarrow$ | No operation |

Table 1. Writing the Offset Registers (continued) ${ }^{[1]}$

| $\overline{\text { LD }}$ | $\overline{\text { WEN }}$ | WCLK | Selection |
| :---: | :---: | :---: | :--- |
| 1 | 0 |  | Write into FIFO |
| 1 | 1 | - | No operation |

The number formed by the empty offset least significant bit register and empty offset most significant bit register is referred to as $n$ and determines the operation of $\overline{\mathrm{PAE}} . \overline{\mathrm{PAE}}$ is synchronized to the LOW-to-HIGH transition of RCLK by one flip-flop and is LOW when the FIFO contains $n$ or fewer unread words. PAE is set HIGH by the LOW-to-HIGH transition of RCLK when the FIFO contains ( $n+1$ ) or greater unread words.
The number formed by the full offset least significant bit register and full offset most significant bit register is referred to as $m$ and determines the operation of $\overline{\mathrm{PAF}} \overline{\mathrm{PAF}}$ is synchronized to the LOW-to-HIGH transition of WCLK by one flip-flop and is set LOW when the number of unread words in the FIFO is greater than or equal to CY7C4261V (16k - m), CY7C4281V (64k - m) and CY7C4291V $(128 \mathrm{k}-\mathrm{m})$. $\overline{\text { PAF }}$ is set HIGH by the LOW-to-HIGH transition of WCLK when the number of available memory locations is greater than m .

Table 2. Status Flags

| Number of Words in FIFO |  |  | $\overline{\mathrm{FF}}$ | $\overline{\text { PAF }}$ | $\overline{\text { PAE }}$ | $\overline{\mathrm{EF}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CY7C4261V | CY7C4281V | CY7C4291V |  |  |  |  |
| 0 | 0 | 0 | H | H | L | L |
| 1 to $\mathrm{n}^{[2]}$ | 1 to $\mathrm{n}^{[2]}$ | 1 to $\mathrm{n}^{[2]}$ | H | H | L | H |
| ( $\mathrm{n}+1)$ to (16384-(m+1)) | ( $\mathrm{n}+1)$ to (65536-(m+1)) | $(\mathrm{n}+1)$ to (131072-(m+1)) | H | H | H | H |
| $(16384-m)^{[3]}$ to 16383 | $(65536-\mathrm{m})^{[3]}$ to 65535 | $(131072-\mathrm{m})^{[3]}$ to 131071 | H | L | H | H |
| 16384 | 65536 | 131072 | L | L | H | H |

[^0]
## Width-Expansion Configuration

Word width may be increased simply by connecting the corresponding input controls signals of multiple devices. A composite flag should be created for each of the end-point status flags ( $\overline{\mathrm{EF}}$ and FF). The partial status flags ( $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ ) can be detected from any one device. Figure 3 demonstrates a 18-bit word width by using two CY7C42x1Vs. Any word width can be attained by adding additional CY7C42x1Vs.
When the CY7C42x1V is in a Width-Expansion Configuration, the Read Enable (REN2) control input can be grounded (see Figure 3). In this configuration, the Write Enable 2/Load (WEN2/LD) pin is set to LOW at Reset so that the pin operates as a control to load and read the programmable flag offsets.

## Flag Operation

The CY7C4261/81/91V devices provide five flag pins to indicate the condition of the FIFO contents. Empty, Full, PAE, and PAF are synchronous.

## Full Flag

The Full Flag ( $\overline{\mathrm{FF}}$ ) will go LOW when the device is full. Write operations are inhibited whenever $\overline{\mathrm{FF}}$ is LOW regardless of the state of WEN1 and WEN2/LD. FF is synchronized to WCLK, i.e., it is exclusively updated by each rising edge of WCLK.

## Empty Flag

The Empty Flag ( $\overline{\mathrm{EF}}$ ) will go LOW when the device is empty. Read operations are inhibited whenever $\overline{\mathrm{EF}}$ is LOW, regardless of the state of $\overline{\mathrm{REN} 1}$ and $\overline{\mathrm{REN} 2}$. $\overline{\mathrm{EF}}$ is synchronized to RCLK, that is, it is exclusively updated by each rising edge of RCLK.

Figure 3. Block Diagram of $16 \mathrm{~K} / 64 \mathrm{~K} / 128 \mathrm{~K} \times 9$ Low-Voltage Deep Sync FIFO Memory used in a Width-Expansion Configuration


## Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.
Storage temperature $\qquad$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient temperature with power applied $\qquad$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Supply voltage to ground potential $\qquad$ -0.5 V to +3.6 V
DC voltage applied to outputs in High-Z state $\qquad$ -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

DC input voltage $\qquad$ -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Output current into outputs (LOW) $\qquad$ 20 mA Static discharge voltage (per MIL-STD-883, Method 3015) .......................... > 2001 V Latch-up current > 200 mA

## Operating Range

| Range | Ambient Temperature | $\mathbf{V}_{\mathbf{C c}}{ }^{[4]}$ |
| :---: | :---: | :---: |
| Commercial | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $3.3 \mathrm{~V} \pm 300 \mathrm{mV}$ |

## Electrical Characteristics

Over the Operating Range

| Parameter | Description | Test Conditions |  | 7C4261/81V-10 |  | 7C4261/91V-15 |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max |  |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH voltage | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\text { Min. }, \\ & \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \hline \end{aligned}$ |  | 2.4 | - | 2.4 | - | V |
|  |  |  |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{l}_{\mathrm{LL}}=4.0 \mathrm{~mA} \end{aligned}$ |  | - | 0.4 | - | 0.4 | V |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH voltage | - |  | 2.0 | $\mathrm{V}_{\mathrm{Cc}}$ | 2.0 | $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Input LOW voltage | - |  | -0.5 | 0.8 | -0.5 | 0.8 | V |
| $\mathrm{I}_{\mathrm{IX}}$ | Input leakage current | $\mathrm{V}_{\mathrm{CC}}=$ Max. |  | -10 | +10 | -10 | +10 | $\mu \mathrm{A}$ |
| $\begin{aligned} & \mathrm{I}_{\mathrm{OZL}} \\ & \mathrm{I}_{\mathrm{OZH}} \end{aligned}$ | Output OFF, High Z current | $\begin{aligned} & \overline{\mathrm{OE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{SS}}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}} \end{aligned}$ |  | -10 | +10 | -10 | +10 | $\mu \mathrm{A}$ |
| $\mathrm{ICC1}^{[5]}$ | Active power supply current | - | Commercial | - | 25 | - | 25 | mA |
| $\mathrm{ISB}^{[6]}$ | Average standby current | - | Commercial | - | 4 | - | 4 | mA |

## Capacitance

| Parameter ${ }^{[7]}$ | Description | Test Conditions | Max | Unit |
| :--- | :--- | :--- | :---: | :---: |
| $\mathrm{C}_{\mathrm{IN}}$ | Input capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, | 5 | pF |
| $\mathrm{C}_{\text {OUT }}$ | Output capacitance | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ | 7 | pF |

[^1]
## AC Test Loads and Waveforms

Figure 4. AC Test Loads and Waveforms (-15) ${ }^{[8,9]}$


Figure 5. AC Test Loads and Waveforms (-10)


[^2]
## Switching Characteristics

Over the Operating Range

| Parameter | Description | 7C4261/81V-10 |  | 7C4261/91V-15 |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |
| $\mathrm{t}_{5}$ | Clock cycle frequency | - | 100 | - | 66.7 | MHz |
| $\mathrm{t}_{\mathrm{A}}$ | Data access time | 2 | 8 | 2 | 10 | ns |
| ${ }^{\text {t CLK }}$ | Clock cycle time | 10 | - | 15 | - | ns |
| ${ }^{\text {t CLKK }}$ | Clock HIGH time | 4.5 | - | 6 | - | ns |
| ${ }^{\text {t }}$ CLKL | Clock LOW time | 4.5 | - | 6 | - | ns |
| $\mathrm{t}_{\mathrm{DS}}$ | Data set-up time | 3.5 | - | 4 | - | ns |
| $\mathrm{t}_{\mathrm{DH}}$ | Data hold time | 0 | - | 0 | - | ns |
| $\mathrm{t}_{\text {ENS }}$ | Enable set-up time | 3.5 | - | 4 | - | ns |
| $\mathrm{t}_{\text {ENH }}$ | Enable hold time | 0 | - | 0 | - | ns |
| $\mathrm{t}_{\text {RS }}$ | Reset pulse width ${ }^{[10]}$ | 10 | - | 15 | - | ns |
| $\mathrm{t}_{\text {RSS }}$ | Reset set-up time | 8 | - | 10 | - | ns |
| trsR | Reset recovery time | 8 | - | 10 | - | ns |
| $\mathrm{t}_{\text {RSF }}$ | Reset to flag and output time | - | 10 | - | 15 | ns |
| tolz | Output enable to output in low $\mathrm{Z}^{[10]}$ | 0 | - | 0 | - | ns |
| toe | Output enable to output valid | 3 | 7 | 3 | 10 | ns |
| $\mathrm{t}_{\mathrm{OHZ}}$ | Output enable to output in high $\mathrm{Z}^{[11]}$ | 3 | 7 | 3 | 8 | ns |
| $\mathrm{t}_{\text {WFF }}$ | Write clock to full flag | - | 8 | - | 10 | ns |
| $\mathrm{t}_{\text {REF }}$ | Read clock to empty flag | - | 8 | - | 10 | ns |
| $t_{\text {PAF }}$ | Clock to programmable almost-full flag | - | 8 | - | 10 | ns |
| $t_{\text {PAE }}$ | Clock to programmable almost-full flag | - | 8 | - | 10 | ns |
| ${ }^{\text {tSKEW1 }}$ | Skew time between read clock and write clock for empty flag and full flag | 5 | - | 6 | - | ns |
| ${ }^{\text {tSKEW2 }}$ | Skew time between read clock and write clock for almost-empty flag and almost-full flag | 10 | - | 15 | - | ns |

## Notes

10. Pulse widths less than minimum values are not allowed.
11. Values guaranteed by design, not currently tested.

CY7C4261V
CY7C4281V/CY7C4291V

## Switching Waveforms

Figure 6. Write Cycle Timing


Figure 7. Read Cycle Timing


[^3] between the rising edge of WCLK and the rising edge of RCLK is less than $t_{\text {SKEW2 }}$, then EF may not change state until the next RCLK rising edge.

Switching Waveforms (continued)
Figure 8. Reset Timing ${ }^{[14]}$


## Notes

14. The clocks (RCLK, WCLK) can be free-running during reset.
15. After reset, the outputs will be LOW if $\mathrm{OE}=0$ and three-state if $\mathrm{OE}=1$.
16. Holding WEN2/ $\overline{\mathrm{LD}}$ HIGH during reset will make the pin act as a second enable pin. Holding WEN2/LD LOW during reset will make the pin act as a load enable for the programmable flag offset registers.

Embedded in Tomorrow"

## Switching Waveforms (continued)

Figure 9. First Data Word Latency after Reset with Read and Write


[^4]Switching Waveforms (continued)
Figure 10. Empty Flag Timing


Note
 $\mathrm{t}_{\text {CLK }}+\mathrm{t}_{\text {SKEW1 }}$. The Latency Timing applies only at the Empty Boundary $(\overline{\mathrm{EF}}=\mathrm{LOW})$.

Switching Waveforms (continued)
Figure 11. Full Flag Timing


[^5]CY7C4261V

## Switching Waveforms (continued)



Figure 13. Programmable Almost Full Flag Timing


[^6]
## Switching Waveforms (continued)

Figure 14. Write Programmable Registers


Figure 15. Read Programmable Registers


## Ordering Information

| Speed <br> (ns) | Ordering Code | Package <br> Name | Package Type | Operating <br> Range |
| :---: | :---: | :---: | :---: | :---: |
| 16K $\times 9$ Low-Voltage Deep Sync FIFO |  |  |  |  |
| 10 | CY7C4261V-10JXC | J65 | 32 -pin Pb-free plastic leaded chip carrier | Commercial |
| $64 \mathrm{~K} \times 9$ Low-Voltage Deep Sync FIFO |  |  |  |  |
| 10 | CY7C4281V-10JXC | J65 | 32-pin Pb-free plastic leaded chip carrier | Commercial |

## Ordering Code Definitions



## Package Diagram

Figure 16. 32-pin PLCC ( $0.453 \times 0.553$ Inches) J65 Package Outline, 51-85002


51-85002 *E

## Acronyms

Table 3. Acronyms

| Acronym | Description |
| :--- | :--- |
| CMOS | Complementary Metal Oxide Semiconductor |
| $\overline{\mathrm{CE}}$ | Chip Enable |
| I/O | Input/Output |
| $\overline{\mathrm{OE}}$ | Output Enable |
| SRAM | Static Random Access Memory |
| TSOP | Thin Small Outline Package |
| $\overline{\mathrm{WE}}$ | Write Enable |

## Document Conventions

## Units of Measure

Table 4. Units of Measure

| Symbol | Unit of Measure |
| :--- | :--- |
| ${ }^{\circ} \mathrm{C}$ | degree Celsius |
| $\mu \mathrm{A}$ | microampere |
| mA | milliampere |
| ns | nanosecond |
| pF | picofarad |
| V | volt |
| W | watt |

## Document History Page

Document Title: CY7C4261V/CY7C4281V/CY7C4291V, 16K/64K/128K $\times 9$ Low-Voltage Deep Sync ${ }^{\text {TM }}$ FIFOs Document Number: 38-06013

| Rev. | ECN | Orig. of Change | Submission Date | Description of Change |
| :---: | :---: | :---: | :---: | :---: |
| ** | 106474 | SZV | 09/15/01 | Changed Spec number from 38-00656 to 38-06013. |
| *A | 127858 | FSG | 09/04/03 | Updated Switching Waveforms: <br> Replaced $\mathrm{t}_{\text {SKEW2 }}$ with $\mathrm{t}_{\text {SKEW1 }}$ in Figure 10. <br> Fixed typos in Figure 10, Figure 11, Figure 12, Figure 13. |
| *B | 386127 | ESH | See ECN | Added Pb -free logo to top of front page. <br> Updated Ordering Information: <br> Added CY7C4291V-15JXC, CY7C91V-10JXC, CY7C4281V-10JXC, CY7C4271V-10JXC, CY7C4261V-10JXC, CY7C4261V-15JXC parts. |
| *C | 2896378 | RAME | 03/19/2010 | Updated Ordering Information: Removed inactive parts. Updated Package Diagram. |
| *D | 2906525 | RAME | 04/07/2010 | Updated Ordering Information: Removed inactive parts. |
| *E | 3069396 | ADMU | 10/22/2010 | Updated Programming: <br> Updated Programmable Flag (PAE, PAF) Operation: <br> Replaced $\overline{\mathrm{PAF}}$ with $\overline{\mathrm{PAE}}$ in " PAF is synchronized to the LOW-to-HIGH transition of RCLK by one flip-flop and is LOW when the FIFO contains $n$ or fewer unread words". <br> Replaced $\overline{\mathrm{PAE}}$ with $\overline{\mathrm{PAF}}$ in " $\overline{\mathrm{PAE}}$ is synchronized to the LOW-to-HIGH transition of WCLK by one flip-flop and is set LOW when the number of unread words in the FIFO is greater than or equal to CY7C4261 (16K-m) and CY7C4271 ( $32 \mathrm{~K}-\mathrm{m}$ )". <br> Added Ordering Code Definitions under Ordering Information. <br> Added Acronyms and Units of Measure. |
| *F | 3210221 | ADMU | 03/25/2011 | Updated Ordering Information: Removed CY7C4271V-10JC part. |
| *G | 3325014 | ADMU | 07/22/2011 | Removed - 25 speed bin related information in all instances across the document. <br> Updated Package Diagram: <br> Updated spec 51-85002 to *D revision. |
| *H | 3847934 | ADMU | 12/20/2012 | Updated Ordering Information (Updated part numbers). |
| * | 4486851 | ADMU | 08/28/2014 | Removed CY7C4271V related information in all instances across the document. <br> Removed Industrial Temperature Range related information in all instances across the document. <br> Updated Selection Guide: <br> Removed CY7C4291V related information in 10 ns speed bin column. <br> Updated Electrical Characteristics: <br> Removed CY7C4291V related information in 10 ns speed bin column. <br> Updated Switching Characteristics: <br> Removed CY7C4291V related information in 10 ns speed bin column. Updated to new template. |
| *J | 4581652 | ADMU | 11/26/2014 | Updated Functional Description: <br> Added "For a complete list of related documentation, click here." at the end. |
| *K | 5437523 | VINI | 09/15/2016 | Updated Ordering Information: <br> Updated part numbers. <br> Updated Package Diagram: <br> spec 51-85002 - Changed revision from *D to *E. <br> Updated to new template. <br> Completing Sunset Review. |

## Sales, Solutions, and Legal Information

## Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

## Products

ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}$ Microcontrollers
cypress.com/arm
Automotive
Clocks \& Buffers
Interface
Internet of Things
Lighting \& Power Control
Memory
PSoC
Touch Sensing
USB Controllers
Wireless/RF
cypress.com/automotive
cypress.com/clocks
cypress.com/interface
cypress.com/iot
cypress.com/powerpsoc
cypress.com/memory
cypress.com/psoc
cypress.com/touch
cypress.com/usb
cypress.com/wireless

## PSoC ${ }^{\circledR}$ Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

## Cypress Developer Community

Forums | Projects | Video | Blogs | Training | Components

## Technical Support

cypress.com/support

[^7]
[^0]:    Notes

    1. The same selection sequence applies to reading from the registers. $\overline{\mathrm{REN} 1}$ and $\overline{\mathrm{REN} 2}$ are enabled and a read is performed on the LOW-to-HIGH transition of RCLK.
    2. $\mathrm{n}=$ Empty Offset ( $\mathrm{n}=7$ default value).
    3. $m=$ Full Offset $(m=7$ default value).
[^1]:    Notes
    4. $\mathrm{V}_{\mathrm{CC}}$ Range for commercial -10 ns is $3.3 \mathrm{~V} \pm 150 \mathrm{mV}$.
    5. Input signals switch from 0 V to 3 V with a rise/fall time of less than 3 ns , clocks and clock enables switch at maximum frequency of 20 MHz , while data inputs switch at 10 MHz . Outputs are unloaded.
    6. All inputs $=V_{C C}-0.2 \mathrm{~V}$, except WCLK and RCLK (which are at frequency $=0 \mathrm{MHz}$ ). All outputs are unloaded.
    7. Tested initially and after any design or process changes that may affect these parameters.

[^2]:    Notes
    8. $C_{L}=30 p F$ for all AC parameters except for $t_{O H Z}$.
    9. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{OHz}}$.

[^3]:    Notes
    12. $\mathrm{t}_{\text {SKEW }}$ is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that $\overline{\mathrm{FF}}$ will go HIGH during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tSKEW $^{2}$, then FF may not change state until the next WCLK rising edge.
    13. $\mathrm{t}_{\text {SKEW }} 1$ is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that $\overline{\mathrm{EF}}$ will go HIGH during the current clock cycle. It the time

[^4]:    Notes
    17. When $t_{\text {SKEW } 1} \geq$ minimum specification, $t_{\text {FRL }}($ maximum $)=t_{C L K}+t_{\text {SKEW } 2}$. When $t_{\text {SKEW } 1}<$ minimum specification, $t_{\text {FRL }}$ (maximum) $=$ either $2^{*} t_{C L K}+t_{S K E W 1}$ or $t_{C L K}$ $+\mathrm{t}_{\text {SKEW1 }}$. The Latency Timing applies only at the Empty Boundary ( $\overline{\mathrm{EF}}=\mathrm{LOW}$ ).
    18. The first word is available the cycle after EF goes HIGH, always.

[^5]:    Note
    20. $\mathrm{t}_{\mathrm{SKEW}_{1}}$ is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that $\overline{\mathrm{FF}}$ will go HIGH during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than $\mathrm{t}_{\text {SKEW } 1}$, then $\overline{\mathrm{FF}}$ may not change state until the next $W C L K$ rising edge.

[^6]:    Notes
    21. $\mathrm{t}_{\mathrm{SKEW}_{2}}$ is the minimum time between a rising WCLK and a rising RCLK edge for PAE to change state during that clock cycle. If the time between the edge of WCLK and the rising RCLK is less than tSKEW2, $^{2}$, then PAE may not change state until the next RCLK.
    22. PAE offset $=n$.
    23. If a read is performed on this rising edge of the read clock, there will be Empty $+(n-1)$ words in the FIFO when $\overline{\text { PAE }}$ goes LOW.
    24. If a write is performed on this rising edge of the write clock, there will be Full - $(m-1)$ words of the FIFO when PAF goes LOW.
    25. PAF offset $=\mathrm{m}$.
    26. 16K - $m$ words for CY7C4261V, 64 K - m words for CY7C4281V, and 128 K - m words for CY4291V.
    27. $\mathrm{I}_{\mathrm{SKEW}}$ is the minimum time between a rising RCLK edge and a rising WCLK edge for PAF to change during that clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than $t_{\text {SKEW2 }}$, then PAF may not change state until the next WCLK.

[^7]:    © Cypress Semiconductor Corporation, 2001-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

    TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

    Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

