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1.0  Features

• Low-cost solution for low-speed applications with high I/O requirements such as keyboards, keyboards with integrated 
pointing device, gamepads, and many others.

• USB Specification Compliance

— Conforms to USB Specification, Version 1.0

— Conforms to USB HID Specification, Version 1.0

— Supports 1 device address and 3 data endpoints

— Integrated USB transceiver

• 8-bit RISC microcontroller

— Harvard architecture

— 6 MHz external ceramic resonator

— 12 MHz internal CPU clock

• Internal memory

— 256 bytes of RAM

— 4 Kbytes of EPROM (CY7C63411, CY7C63511)

— 6 Kbytes of EPROM (CY7C63412, CY7C63512)

— 8 Kbytes of EPROM (CY7C63413, CY7C63513)

• Interface can auto-configure to operate as PS2 or USB

• I/O port

— 24 General Purpose I/O (GPIO) pins (Port 0 to 2) capable of sinking 7 mA per pin (typical)

— Eight GPIO pins (Port 3) capable of sinking 12 mA per pin (typical) which can drive LEDs

— Higher current drive is available by connecting multiple GPIO pins together to drive an common output

— Each GPIO port can be configured as inputs with internal pull-ups or open drain outputs or traditional CMOS outputs

— The CY7C63511/12/1 has an additional eight I/O pins on a DAC port which has programmable current sink outputs 

— Maskable interrupts on all I/O pins

• 12-bit free-running timer with one microsecond clock ticks

• Watchdog timer (WDT)

• Internal power-on reset (POR)

• Improved output drivers to reduce EMI

• Operating voltage from 4.0V to 5.5VDC

• Operating temperature from 0 to 70 degrees Celsius

• CY7C63411/12/13 available in 40-pin PDIP, 48-pin SSOP for production

• CY7C63411/12/13 available in 40-pin Windowed CerDIP, 48-pin Windowed SideBraze for program development

• CY7C63511/12/13 available in 48-pin SSOP packages for production

• CY7C63511/12/13 available in 48-pin Windowed SideBraze for program development

• Industry standard programmer support
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2.0  Functional Overview

The CY7C63411/12/13 and CY7C63511/12/13 are 8-bit RISC One Time Programmable (OTP) microcontrollers. The instruction
set has been optimized specifically for USB operations, although the microcontrollers can be used for a variety of non-USB
embedded applications.

The CY7C63411/12/13 features 32 general purpose I/O (GPIO) pins to support USB and other applications. The I/O pins are
grouped into four ports (Port 0 to 3) where each port can be configured as inputs with internal pull-ups, open drain outputs, o r
traditional CMOS outputs. 24 GPIO pins (Ports 0 to 2) are rated at 7 mA typical sink current. There are 8 GPIO pins (Port 3) which
are rated at 12 mA typical sink current, which allows these pins to drive LEDs. Multiple GPIO pins can be connected together to
drive a single output for more drive current capacity. Additionally, each I/O pin can be used to generate a GPIO interrupt to the
microcontroller. Note the GPIO interrupts all share the same “GPIO” interrupt vector. 

The CY7C63511/12/13 features an additional 8 I/O pins in the DAC port. Every DAC pin includes an integrated 14-Kohm pull-up
resistor. When a “1” is written to a DAC I/O pin, the output current sink is disabled and the output pin is driven high by the internal
pull-up resistor. When a “0” is written to a DAC I/O pin, the internal pull-up is disabled and the output pin provides the programmed
amount of sink current. A DAC I/O pin can be used as an input with an internal pull-up by writing a “1” to the pin.

The sink current for each DAC I/O pin can be individually programmed to one of sixteen values using dedicated Isink registers.
DAC bits [1:0] can be used as high current outputs with a programmable sink current range of 3.2 to 16 mA (typical). DAC bits
[7:2] have a programmable current sink range of 0.2 to 1.0 mA (typical). Again, multiple DAC pins can be connected together to
drive a single output that requires more sink current capacity. Each I/O pin can be used to generate a DAC interrupt to the
microcontroller and the interrupt polarity for each DAC I/O pin is individually programmable. The DAC port interrupts share a
separate “DAC” interrupt vector.

The Cypress microcontrollers use an external 6 MHz ceramic resonator to provide a reference to an internal clock generator. This
clock generator reduces the clock-related noise emissions (EMI). The clock generator provides the 6 and 12 MHz clocks that
remain internal to the microcontroller.

The CY7C63411/12/13 and CY7C63511/12/13 are offered with three EPROM options to maximize flexibility and minimize cost.
The CY7C63411 and CY7C63511 have 4 Kilobytes of EPROM. The CY7C63412 and CY7C63512 have 6 Kilobytes of EPROM.
The CY7C63413 and CY7C63513 have 8 Kilobytes of EPROM. 

These parts include power-on reset logic, a watchdog timer, a vectored interrupt controller, and a 12-bit free-running timer. The
power-on reset (POR) logic detects when power is applied to the device, resets the logic to a known state, and begins executing
instructions at EPROM address 0x0000h. The watchdog timer can be used to ensure the firmware never gets stalled for more
than approximately 8 ms. The firmware can get stalled for a variety of reasons, including errors in the code or a hardware failure
such as waiting for an interrupt that never occurs. The firmware should clear the watchdog timer periodically. If the watchdog timer
is not cleared for approximately 8 ms, the microcontroller will generate a hardware watchdog reset.

The microcontroller supports 8 maskable interrupts in the vectored interrupt controller. Interrupt sources include the USB Bus-Re-
set, the 128 microsecond and 1.024 ms outputs from the free-running timer, three USB endpoints, the DAC port, and the GPIO
ports. The timer bits cause an interrupt (if enabled) when the bit toggles from low “0” to high “1”. The USB endpoints interrupt
after either the USB host or the USB controller sends a packet to the USB. The DAC ports have an additional level of masking
that allows the user to select which DAC inputs can cause a DAC interrupt. The GPIO ports also have a level of masking to select
which GPIO inputs can cause a GPIO interrupt. For additional flexibility, the input transition polarity that causes an interrupt is
programmable for each pin of the DAC port. Input transition polarity can be programmed for each GPIO port as part of the port
configuration. The interrupt polarity can be either rising edge (“0” to “1”) or falling edge (“1” to “0”).

The free-running 12-bit timer clocked at 1 MHz provides two interrupt sources as noted above (128 µsec and 1.024 ms). The
timer can be used to measure the duration of an event under firmware control by reading the timer twice: once at the start of the
event, and once after the event is complete. The difference between the two readings indicates the duration of the event measured
in microseconds. The upper 4 bits of the timer are latched into an internal register when the firmware reads the lower 8 bits. A
read from the upper 4 bits actually reads data from the internal register, instead of the timer. This feature eliminates the need for
firmware to attempt to compensate if the upper 4 bits happened to increment right after the lower 8 bits are read.

The CY7C63411/12/13 and CY7C63511/12/13 include an integrated USB serial interface engine (SIE) that supports the integrat-
ed peripherals. The hardware supports one USB device address with three endpoints. The SIE allows the USB host to commu-
nicate with the function integrated into the microcontroller.

Finally, the CY7C63411/12/13 and CY7C63511/12/13 support PS/2 operation. With appropriate firmware the D+ and D– USB
pins can also be used as PS/2 clock and data signals. Products utilizing these devices can be used for USB and/or PS/2 operation
with appropriate firmware.
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4.0  Programming Model

4.1 14-bit Program Counter (PC)

The 14-bit program counter (PC) allows access for up to 8 kilobytes of EPROM using the CY7C634/5xx architecture. The program
counter is cleared during reset, such that the first instruction executed after a reset is at address 0x0000h. This is typically a jump
instruction to a reset handler that initializes the application. 

The lower 8 bits of the program counter are incremented as instructions are loaded and executed. The upper 6 bits of the program
counter are incremented by executing an XPAGE instruction. As a result, the last instruction executed within a 256 byte “page”
of sequential code should be an XPAGE instruction. The assembler directive “XPAGEON” will cause the assembler to insert
XPAGE instructions automatically. As instructions can be either one or two bytes long, the assembler may occasionally need to
insert a NOP followed by an XPAGE for correct execution.

The program counter of the next instruction to be executed, carry flag, and zero flag are saved as two bytes on the program stack
during an interrupt acknowledge or a CALL instruction. The program counter, carry flag, and zero flag are restored from the
program stack only during a RETI instruction.

Please note the program counter cannot be accessed directly by the firmware. The program stack can be examined by reading
SRAM from location 0x00 and up.

4.2 8-bit Accumulator (A)

The accumulator is the general purpose, do everything register in the architecture where results are usually calculated. 

4.3 8-bit Index Register (X)

The index register “X” is available to the firmware as an auxiliary accumulator. The X register also allows the processor to perform
indexed operations by loading an index value into X.

4.4 8-bit Program Stack Pointer (PSP)

During a reset, the program stack pointer (PSP) is set to zero. This means the program “stack” starts at RAM address 0x00 and
“grows” upward from there. Note the program stack pointer is directly addressable under firmware control, using the MOV PSP,A
instruction. The PSP supports interrupt service under hardware control and CALL, RET, and RETI instructions under firmware
control. 

3.0  Pin Assignments

Name I/O

CY7C63411/12/13 CY7C63511/12/13

Description40-Pin 48-Pin 48-Pin

D+, D– I/O 1,2 1,2 1,2 USB differential data; PS/2 clock and data signals

P0[7:0]
I/O

15,26,16,25,
17,24,18,23

17,32,18,31,
19,30,20,29

17,32,18,31,
19,30,20,29

GPIO port 0 capable of sinking 7 mA (typical)

P1[7:0]
I/O

11,30,12,29,
13,28,14,27

11,38,12,37,
13,36,14,35

11,38,12,37,
13,36,14,35

GPIO Port 1 capable of sinking 7 mA (typical)

P2[7:0]
I/O

7,34,8,33,
9,32,10,31

7,42,8,41,
9,40,10,39

7,42,8,41,
9,40,10,39

GPIO Port 2 capable of sinking 7 mA (typical)

P3[7:0]
I/O

3,38,4,37,
5,36,6,35

3,46,4,45,
5,44,6,43

3,46,4,45,
5,44,6,43

GPIO Port 3 capable of sinking 12 mA (typical)

DAC[7:0] I/O n/a n/a 15,34,16,33,
21,28,22,27

DAC I/O Port with programmable current sink outputs. 
DAC[1:0] offer a programmable range of 3.2 to 16 mA 
typical. DAC[7:2] have a programmable sink current range 
of 0.2 to 1.0 mA typical.

XTALIN IN 21 25 25 6 MHz ceramic resonator or external clock input

XTALOUT OUT 22 26 26 6 MHz ceramic resonator

VPP 19 23 23 Programming voltage supply, ground for normal operation

VCC 40 48 48 Voltage supply

Vss 20,39 24,47 24,47 Ground
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During an interrupt acknowledge, interrupts are disabled and the 14-bit program counter, carry flag, and zero flag are written as
two bytes of data memory. The first byte is stored in the memory addressed by the program stack pointer, then the PSP is
incremented. The second byte is stored in memory addressed by the program stack pointer and the PSP is incremented again.
The net effect is to store the program counter and flags on the program “stack” and increment the program stack pointer by two.

The return from interrupt (RETI) instruction decrements the program stack pointer, then restores the second byte from memory
addressed by the PSP. The program stack pointer is decremented again and the first byte is restored from memory addressed
by the PSP. After the program counter and flags have been restored from stack, the interrupts are enabled. The effect is to restore
the program counter and flags from the program stack, decrement the program stack pointer by two, and re-enable interrupts.

The call subroutine (CALL) instruction stores the program counter and flags on the program stack and increments the PSP by two.

The return from subroutine (RET) instruction restores the program counter, but not the flags, from program stack and decrements
the PSP by two.

4.5 8-bit Data Stack Pointer (DSP)

The data stack pointer (DSP) supports PUSH and POP instructions that use the data stack for temporary storage. A PUSH
instruction will pre-decrement the DSP, then write data to the memory location addressed by the DSP. A POP instruction will read
data from the memory location addressed by the DSP, then post-increment the DSP. 

During a reset, the Data Stack Pointer will be set to zero. A PUSH instruction when DSP equal zero will write data at the top of
the data RAM (address 0xFF). This would write data to the memory area reserved for a FIFO for USB endpoint 0. In non-USB
applications, this works fine and is not a problem. For USB applications, it is strongly recommended that the DSP is loaded after
reset just below the USB DMA buffers. 

4.6 Address Modes

The CY7C63411/12/13 and CY7C63511/12/13 microcontrollers support three addressing modes for instructions that require data
operands: data, direct, and indexed. 

4.6.1 Data

The “Data” address mode refers to a data operand that is actually a constant encoded in the instruction. As an example, consider
the instruction that loads A with the constant 0xE8h:

• MOV A,0E8h 

This instruction will require two bytes of code where the first byte identifies the “MOV A” instruction with a data operand as the
second byte. The second byte of the instruction will be the constant “0xE8h”. A constant may be referred to by name if a prior
“EQU” statement assigns the constant value to the name. For example, the following code is equivalent to the example shown
above:

• DSPINIT: EQU 0E8h

• MOV A,DSPINIT

4.6.2 Direct

“Direct” address mode is used when the data operand is a variable stored in SRAM. In that case, the one byte address of the
variable is encoded in the instruction. As an example, consider an instruction that loads A with the contents of memory address
location 0x10h:

• MOV A, [10h]

In normal usage, variable names are assigned to variable addresses using “EQU” statements to improve the readability of the
assembler source code. As an example, the following code is equivalent to the example shown above:

• buttons: EQU 10h

• MOV A,[buttons]

4.6.3 Indexed

“Indexed” address mode allows the firmware to manipulate arrays of data stored in SRAM. The address of the data operand is
the sum of a constant encoded in the instruction and the contents of the “X” register. In normal usage, the constant will be the
“base” address of an array of data and the X register will contain an index that indicates which element of the array is actually
addressed:

• array: EQU 10h

• MOV X,3

• MOV A,[x+array]

This would have the effect of loading A with the fourth element of the SRAM “array” that begins at address 0x10h. The fourth
element would be at address 0x13h.
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5.0  Instruction Set Summary

MNEMONIC operand opcode cycles MNEMONIC operand opcode cycles

HALT  00 7 NOP 20 4

ADD A,expr  data 01 4 INC A acc 21 4

ADD A,[expr]  direct 02 6 INC X x 22 4

ADD A,[X+expr]  index 03 7 INC [expr] direct 23 7

ADC A,expr data 04 4 INC [X+expr] index 24 8

ADC A,[expr] direct 05 6 DEC A acc 25 4

ADC A,[X+expr] index 06 7 DEC X x 26 4

SUB A,expr data 07 4 DEC [expr] direct 27 7

SUB A,[expr] direct 08 6 DEC [X+expr] index 28 8

SUB A,[X+expr] index 09 7 IORD expr address 29 5

SBB A,expr data 0A 4 IOWR expr address 2A 5

SBB A,[expr] direct 0B 6 POP A 2B 4

SBB A,[X+expr] index 0C 7 POP X 2C 4

OR A,expr data 0D 4 PUSH A 2D 5

OR A,[expr] direct 0E 6 PUSH X 2E 5

OR A,[X+expr] index 0F 7 SWAP A,X 2F 4

AND A,expr data 10 4 SWAP A,DSP 30 4

AND A,[expr] direct 11 6 MOV [expr],A direct 31 5

AND A,[X+expr] index 12 7 MOV [X+expr],A index 32 6

XOR A,expr data 13 4 OR [expr],A direct 33 7

XOR A,[expr] direct 14 6 OR [X+expr],A index 34 8

XOR A,[X+expr] index 15 7 AND [expr],A direct 35 7

CMP A,expr data 16 5 AND [X+expr],A index 36 8

CMP A,[expr] direct 17 7 XOR [expr],A direct 37 7

CMP A,[X+expr] index 18 8 XOR [X+expr],A index 38 8

MOV A,expr data 19 4 IOWX [X+expr] index 39 6

MOV A,[expr] direct 1A 5 CPL 3A 4

MOV A,[X+expr] index 1B 6 ASL 3B 4

MOV X,expr data 1C 4 ASR 3C 4

MOV X,[expr] direct 1D 5 RLC 3D 4

reserved 1E RRC  3E 4

XPAGE 1F 4 RET  3F 8

MOV A,X 40 4 DI 70 4

MOV X,A 41 4 EI 72 4

MOV PSP,A 60 4 RETI 73 8

CALL addr 50 - 5F 10

JMP addr 80-8F 5 JC addr C0-CF 5

CALL addr 90-9F 10 JNC addr D0-DF 5

JZ addr A0-AF 5 JACC addr E0-EF 7

JNZ addr B0-BF 5 INDEX addr F0-FF 14
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6.0  Memory Organization

6.1 Program Memory Organization

after reset Address

 14-bit PC 0x0000 Program execution begins here after a reset.

0x0002 USB Bus Reset interrupt vector

0x0004 128 µs timer interrupt vector

0x0006 1.024 ms timer interrupt vector

0x0008 USB address A endpoint 0 interrupt vector

0x000A USB address A endpoint 1 interrupt vector

0x000C USB address A endpoint 2 interrupt vector

0x000E Reserved

0x0010 Reserved

0x0012 Reserved

0x0014 DAC interrupt vector

0x0016 GPIO interrupt vector

0x0018 Reserved

0x001A Program Memory begins here

0x0FFF 4 KB PROM ends here (CY7C63411,CY7C63511)

0x17FF 6 KB PROM ends here (CY7C63412, CY7C63512)

(8K - 32 bytes)

0x1FDF 8 KB PROM ends here (CY7C63413, CY7C63513)

Figure 6-1. Program Memory Space with Interrupt Vector Table 
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6.2 Data Memory Organization

The CY7C63411/12/13 and CY7C63511/12/13 microcontrollers provide 256 bytes of data RAM. In normal usage, the SRAM is
partitioned into four areas: program stack, data stack, user variables and USB endpoint FIFOs as shown below:

after reset Address

8-bit PSP 0x00 Program Stack begins here and grows upward.

8-bit DSP user Data Stack begins here and grows downward.

The user determines the amount of memory required.

User Variables

0xE8

USB FIFO for Address A endpoint 2

0xF0

USB FIFO for Address A endpoint 1

0xF8

USB FIFO for Address A endpoint 0

Top of RAM Memory 0xFF
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6.3 I/O Register Summary

I/O registers are accessed via the I/O Read (IORD) and I/O Write (IOWR, IOWX) instructions. IORD reads the selected port into
the accumulator. IOWR writes data from the accumulator to the selected port. Indexed I/O Write (IOWX) adds the contents of X
to the address in the instruction to form the port address and writes data from the accumulator to the specified port. Note that
specifying address 0 (e.g., IOWX 0h) means the I/O port is selected solely by the contents of X.

Table 6-1.  I/O Register Summary  

Register Name I/O Address Read/Write Function

Port 0 Data 0x00 R/W GPIO Port 0

Port 1 Data 0x01 R/W GPIO Port 1

Port 2 Data 0x02 R/W GPIO Port 2

Port 3 Data 0x03 R/W GPIO Port 3

Port 0 Interrupt Enable 0x04 W Interrupt enable for pins in Port 0

Port 1 Interrupt Enable 0x05 W Interrupt enable for pins in Port 1

Port 2 Interrupt Enable 0x06 W Interrupt enable for pins in Port 2

Port 3 Interrupt Enable 0x07 W Interrupt enable for pins in Port 3

GPIO Configuration 0x08 R/W GPIO Ports Configurations

USB Device Address A 0x10 R/W USB Device Address A

EP A0 Counter Register 0x11 R/W USB Address A, Endpoint 0 counter register

EP A0 Mode Register 0x12 R/W USB Address A, Endpoint 0 configuration register

EP A1 Counter Register 0x13 R/W USB Address A, Endpoint 1 counter register

EP A1 Mode Register 0x14 R/C USB Address A, Endpoint 1 configuration register

EP A2 Counter Register 0x15 R/W USB address A, Endpoint 2 counter register

EP A2 Mode Register 0x16 R/C USB address A, Endpoint 2 configuration register

USB Status & Control 0x1F R/W USB up-stream port traffic status and control register

Global Interrupt Enable 0x20 R/W Global interrupt enable register

Endpoint Interrupt Enable 0x21 R/W USB endpoint interrupt enables

Timer (LSB) 0x24 R Lower 8 bits of free-running timer (1 MHz)

Timer (MSB) 0x25 R Upper 4 bits of free-running timer that are latched 
when the lower 8 bits are read.

WDR Clear 0x26 W Watch Dog Reset clear

DAC Data 0x30 R/W DAC I/O

DAC Interrupt Enable 0x31 W Interrupt enable for each DAC pin.

DAC Interrupt Polarity 0x32 W Interrupt polarity for each DAC pin

DAC Isink 0x38-0x3F W One four bit sink current register for each DAC pin.

Processor Status & Control 0xFF R/W Microprocessor status and control
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7.0  Clocking

The XTALIN and XTALOUT are the clock pins to the microcontroller. The user can connect a low-cost ceramic resonator or an
external oscillator can be connected to these pins to provide a reference frequency for the internal clock distribution and clock
doubler.

An external 6 MHz clock can be applied to the XTALIN pin if the XTALOUT pin is left open. Please note that grounding the XTALOUT
pin is not permissible as the internal clock is effectively shorted to ground.

8.0  Reset

The USB Controller supports three types of resets. All registers are restored to their default states during a reset. The USB Device
Addresses are set to 0 and all interrupts are disabled. In addition, the Program Stack Pointer (PSP) and Data Stack Pointer (DSP)
are set to 0x00. For USB applications, the firmware should set the DSP below 0xE8h to avoid a memory conflict with RAM
dedicated to USB FIFOs. The assembly instructions to do this are shown below:

Mov A, E8h ; Move 0xE8 hex into Accumulator

Swap A,dsp ; swap accumulator value into dsp register

The three reset types are:

1. Power-On Reset (POR)

2. Watch Dog Reset (WDR)

3. USB Bus Reset (non hardware reset)

The occurrence of a reset is recorded in the Processor Status and Control Register located at I/O address 0xFF. Bits 4, 5, and 6
are used to record the occurrence of POR, USB Reset, and WDR respectively. The firmware can interrogate these bits to
determine the cause of a reset. 

The microcontroller begins execution from ROM address 0x0000h after a POR or WDR reset. Although this looks like interrupt
vector 0, there is an important difference. Reset processing does NOT push the program counter, carry flag, and zero flag onto
program stack. That means the reset handler in firmware should initialize the hardware and begin executing the “main” loop of
code. Attempting to execute either a RET or RETI in the reset handler will cause unpredictable execution results.

8.1 Power-On Reset (POR)

Power-On Reset (POR) occurs every time the VCC voltage to the device ramps from 0V to an internally defined trip voltage (Vrst),
of approximately 1/2 full supply voltage. In addition to the normal reset initialization noted under “Reset,” bit 4 (PORS) of the
Processor Status and Control Register is set to “1” to indicate to the firmware that a power on reset occurred. The POR event
forces the GPIO ports into input mode (high impedance), and the state of Port 3 bit 7 is used to control how the part will respond
after the POR releases. 

If Port 3 bit 7 is high (pulled to VCC) and the USB IO are at the idle state (DM high and DP low) the part will go into a semi-per-
manent power down/suspend mode, waiting for the USB IO to go to one of Bus Reset, K (resume) or SE0. If Port 3 bit 7 is still
high when the part comes out of suspend, then a 128 us timer starts, delaying CPU operation until the ceramic resonator has
stabilized.

If Port 3 bit 7 was low (pulled to VSS) the part will start a 128 ms timer, delaying CPU operation until VCC has stabilized, then
continuing to run as reset.

Firmware should clear the POR Status (PORS) bit in register FFh before going into suspend as this status bit selects the 128 µs
or 128 ms start-up timer value as follows: IF Port 3 bit 7 is high then 128 µs is always used; ELSE if PORS is high then 128 ms
is used; ELSE 128 µs is used.

Figure 7-1. Clock Oscillator On-chip Circuit 
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8.2 Watch Dog Reset (WDR)

The Watch Dog Timer Reset (WDR) occurs when the Most Significant Bit (MSB) of the 2-bit Watch Dog Timer Register transitions
from LOW to HIGH. In addition to the normal reset initialization noted under “Reset,” bit 6 of the Processor Status and Control
Register is set to “1” to indicate to the firmware that a watchdog reset occurred.

Figure 8-1. Watch Dog Reset (WDR) 

The Watch Dog Timer is a 2 bit timer clocked by a 4.096 ms clock (bit 11) from the free running timer. Writing any value to the
write-only Watch Dog Clear I/O port (0x26h) will clear the Watch Dog Timer. 

In some applications, the Watch Dog Timer may be cleared in the 1.024 ms timer interrupt service routine. If the 1.024 ms timer
interrupt service routine does not get executed for 8.192 ms or more, a Watch Dog Timer Reset will occur. A Watch Dog Timer
Reset lasts for 2.048 ms after which the microcontroller begins execution at ROM address 0x0000h. The USB transmitter is
disabled by a Watch Dog Reset because the USB Device Address Register is cleared. Otherwise, the USB Controller would
respond to all address 0 transactions. The USB transmitter remains disabled until the MSB of the USB address register is set. 

9.0  General Purpose I/O Ports

Ports 0 to 2 provide 24 GPIO pins that can be read or written. Each port (8 bits) can be configured as inputs with internal pul l-ups,
open drain outputs, or traditional CMOS outputs. Please note an open drain output is also a high-impedance (no pull-up) input.
All of the I/O pins within a given port have the same configuration. Ports 0 to 2 are considered low current drive with typical current
sink capability of 7 mA. 

The internal pull-up resistors are typically 7 Kohms. Two factors govern the enabling and disabling of the internal pull-up resistors:
the port configuration selected in the GPIO Configuration register and the state of the output data bit. If the GPIO Configuration
selected is “Resistive” and the output data bit is “1,” then the internal pull-up resistor is enabled for that GPIO pin. Otherwise, Q1
is turned off and the 7 Kohm pull-up is disabled. Q2 is “ON” to sink current whenever the output data bit is written as a “0.” Q3

Figure 9-1. Block Diagram of a GPIO Line 
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provides “HIGH” source current when the GPIO port is configured for CMOS outputs and the output data bit is written as a “1”.
Q2 and Q3 are sized to sink and source, respectively, roughly the same amount of current to support traditional CMOS outputs
with symmetric drive.

Port 3 has eight GPIO pins. Port 3 (8 bits) can be configured as inputs with internal pull-ups, open drain outputs, or traditional
CMOS outputs. An open drain output is also a high-impedance input. Port 3 offers high current drive with a typical current sink
capability of 12 mA. The internal pull-up resistors are typically 7 Kohms.

During reset, all of the GPIO pins are set to output “1” (input) with the internal pull-up enabled. In this state, a “1” will always be
read on that GPIO pin unless an external current sink drives the output to a “0” state. Writing a “0” to a GPIO pin enables the
output current sink to ground (LOW) and disables the internal pull-up for that pin.

9.1 GPIO Interrupt Enable Ports

During a reset, GPIO interrupts are disabled by clearing all of the GPIO interrupt enable ports. Writing a “1” to a GPIO Interrupt
Enable bit enables GPIO interrupts from the corresponding input pin.

9.2 GPIO Configuration Port

Every GPIO port can be programmed as inputs with internal pull-ups, open drain outputs, and traditional CMOS outputs. In ad-
dition, the interrupt polarity for each port can be programmed. With positive interrupt polarity, a rising edge (“0” to “1”) on an input
pin causes an interrupt. With negative polarity, a falling edge (“1” to “0”) on an input pin causes an interrupt. As shown in the table
below, when a GPIO port is configured with CMOS outputs, interrupts from that port are disabled. The GPIO Configuration Port
register provides two bits per port to program these features. The possible port configurations are:

P0[7] P0[6] P0[5] P0[4] P0[3] P0[2] P0[1] P0[0]

Figure 9-2. Port 0 Data 0x00h (read/write) 

P1[7] P1[6] P1[5] P1[4] P1[3] P1[2] P1[1] P1[0]

Figure 9-3. Port 1 Data 0x01h (read/write) 

P2[7] P2[6] P2[5] P2[4] P2[3] P2[2] P2[1] P2[0]

Figure 9-4. Port 2 Data 0x02h (read/write) 

P3[7] P3[6] P3[5] P3[4] P3[3] P3[2] P3[1] P3[0]

Figure 9-5. Port 3 Data 0x03h (read/write) 

P0[7] P0[6] P0[5] P0[4] P0[3] P0[2] P0[1] P0[0]

Figure 9-6. Port 0 Interrupt Enable 0x04h (write only) 

P1[7] P1[6] P1[5] P1[4] P1[3] P1[2] P1[1] P1[0]

Figure 9-7. Port 1 Interrupt Enable 0x05h (write only) 

P2[7] P2[6] P2[5] P2[4] P2[3] P2[2] P2[1] P2[0]

Figure 9-8. Port 2 Interrupt Enable 0x06h (write only) 

P3[7] P3[6] P3[5] P3[4] P3[3] P3[2] P3[1] P3[0]

Figure 9-9. Port 3 Interrupt Enable 0x07h (write only) 
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In “Resistive” mode, a 7 Kohm pull-up resistor is conditionally enabled for all pins of a GPIO port. The resistor is enabled for any
pin that has been written as a “1.” The resistor is disabled on any pin that has been written as a “0”. An I/O pin will be driven high
through a 7 Kohm pull-up resistor when a “1” has been written to the pin. Or the output pin will be driven LOW, with the pull-up
disabled, when a “0” has been written to the pin. An I/O pin that has been written as a “1” can be used as an input pin with an
integrated 7 Kohm pull-up resistor. Resistive mode selects a negative (falling edge) interrupt polarity on all pins that have the
GPIO interrupt enabled.

A port configured in CMOS mode has interrupt generation disabled, yet the interrupt mask bits serve to control port direction. If
a port’s associated Interrupt Mask bits are cleared, those port bits are strictly outputs. If the Interrupt Mask bits are set then those
bits will be open drain inputs. As open drain inputs, if their data output values are ‘1’ those port pins will be CMOS inputs (HIGH
Z output).

In “Open Drain” mode the internal pull-up resistor and CMOS driver (HIGH) are both disabled. An I/O pin that has been written
as a “1” can be used as either a high-impedance input or a three-state output. An I/O pin that has been written as a “0” will drive
the output LOW. The interrupt polarity for an open drain GPIO port can be selected as either positive (rising edge) or negative
(falling edge).

During reset, all of the bits in the GPIO Configuration Register are written with “0”. This selects the default configuration: Open
Drain output, positive interrupt polarity for all GPIO ports.

10.0  DAC Port

Port Configuration bits Pin Interrupt Bit Driver Mode Interrupt Polarity

11 X Resistive -

10 0 CMOS Output disabled

10 1 CMOS Input disabled

01 X Open Drain -

00 X Open Drain + (default)

7 6 5 4 3 2 1 0

Port 3
Config Bit 1

Port 3
Config Bit 0

Port 2
Config Bit 1

Port 2
Config Bit 0

Port 1
Config Bit 1

Port 1
Config Bit 0

Port 0
Config Bit 1

Port 0
Config Bit 0

Figure 9-10. GPIO Configuration Register 0x08h (write only) 

Figure 10-1. Block Diagram of DAC Port 
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The DAC port provides the CY7C63511/12/13 with 8 programmable current sink I/O pins. Writing a “1” to a DAC I/O pin disables
the output current sink (Isink DAC) and drives the I/O pin HIGH through an integrated 14 Kohm resistor. When a “0” is written to
a DAC I/O pin, the Isink DAC is enabled and the pull-up resistor is disabled. A “0” output will cause the Isink DAC to sink current
to drive the output LOW. The amount of sink current for the DAC I/O pin is programmable over 16 values based on the contents
of the DAC Isink Register for that output pin. DAC[1:0] are the two high current outputs that are programmable from a minimum
of 3.2 mA to a maximum of 16 mA (typical). DAC[7:2] are low current outputs that are programmable from a minimum of 0.2 mA
to a maximum of 1.0 mA (typical). 

When a DAC I/O bit is written as a “1”, the I/O pin is either an output pulled high through the 14 Kohm resistor or an input with an
internal 14 Kohm pull-up resistor. All DAC port data bits are set to “1” during reset.

10.1 DAC Port Interrupts

A DAC port interrupt can be enabled/disabled for each pin individually. The DAC Port Interrupt Enable register provides this feature
with an interrupt mask bit for each DAC I/O pin. Writing a “1” to a bit in this register enables interrupts from the corresponding bit
position. Writing a “0” to a bit in the DAC Port Interrupt Enable register disables interrupts from the corresponding bit position. All
of the DAC Port Interrupt Enable register bits are cleared to “0” during a reset.

As an additional benefit, the interrupt polarity for each DAC pin is programmable with the DAC Port Interrupt Polarity register.
Writing a “0” to a bit selects negative polarity (falling edge) that will cause an interrupt (if enabled) if a falling edge transition occurs
on the corresponding input pin. Writing a “1” to a bit in this register selects positive polarity (rising edge) that will cause an interrupt
(if enabled) if a rising edge transition occurs on the corresponding input pin. All of the DAC Port Interrupt Polarity register bits are
cleared during a reset.

10.2 DAC Isink Registers

Each DAC I/O pin has an associated DAC Isink register to program the output sink current when the output is driven LOW. The
first Isink register (0x38h) controls the current for DAC[0], the second (0x39h) for DAC[1], and so on until the Isink register at
0x3Fh controls the current to DAC[7].

11.0  USB Serial Interface Engine (SIE)

The SIE allows the microcontroller to communicate with the USB host. The SIE simplifies the interface between the microcontroller
and USB by incorporating hardware that handles the following USB bus activity independently of the microcontroller:

• Bit stuffing/unstuffing

• Checksum generation/checking

• ACK/NAK

• Token type identification

• Address checking

Firmware is required to handle the rest of the USB interface with the following tasks:

• Coordinate enumeration by responding to set-up packets

Low current outputs
0.2 mA to 1.0 mA typical

High current outputs
3.2 mA to 16 mA typical

DAC[7] DAC[6] DAC[5] DAC[4] DAC[3] DAC[2] DAC[1] DAC[0]

Figure 10-2. DAC Port Data 0x30h (read/write) 

DAC[7] DAC[6] DAC[5] DAC[4] DAC[3] DAC[2] DAC[1] DAC[0]

Figure 10-3. DAC Port Interrupt Enable 0x31h (write only) 

DAC[7] DAC[6] DAC[5] DAC[4] DAC[3] DAC[2] DAC[1] DAC[0]

Figure 10-4. DAC Port Interrupt Polarity 0x32h (write only) 

Reserved Isink Value

Isink[3] Isink[2] Isink[1] Isink[0]

Figure 10-5. DAC Port Isink 0x38h to 0x3Fh (write only) 
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• Fill and empty the FIFOs

• Suspend/Resume coordination

• Verify and select Data toggle values

11.1 USB Enumeration

The enumeration sequence is shown below:

1. The host computer sends a Setup packet followed by a Data packet to USB address 0 requesting the Device descriptor.

2. The USB Controller decodes the request and retrieves its Device descriptor from the program memory space.

3. The host computer performs a control read sequence and the USB Controller responds by sending the Device descriptor over 
the USB bus.

4. After receiving the descriptor, the host computer sends a Setup packet followed by a Data packet to address 0 assigning a 
new USB address to the device.

5. The USB Controller stores the new address in its USB Device Address Register after the no-data control sequence completes.

6. The host sends a request for the Device descriptor using the new USB address.

7. The USB Controller decodes the request and retrieves the Device descriptor from the program memory.

8. The host performs a control read sequence and the USB Controller responds by sending its Device descriptor over the USB bus.

9. The host generates control reads to the USB Controller to request the Configuration and Report descriptors.

10.The USB Controller retrieves the descriptors from its program space and returns the data to the host over the USB.

11.2 PS/2 Operation

PS/2 operation is possible with the CY7C634/5xx series through the use of firmware and several operating modes. The first
enabling feature:

1. USB Bus reset on D+ and D− is an interrupt that can be disabled;

2. USB traffic can be disabled via bit7 of the USB register;

3. D+ and D− can be monitored and driven via firmware as independent port bits.

Bits 5 and 4 of the Upstream Status and Control register are directly connected to the D+ and D− USB pins of the CY7C634/5xx.
These pins constantly monitor the levels of these signals with CMOS input thresholds. Firmware can poll and decode these signals
as PS/2 clock and data.

Bits [2:0] defaults to ‘000’ at reset which allows the USB SIE to control output on D+ and D−. Firmware can override the SIE and
directly control the state of these pins via these 3 control bits. Since PS/2 is an open drain signalling protocol, these modes allow
all 4 PS/2 states to be generated on the D+ and D− pins

11.3 USB Port Status and Control

USB status and control is regulated by the USB Status and Control Register located at I/O address 0x1Fh as shown in Figure
11-1. This is a read/write register. All reserved bits must be written to zero. All bits in the register are cleared during reset.

The Bus Activity bit is a “sticky” bit that indicates if any non-idle USB event has occurred on the USB bus. The user firmware
should check and clear this bit periodically to detect any loss of bus activity. Writing a “0” to the Bus Activity bit clears it while
writing a “1” preserves the current value. In other words, the firmware can clear the Bus Activity bit, but only the SIE can set it.
The 1.024 ms timer interrupt service routine is normally used to check and clear the Bus Activity bit. The following table shows
how the control bits are encoded for this register.

7 6 5 4 3 2 1 0

R R R/W R/W R/W R/W

Reserved Reserved D+ D– Bus Activity Control
Bit 2

Control 
Bit 1

Control
Bit 0

Figure 11-1. USB Status and Control Register 0x1Fh 
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12.0  USB Device

USB Device Address A includes three endpoints: EPA0, EPA1, and EPA2. End Point 0 (EPA0) allows the USB host to recognize,
set-up, and control the device. In particular, EPA0 is used to receive and transmit control (including set-up) packets. 

12.1 USB Ports

The USB Controller provides one USB device address with three endpoints. The USB Device Address Register contents are
cleared during a reset, setting the USB device address to zero and marking this address as disabled. Figure 12-1 shows the
format of the USB Address Register. 

Bit 7 (Device Address Enable) in the USB Device Address Register must be set by firmware before the serial interface engine

(SIE) will respond to USB traffic to this address. The Device Address in bits [6:0] must be set by firmware during the USB enu-

meration process to an address assigned by the USB host that does not equal zero. This register is cleared by a hardware reset

or the USB bus reset.

12.2 Device Endpoints (3)

The USB controller communicates with the host using dedicated FIFOs, one per endpoint. Each endpoint FIFO is implemented
as 8 bytes of dedicated SRAM. There are three endpoints defined for Device “A” that are labeled “EPA0,” “EPA1,” and EPA2.”

All USB devices are required to have an endpoint number 0 (EPA0) that is used to initialize and control the USB device. End Point
0 provides access to the device configuration information and allows generic USB status and control accesses. End Point 0 is
bidirectional as the USB controller can both receive and transmit data. 

The endpoint mode registers are cleared during reset. The EPA0 endpoint mode register uses the format shown below: 

Bits[7:5] in the endpoint 0 mode registers (EPA0) are “sticky” status bits that are set by the SIE to report the type of token that
was most recently received. The sticky bits must be cleared by firmware as part of the USB processing.

The endpoint mode registers for EPA1 and EPA2 do not use bits [7:5] as shown below:

The ‘Acknowledge’ bit is set whenever the SIE engages in a transaction that completes with an ‘ACK’ packet.

Control Bits Control action

000 Not forcing (SIE controls driver)

001 Force K (D+ high, D– low)

010 Force J (D+ low, D– high)

011 Force SE0 (D+ low, D– low)

100 Force SE0 (D− low, D+ low)

101 Force D− low, D+ HiZ

110 Force D− HiZ, D+ low

111 Force D− HiZ, D+ HiZ

Device
Address 
Enable

Device
Address 

Bit 6

Device
Address 

Bit 5

Device
Address 

Bit 4

Device
Address 

Bit 3

Device
Address 

Bit 2

Device
Address 

Bit 1

Device
Address 

Bit 0

Figure 12-1. USB Device Address Register 0x10h (read/write) 
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Figure 12-2. USB Device EPA0 Mode Register 0x12h (read/write) 
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Figure 12-3. USB Device Endpoint Mode Registers 0x14h, 0x16h (read/write) 
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The ‘set-up’ PID status (bit[7]) is forced high from the start of the data packet phase of the set-up transaction, until the start of
the ACK packet returned by the SIE. The CPU is prevented from clearing this bit during this interval, and subsequently until the
CPU first does a IORD to this endpoint 0 mode register.

Bits[6:0] of the endpoint 0 mode register are locked from CPU IOWR operations only if the SIE has updated one of these bits,
which the SIE does only at the end of a packet transaction (set-up ... Data ... ACK, or Out ... Data ... ACK, or In ... Data ... ACK).
The CPU can unlock these bits by doing a subsequent I/O read of this register.

Firmware must do an IORD after an IOWR to an endpoint 0 register to verify that the contents have changed and that the SIE
has not updated these values.

While the ‘set-up’ bit is set, the CPU cannot write to the DMA buffers at memory locations 0xE0 through 0xE7 and 0xF8 through
0xFF. This prevents an incoming set-up transaction from conflicting with a previous In data buffer filling operation by firmware.

The mode bits (bits [3:0]) in an Endpoint Mode Register control how the endpoint responds to USB bus traffic. The mode bit
encoding is shown in Section 16.

The format of the endpoint Device counter registers is shown below:

Bits 0 to 3 indicate the number of data bytes to be transmitted during an IN packet, valid values are 0 to 8 inclusive. Data Valid
bit 6 is used for OUT and set-up tokens only. Data 0/1 Toggle bit 7 selects the DATA packet’s toggle state: 0 for DATA0, 1 for DATA1. 

13.0  12-bit Free-running Timer

The 12-bit timer provides two interrupts (128 µs and 1.024 ms) and allows the firmware to directly time events that are up to 4
ms in duration. The lower 8 bits of the timer can be read directly by the firmware. Reading the lower 8 bits latches the upper 4
bits into a temporary register. When the firmware reads the upper 4 bits of the timer, it is actually reading the count stored in the
temporary register. The effect of this logic is to ensure a stable 12-bit timer value can be read, even when the two reads are
separated in time.

13.1 Timer (LSB)

13.2 Timer (MSB)

Data 0/1
Toggle

Data Valid Reserved Reserved Byte count
Bit 3

Byte count
Bit 2

Byte count
Bit 1

Byte count
Bit 0

Figure 12-4. USB Device Counter Registers 0x11h, 0x13h, 0x15h (read/write) 
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Figure 13-1. Timer Register 0x24h (read only) 
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Figure 13-2. Timer Register 0x25h (read only) 

 

Figure 13-3. Timer Block Diagram 
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14.0  Processor Status and Control Register

The “run” (bit 0) is manipulated by the HALT instruction. When Halt is executed, the processor clears the run bit and halts at the
end of the current instruction. The processor remains halted until a reset (power on or watchdog). Notice, when writing to the
processor status and control register, the run bit should always be written as a “1”.

The “single step” (bit 1) is provided to support a hardware debugger. When single step is set, the processor will execute one
instruction and halt (clear the run bit). This bit must be cleared for normal operation.

The “Interrupt Mask” (bit 2) shows whether interrupts are enabled or disabled. The firmware has no direct control over this bit as
writing a zero or one to this bit position will have no effect on interrupts. Instructions DI, EI, and RETI manipulate the internal
hardware that controls the state of the interrupt mask bit in the Processor Status and Control Register.

Writing a “1” to “Suspend, wait for interrupts” (bit 3) will halt the processor and cause the microcontroller to enter the “suspend”
mode that significantly reduces power consumption. A pending interrupt or bus activity will cause the device to come out of
suspend. After coming out of suspend, the device will resume firmware execution at the instruction following the IOWR which put
the part into suspend. An IOWR that attempts to put the part into suspend will be ignored if either bus activity or an interrupt is
pending.

The “Power-on Reset” (bit 4) is only set to “1” during a power on reset. The firmware can check bits 4 and 6 in the reset handler
to determine whether a reset was caused by a power on condition or a watchdog timeout. PORS is used to determine suspend
start-up timer value of 128us or 128ms.

The “USB Bus Reset” (bit 5) will occur when a USB bus reset is received. The USB Bus Reset is a singled-ended zero (SE0) that
lasts more than 8 microseconds. An SE0 is defined as the condition in which both the D+ line and the D– line are LOW at the
same time. When the SIE detects this condition, the USB Bus Reset bit is set in the Processor Status and Control register and
an USB Bus Reset interrupt is generated. Please note this is an interrupt to the microcontroller and does not actually reset the
processor.

The “Watch Dog Reset” (bit 6) is set during a reset initiated by the watchdog timer. This indicates the watchdog timer went for
more than 8 ms between watch dog clears. 

The “IRQ pending” (bit 7) indicates one or more of the interrupts has been recognized as active. The interrupt acknowledge
sequence should clear this bit until the next interrupt is detected. 

During power on reset, the Processor Status and Control Register is set to 00010001, which indicates a power-on-reset (bit 4
set) has occurred and no interrupts are pending (bit 7 clear), yet.

During a watchdog reset, the Processor Status and Control Register is set to 01000001, which indicates a watchdog reset (bit 6
set) has occurred and no interrupts are pending (bit 7 clear), yet.

15.0  Interrupts

All interrupts are maskable by the Global Interrupt Enable Register and the USB End Point Interrupt Enable Register. Writing a
“1” to a bit position enables the interrupt associated with that bit position. During a reset, the contents the Global Interrupt Enable
Register and USB End Point Interrupt Enable Register are cleared, effectively disabling all interrupts.

7 6 5 4 3 2 1 0

R R/W R/W R/W R/W R R/W R/W

IRQ
pending

Watch Dog 
Reset

USB Bus 
Reset

Power-on 
Reset

Suspend, wait 
for interrupt

Interrupt
Mask

Single Step Run

Figure 14-1. Processor Status and Control Register 0xFFh 
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Interrupt 
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USB Bus RST
Interrupt 
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Figure 15-1. Global Interrupt Enable Register 0x20h (read/write) 
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Pending interrupt requests are recognized during the last clock cycle of the current instruction. When servicing an interrupt, the
hardware will first disable all interrupts by clearing the Interrupt Enable bit in the Processor Status and Control Register. Next,
the interrupt latch of the current interrupt is cleared. This is followed by a CALL instruction to the ROM address associated with
the interrupt being serviced (i.e., the Interrupt Vector). The instruction in the interrupt table is typically a JMP instruction to the
address of the Interrupt Service Routine (ISR). The user can re-enable interrupts in the interrupt service routine by executing an
EI instruction. Interrupts can be nested to a level limited only by the available stack space.

The Program Counter value as well as the Carry and Zero flags (CF, ZF) are automatically stored onto the Program Stack by the
CALL instruction as part of the interrupt acknowledge process. The user firmware is responsible for insuring that the processor
state is preserved and restored during an interrupt. The PUSH A instruction should be used as the first command in the ISR to
save the accumulator value and the POP A instruction should be used just before the RETI instruction to restore the accumulator
value. The program counter CF and ZF are restored and interrupts are enabled when the RETI instruction is executed.

15.1 Interrupt Vectors

The Interrupt Vectors supported by the USB Controller are listed in Table 15-1. Although Reset is not an interrupt, per se, the first
instruction executed after a reset is at PROM address 0x0000h - which corresponds to the first entry in the Interrupt Vector Table.
Because the JMP instruction is 2 bytes long, the interrupt vectors occupy 2 bytes.

15.2 Interrupt Latency

Interrupt latency can be calculated from the following equation:

Interrupt Latency = (Number of clock cycles remaining in the current instruction) + (10 clock cycles for the CALL instruction) + 
(5 clock cycles for the JMP instruction)

For example, if a 5 clock cycle instruction such as JC is being executed when an interrupt occurs, the first instruction of the
Interrupt Service Routine will execute a min. of 16 clocks (1+10+5) or a max. of 20 clocks (5+10+5) after the interrupt is issued.
Remember that the interrupt latches are sampled at the rising edge of the last clock cycle in the current instruction. 

15.2.1 USB Bus Reset Interrupt

The USB Bus Reset interrupt is asserted when a USB bus reset condition is detected. A USB bus reset is indicated by a single
ended zero (SE0) on the upstream port for more than 8 microseconds.

7 6 5 4 3 2 1 0

R/W R/W R/W

Reserved Reserved Reserved Reserved Reserved EPA2
Interrupt
Enable

EPA1
Interrupt
Enable

EPA0
Interrupt
Enable

Figure 15-2. USB End Point Interrupt Enable Register 0x21h (read/write) 

Table 15-1.  Interrupt Vector Assignments 

Interrupt Vector Number ROM Address Function

not applicable 0x0000h Execution after Reset begins here.

1 0x0002h USB Bus Reset interrupt

2 0x0004h 128 µs timer interrupt

3 0x0006h 1.024 ms timer interrupt

4 0x0008h USB Address A Endpoint 0 interrupt

5 0x000Ah USB Address A Endpoint 1 interrupt

6 0x000Ch USB Address A Endpoint 2 interrupt

7 0x000Eh Reserved

8 0x0010h Reserved

9 0x0012h Reserved

10 0x0014h DAC interrupt

11 0x0016h GPIO interrupt

12 0x0018h Reserved
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15.2.2 Timer Interrupt

There are two timer interrupts: the 128 µs interrupt and the 1.024 ms interrupt. The user should disable both timer interrupts
before going into the suspend mode to avoid possible conflicts between servicing the interrupts first or the suspend request first.

15.2.3 USB Endpoint Interrupts

There are three USB endpoint interrupts, one per endpoint. The USB endpoints interrupt after the either the USB host or the USB
controller sends a packet to the USB.

15.2.4 DAC Interrupt

Each DAC I/O pin can generate an interrupt, if enabled.The interrupt polarity for each DAC I/O pin is programmable. A positive
polarity is a rising edge input while a negative polarity is a falling edge input. All of the DAC pins share a single interrupt vector,
which means the firmware will need to read the DAC port to determine which pin or pins caused an interrupt.

Please note that if one DAC pin triggered an interrupt, no other DAC pins can cause a DAC interrupt until that pin has returned
to its inactive (non-trigger) state or the corresponding interrupt enable bit is cleared. The USB Controller does not assign interrupt
priority to different DAC pins and the DAC Interrupt Enable Register is not cleared during the interrupt acknowledge process. 

15.2.5 GPIO Interrupt

Each of the 32 GPIO pins can generate an interrupt, if enabled. The interrupt polarity can be programmed for each GPIO port as
part of the GPIO configuration. All of the GPIO pins share a single interrupt vector, which means the firmware will need to read
the GPIO ports with enabled interrupts to determine which pin or pins caused an interrupt.

Please note that if one port pin triggered an interrupt, no other port pins can cause a GPIO interrupt until that port pin has returned
to its inactive (non-trigger) state or its corresponding port interrupt enable bit is cleared. The USB Controller does not assign
interrupt priority to different port pins and the Port Interrupt Enable Registers are not cleared during the interrupt acknowledge
process. 

16.0  Truth Tables

Table 16-1.  USB Register Mode Encoding 

Mode    Encoding Setup In Out Comments

Disable  0000 ignore ignore ignore Ignore all USB traffic to this endpoint

Nak In/Out          
 0001

accept NAK NAK “Forced from Setup on Control endpoint, from modes other 
than 0000”

Status Out Only  0010 accept stall check For Control endpoints

Stall In/Out      0011 accept stall stall For Control endpoints

Ignore In/Out     0100 accept ignore ignore For Control endpoints

Isochronous Out
 0101

ignore ignore always “(available to low speed devices, future USB spec enhance-
ments)” In Only

Status In Only 0110 accept TX 0 stall For Control Endpoints

Isochronous In
 0111

ignore TX cnt ignore “(available to low speed devices, future USB spec enhance-
ments)”

Nak Out             1000 ignore ignore NAK An ACK from mode 1001 --> 1000

Ack Out            1001 ignore ignore ACK This mode is changed by SIE on issuance of ACK --> 1000

Nak Out - Status 
In  1010

accept TX 0 NAK An ACK from mode 1011 --> 1010

Ack Out - Status 
In  1011

accept TX 0 ACK This mode is changed by SIE on issuance of ACK --> 1010

Nak In 1100 ignore NAK ignore An ACK from mode 1101 --> 1100

Ack In 1101 ignore TX cnt ignore This mode is changed by SIE on issuance of ACK --> 1100

Nak In - Status 
Out  1110

accept NAK check An ACK from mode 1111 --> 111 Ack In - Status Out

Ack In - Status 
Out 1111

accept TX cnt Check This mode is changed by SIE on issuance of ACK -->1110
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The ‘In’ column represents the SIE’s response to the token type.

A disabled endpoint will remain such until firmware changes it, and all endpoints reset to disabled.

Any Setup packet to an enabled and accepting endpoint will be changed by the SIE to 0001 (NAKing).Any mode which indicates
the acceptance of a Setup will acknowledge it.

Most modes that control transactions involving an ending ACK will be changed by the SIE to a corresponding mode which NAKs
follow on packets.

A Control endpoint has three extra status bits for PID (Setup, In and Out), but must be placed in the correct mode to function as
such. Also a non-Control endpoint can be made to act as a Control endpoint if it is placed in a non appropriate mode!

A ‘check’ on an Out token during a Status transaction checks to see that the Out is of zero length and has a Data Toggle (DTOG)
of 1.
 

The response of the SIE can be summarized as follows:
(1) the SIE will only respond to valid transactions, and will ignore non-valid ones;
(2) the SIE will generate IRQ when a valid transaction is completed or when the DMA buffer is corrupted
(3) an incoming Data packet is valid if the count is <= 10 (CRC inclusive) and passes all error checking;
(4) a Setup will be ignored by all non Control endpoints (in appropriate modes); 
(5) an In will be ignored by an Out configured endpoint and visa versa.

The In and Out PID status is updated at the end of a transaction. 
The Setup PID status is updated at the beginning of the Data packet phase.

The entire EndPoint 0 mode and the Count register are locked to CPU writes at the end of any transaction in which an ACK is
transferred. These registers are only unlocked upon a CPU read of these registers, and only if that read happens after the
transaction completes. This represents about a 1 µs window to which to the CPU is locked from register writes to these USB
registers. Normally the firmware does a register read at the beginning of the ISR to unlock and get the mode register informati on.
The interlock on the Mode and Count registers ensures that the firmware recognizes the changes that the SIE might have made
during the previous transaction!

Table 16-2.  Decode table forTable 16-3: “Details of Modes for Differing Traffic Conditions”  

Properties of incoming packet

Encoding Status bits What the SIE does to Mode bits

PID Status bits Interrupt? 

End Point Mode
End Point 
Mode

3 2 1 0 Token count buffer dval DTOG DVAL COUNT Setup In Out ACK 3 2 1 0 Response Int

Setup

In

Out

The validity of the received data

The quality status of the DMA buffer

The number of received bytes Acknowledge phase completed

Legend: UC: unchanged TX: transmit TX0: transmit 0-length packet

x: don’t care RX: receive

available for Control endpoint only
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