
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CY7C63310/CY7C638xx

enCoRe™ II
Low Speed USB Peripheral Controller

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Document Number: 38-08035 Rev. *S Revised October 29, 2015

enCoRe™ II Low Speed USB Peripheral Controller

Features

■ USB 2.0-USB-IF certified (TID # 40000085)

■ enCoRe™ II USB - ‘enhanced Component Reduction’

❐ Crystalless oscillator with support for an external clock. The
internal oscillator eliminates the need for an external crystal
or resonator.

❐ Two internal 3.3 V regulators and an internal USB Pull-up
resistor

❐ Configurable I/O for real world interface without external
components

■ USB Specification compliance

❐ Conforms to USB Specification, Version 2.0

❐ Conforms to USB HID Specification, Version 1.1

❐ Supports one low speed USB device address

❐ Supports one control endpoint and two data endpoints

❐ Integrated USB transceiver with dedicated 3.3 V regulator for
USB signalling and D– pull-up.

■ Enhanced 8-bit microcontroller

❐ Harvard architecture

❐ M8C CPU speed is up to 24 MHz or sourced by an external
clock signal

■ Internal memory

❐ Up to 256 bytes of RAM

❐ Up to eight Kbytes of flash including EEROM emulation

■ Interface can auto configure to operate as PS/2 or USB

❐ No external components for switching between PS/2 and
USB modes

❐ No General Purpose I/O (GPIO) pins required to manage
dual mode capability

■ Low power consumption

❐ Typically 10 mA at 6 MHz

❐ 10 A sleep

■ In system reprogrammability

❐ Allows easy firmware update

■ GPIO ports

❐ Up to 20 GPIO pins

❐ 2 mA source current on all GPIO pins. Configurable 8 or
50 mA/pin current sink on designated pins.

❐ Each GPIO port supports high impedance inputs,
configurable pull-up, open drain output, CMOS/TTL inputs,
and CMOS output

❐ Maskable interrupts on all I/O pins

■ A dedicated 3.3 V regulator for the USB PHY. Aids in signalling
and D– line pull-up

■ 125 mA 3.3 V voltage regulator powers external 3.3 V devices

■ 3.3 V I/O pins

❐ 4 I/O pins with 3.3 V logic levels

❐ Each 3.3 V pin supports high impedance input, internal
pull-up, open drain output or traditional CMOS output

■ SPI serial communication

❐ Master or slave operation

❐ Configurable up to 4 Mbps transfers in the master mode

❐ Supports half duplex single data line mode for optical sensors

■ 2-channel 8-bit or 1-channel 16-bit capture timer registers.
Capture timer registers store both rising and falling edge times.

❐ Two registers each for two input pins

❐ Separate registers for rising and falling edge capture

❐ Simplifies the interface to RF inputs for wireless applications

■ Internal low power wakeup timer during suspend mode:

❐ Periodic wakeup with no external components

■ 12-bit Programmable Interval Timer with interrupts

■ Advanced development tools based on Cypress PSoC® tools

■ Watchdog timer (WDT)

■ Low-voltage detection with user configurable threshold
voltages

■ Operating voltage from 4.0 V to 5.5 V DC

■ Operating temperature from 0 °C–70 °C

■ Available in 18-pin PDIP; 16, 18, and 24-pin SOIC; 24-pin
QSOP, and 24-pin and 32-pin QFN Sawn packages

■ Industry standard programmer support

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 2 of 92

Applications

The CY7C63310/CY7C638xx is targeted for the following
applications:

■ PC HID devices

❐ Mice (optomechanical, optical, trackball)

■ Gaming

❐ Joysticks

❐ Game pad

■ General purpose

❐ Barcode scanners

❐ POS terminal

❐ Consumer electronics

❐ Toys

❐ Remote controls

❐ Security dongles

Internal
24 MHz

Oscillator

3.3V
Regulator

Clock
Control

POR /
Low-Voltage

Detect

Watchdog
Timer

RAM
Up to 256

Byte

M8C CPU
Flash

Up to 8K
Byte

Up to 14
Extended
IO Pins

Low-Speed
USB/PS2

Transceiver
and Pull up

Up to 6
GPIO
pins

Wakeup
Timer

16-bit Free
running
timer

12-bit Timer

4 3.3 V I/O /
SPI Pins

V
d

d

Interrupt
Control

Low-Speed
USB SIE

External Clock

Logic Block Diagram

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 3 of 92

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right enCoRe II device for your design, and to help
you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the product webpage
http://www.cypress.com/?id=182.

■ Overview: USB Portfolio, USB Roadmap.

■ USB Low Speed Product Selectors: enCoRe II, PRoC-LP,
PRoC-LPstar.

■ Application notes: Cypress offers a large number of USB
application notes covering a broad range of topics, from basic
to advanced level. Recommended application notes for getting
started with FX3 are:

❐ AN6062 - enCoRe™ to enCoRe II Conversion.

❐ AN6075 - enCoRe™ II USB Bootloader.

❐ AN15482 - Using Capture Timers in enCoRe™ II and
enCoRe II LV Devices.

■ Code Examples:

❐ CE58786 - Implementing Pin Specific Interrupts in enCoRe™
II / enCoRe II LV.

■ User Module Datasheets:

❐ User Module Datasheet: USB DEVICE DATASHEET, USB V
1.90 (CY7C639/638/633XX, CYRF69XX3).

❐ User Module Datasheet: 12-Bit Programmable Interval Timer
Datasheet, PITIMER12 V 1.1
(CY7C639/638/633/601/602XX, CYRF69XX3).

❐ User Module Datasheet: 1 Millisecond Interval Timer
Datasheet, MSTIMER V 1.2 (CY7C639/638/633/602/601XX,
CYRF69XX3).

❐ User Module Datasheet: SPI Master Datasheet SPIM V 1.30
(CY7C639/638/633/602/601xx, CYRF69xx3).

❐ User Module Datasheet: EEPROM Datasheet E2PROM V
0.40 (CY7C633/638/639/601/602xx, CYRF69xx3).

❐ User Module Datasheet: CyFi™ Star Network Protocol Stack
Datasheet CYFISNP V 2.00 (CY7C601/602xx, CYRF69x13,
CYRF89235, CYRF89435).

❐ User Module Datasheet: SPI-based CyFi™ Transceiver Data
Sheet CYFISPI (CY7C638x3, CY7C601/602xx,
CYRF69103, CYRF69213).

■ Development Kits:

❐ CY3216 Modular Programmer Kit.

❐ CY3655 enCoRe™ II Development Kit.

■ Reference Designs:

❐ CY4623 Mouse Reference Design.

■ Models: IBIS.

PSoC Designer

PSoC Designer is the revolutionary Integrated Design Environment (IDE) that you can use to customize PSoC to meet your specific
application requirements. PSoC Designer software accelerates system bring-up and time-to-market. Develop your applications using
a library of pre-characterized analog and digital peripherals in a drag-and-drop design environment. Then, customize your design
leveraging the dynamically generated API libraries of code. Finally, debug and test your designs with the integrated debug environment
including in-circuit emulation and standard software debug features.

■ Application Editor GUI for device and User Module configuration and dynamic reconfiguration

■ Extensive User Module Catalog

■ Integrated source code editor (C and Assembly)

■ Free C compiler with no size restrictions or time limits

■ Built-in Debugger

■ Integrated Circuit Emulation (ICE)

■ Built-in Support for Communication Interfaces:

❐ Hardware and software I2C slaves and masters

❐ Low/Full-speed USB 2.0

❐ Up to 4 full-duplex UARTs, SPI master and slave, and Wireless

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 4 of 92

Contents

Introduction ...5

Conventions .. 5

Pinouts .. 6

QFN Pinouts .. 7

Pin Descriptions ... 8

CPU Architecture .. 9

CPU Registers ... 10

Flags Register ... 10

Addressing Modes ... 11

Instruction Set Summary ... 14

Memory Organization ... 15

Flash Program Memory Organization 15

Data Memory Organization 16

Flash .. 16

SROM .. 16

SROM Function Descriptions 17

Clocking .. 21

Clock Architecture Description 23

CPU Clock During Sleep Mode 29

Reset .. 30

Power on Reset ... 31

Watchdog Timer Reset .. 31

Sleep Mode .. 31

Sleep Sequence .. 32

Wake up Sequence ... 32

Low Power in Sleep Mode ... 33

Low Voltage Detect Control ... 34

General Purpose I/O (GPIO) Ports 36

Port Data Registers ... 36

GPIO Port Configuration ... 38

Serial Peripheral Interface (SPI) 43

SPI Data Register .. 43

SPI Configure Register .. 44

SPI Interface Pins .. 45

Timer Registers .. 46

Registers ... 46

Interrupt Controller ... 54

Architectural Description ... 54

Interrupt Processing .. 55

Interrupt Trigger Conditions 55

Interrupt Latency ... 55

Interrupt Registers ... 56

Regulator Output .. 61

VREG Control .. 61

USB/PS2 Transceiver ... 62

USB Transceiver Configuration 62

USB Serial Interface Engine (SIE) 62

USB Device ... 63

USB Device Address ... 63

Endpoint 0, 1, and 2 Count .. 63

Endpoint 0 Mode ... 64

Endpoint 1 and 2 Mode ... 65

USB Mode Tables ... 67

Mode Column .. 67

Encoding Column .. 67

SETUP, IN, and OUT Columns 67

Details of Mode for Differing Traffic Conditions 68

Register Summary .. 70

Voltage versus CPU Frequency Characteristics 73

Absolute Maximum Ratings .. 74

DC Characteristics ... 74

AC Characteristics ... 76

Ordering Information .. 82

Ordering Code Definitions ... 82

Package Handling ... 82

Package Diagrams .. 83

Acronyms .. 87

Document Conventions ... 87

Units of Measure ... 87

Document History Page ... 88

Sales, Solutions, and Legal Information 92

Worldwide Sales and Design Support 92

Products .. 92

PSoC® Solutions .. 92

Cypress Developer Community 92

Technical Support ... 92

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 5 of 92

Introduction

Cypress has reinvented its leadership position in the low speed
USB market with a new family of innovative microcontrollers.
Introducing enCoRe II USB - ‘enhanced Component Reduction.’
Cypress has leveraged its design expertise in USB solutions to
advance its family of low speed USB microcontrollers, which
enable peripheral developers to design new products with a
minimum number of components. The enCoRe II USB
technology builds on the enCoRe family. The enCoRe family has
an integrated oscillator that eliminates the external crystal or
resonator, reducing overall cost. Also integrated into this chip are
other external components commonly found in low speed USB
applications, such as pull-up resistors, wakeup circuitry, and a
3.3 V regulator. Integrating these components reduces the
overall system cost.

The enCoRe II is an 8-bit flash programmable microcontroller
with an integrated low speed USB interface. The instruction set
is optimized specifically for USB and PS/2 operations, although
the microcontrollers may be used for a variety of other embedded
applications.

The enCoRe II features up to 20 GPIO pins to support USB,
PS/2, and other applications. The IO pins are grouped into four
ports (Port 0 to 3). The pins on Port 0 and Port 1 may each be
configured individually while the pins on Ports 2 and 3 are
configured only as a group. Each GPIO port supports high
impedance inputs, configurable pull-up, open drain output,
CMOS/TTL inputs, and CMOS output with up to five pins that
support a programmable drive strength of up to 50 mA sink
current. GPIO Port 1 features four pins that interface at a voltage
level of 3.3V. Additionally, each IO pin may be used to generate
a GPIO interrupt to the microcontroller. Each GPIO port has its
own GPIO interrupt vector; in addition, GPIO Port 0 has three
dedicated pins that have independent interrupt vectors
(P0.2–P0.4).

The enCoRe II features an internal oscillator. With the presence
of USB traffic, the internal oscillator may be set to precisely tune
to USB timing requirements (24 MHz ±1.5%). Optionally, an
external 12 MHz or 24 MHz clock is used to provide a higher
precision reference for USB operation. The clock generator
provides the 12 MHz and 24 MHz clocks that remain internal to
the microcontroller. The enCoRe II also has a 12-bit
programmable interval timer and a 16-bit Free Running Timer
with Capture Timer registers. In addition, the enCoRe II includes
a Watchdog timer and a vectored interrupt controller.

The enCoRe II has up to eight Kbytes of flash for user code and
up to 256 bytes of RAM for stack space and user variables.

The power on reset circuit detects logic when power is applied
to the device, resets the logic to a known state, and begins
executing instructions at flash address 0x0000. When power
falls below a programmable trip voltage, it generates a reset or
may be configured to generate an interrupt. There is a low
voltage detect circuit that detects when VCC drops below a
programmable trip voltage. It is configurable to generate an LVD
interrupt to inform the processor about the low voltage event.

POR and LVD share the same interrupt. There is no separate
interrupt for each. The Watchdog timer may be used to ensure
the firmware never gets stalled in an infinite loop.

The microcontroller supports 22 maskable interrupts in the
vectored interrupt controller. Interrupt sources include a USB bus
reset, LVR/POR, a programmable interval timer, a 1.024 ms
output from the free-running timer, three USB endpoints, two
capture timers, four GPIO Ports, three Port 0 pins, two SPI, a
16-bit free running timer wrap, an internal sleep timer, and a bus
active interrupt. The sleep timer causes periodic interrupts when
enabled. The USB endpoints interrupt after a USB transaction
complete is on the bus. The capture timers interrupt when a new
timer value is saved because of a selected GPIO edge event. A
total of seven GPIO interrupts support both TTL or CMOS
thresholds. For additional flexibility on the edge sensitive GPIO
pins, the interrupt polarity is programmed as rising or falling.

The free-running 16-bit timer provides two interrupt sources: the
1.024 ms outputs and the free running counter wrap interrupt.
The programmable interval timer provides up to 1 sec
resolution and provides an interrupt every time it expires. These
timers are used to measure the duration of an event under
firmware control by reading the desired timer at the start and at
the end of an event, then calculating the difference between the
two values. The two 8-bit capture timer registers save a
programmable 8-bit range of the free-running timer when a GPIO
edge occurs on the two capture pins (P0.5, P0.6). The two 8-bit
captures may be ganged into a single 16-bit capture.

The enCoRe II includes an integrated USB serial interface
engine (SIE) that allows the chip to easily interface to a USB
host. The hardware supports one USB device address with three
endpoints.

The USB D+ and D– pins are optionally used as PS/2 SCLK and
SDATA signals so that products are designed to respond to
either USB or PS/2 modes of operation. The PS/2 operation is
supported with internal 5 K pull-up resistors on P1.0 (D+) and
P1.1 (D–), and an interrupt to signal the start of PS/2 activity. In
USB mode, the integrated 1.5 Kpull-up resistor on D– may be
controlled under firmware. No external components are
necessary for dual USB and PS/2 systems, and no GPIO pins
need to be dedicated to switching between modes.

The enCoRe II supports in system programming by using the D+
and D– pins as the serial programming mode interface. The
programming protocol is not USB.

Conventions

In this data sheet, bit positions in the registers are shaded to
indicate which members of the enCoRe II family implement the
bits.

 Available in all enCoRe II family members

CY7C638(1/2/3)3 only

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 6 of 92

Pinouts

Figure 1. Pin Diagrams

1

2

3

4

5

6

9

11

15

16

17

18

19

20

22

21

NC

P0.7

TIO1/P0.6

TIO0/P0.5

INT2/P0.4

INT1/P0.3

P0.0

P2.0

P1.5/SMOSI

P1.3/SSEL

P3.1

P3.0

VCC

P1.2/VREG

P1.1/D–

P1.0/D+14

P1.4/SCLK

10P2.1

NC VSS12 13

7

8

INT0/P0.2

P0.1

24

23

P1.7

P1.6/SMISO

24-Pin QSOP
CY7C63823

1

2
3

4

6

7
8

10

11

12
13

15

16

18
17

SSEL/P1.3

SCLK/P1.4

SMOSI/P1.5

SMISO/P1.6

P0.7

TIO0/P0.5

P1.2/VREG

P1.1/D–

P1.0/D+

P0.0
P0.1

P0.2/INT0

18-Pin PDIP

VCC

9

TIO1/P0.6

INT2/P0.4 P0.3/INT1

CY7C63813

5 14P1.7 VSS

Top View

1

2
3

4

6

7
8 9

10
11

13

14

16
15

TIO1/P0.6

TIO0/P0.5

INT2/P0.4

INT1/P0.3

P0.1

VSS

P1.6/SMISO

P1.4/SCLK

P1.3/SSEL

P1.1/D–
P1.0/D+

VCC

16-Pin SOIC

P1.5/SMOSI

P0.0

5 12INT0/P0.2 P1.2

CY7C63801, CY7C63310

1

2
3

4

6

7
8

10

11

12
13

15

16

18
17

P0.7

TIO1/P0.6

TIO0/P0.5

INT2/P0.4

INT0/P0.2

P0.0

P1.7

P1.5/SMOSI

P1.4/SCLK

P1.2/VREG
VCC

P1.1/D–

18-Pin SOIC

P1.6/SMISO

9

P0.1

VSS P1.0/D+

CY7C63813

5 14INT1/P0.3 P1.3/SSEL

1

2

3

4

5

6

9

11

15

16

17

18

19

20

22

21

NC

P0.7

TIO1/P0.6

TIO0/P0.5

INT2/P0.4

INT1/P0.3

P0.0

P2.0

P1.6/SMISO

P3.0

P1.4/SCLK

P3.1

P1.2/VREG

P1.3/SSEL

VCC

P1.1/D–14

P1.5/SMOSI

10P2.1

VSS P1.0/D+12 13

7

8

INT0/P0.2

P0.1

24

23

NC

P1.7

24-Pin SOIC
CY7C63823

1

2
3

4

6

7
8 9

10
11

13

14

16
15

TIO1/P0.6

TIO0/P0.5

INT2/P0.4

INT1/P0.3

P0.1

VSS

P1.6/SMISO

P1.4/SCLK

P1.3/SSEL

P1.1/D–
P1.0/D+

VCC

P1.5/SMOSI

P0.0

5 12INT0/P0.2 P1.2/VREG

CY7C63803
16-Pin SOIC

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 7 of 92

Figure 2. CY7C63803 24-Pin QFN

Figure 3. CY7C63833 32-Pin Sawn QFN

QFN
INT1/P0.3

1

2

3

4

5

6

18

17

16

15

14

13

P1.4/SCLK

P1.3/SSEL

2
4

2
3

2
2

2
1 1

2
0

1
9

N
C

P1.5/MOSI

7 8 9 1
0 1
1

1 2

V
S

S

INT2/P0.4

N
C

P1.1 D-

P
1

.0
 D

+

VCC

P1.2/VREG

P
0
.0

TIO0/P0.5

INT0/P0.2

P0.1

N
C

N
C

N
C

N
C

N
C

N
C

N
C

NC

1

2

3

4

5

6

21

19

23

25

22

26

20

24

18

9

8

12 1310 14 1611

17

15

7

272832 30 2931

P0.6/TIO1

P0.5/TIO0

P0.4/INT2

P0.3/INT1

P0.2/INT0

P0.1

P0.0

P2.1

P
2
.0

N
C

N
C

N
C

V
s
s

P
1
.0

/D
+

P
1

.1
/D

-

V
d

d

NC

NC

P1.3/SSEL

P3.0

P3.1

P1.4/SCLK

P1.5/SMOSI

P
1

.6
/M

IS
O

P
1
.7

P
0
.7

N
C

N
C

N
C

N
C

N
C

P1.2/VREG

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 8 of 92

Pin Descriptions

32
QFN

24
QFN

24
QSOP

24
SOIC

18
SIOC

18
PDIP

16
SOIC

Name Description

21 – 19 18 – – – P3.0 GPIO Port 3. Configured as a group (byte).

22 – 20 19 – – – P3.1

9 – 11 11 – – – P2.0 GPIO Port 2. Configured as a group (byte).

8 – 10 10 – – – P2.1

14 12 14 13 10 15 9 P1.0/D+ GPIO Port 1 bit 0/USB D+ [1]/ISSP-SCLK If this pin is used
as a General Purpose output, it draws current. This pin must
be configured as an input to reduce current draw.

15 13 15 14 11 16 10 P1.1/D– GPIO Port 1 bit 1/USB D– [1]/ISSP-SDATA If this pin is used
as a General Purpose output, it draws current. This pin must
be configured as an input to reduce current draw.

18 15 17 16 13 18 12 P1.2/VREG GPIO Port 1 bit 2. Configured individually.
3.3V if regulator is enabled. (The 3.3 V regulator is not available
in the CY7C63310 and CY7C63801.) A 1-F min, 2-F max
capacitor is required on Vreg output.

20 16 18 17 14 1 13 P1.3/SSEL GPIO Port 1 bit 3. Configured individually.
Alternate function is SSEL signal of the SPI bus TTL voltage
thresholds. Although Vreg is not available with the
CY7C63310, 3.3 V I/O is still available.

23 17 21 20 15 2 14 P1.4/SCLK GPIO Port 1 bit 4. Configured individually.
Alternate function is SCLK signal of the SPI bus TTL voltage
thresholds. Although Vreg is not available with the
CY7C63310, 3.3 V I/O is still available.

24 18 22 21 16 3 15 P1.5/SMOSI GPIO Port 1 bit 5. Configured individually.
Alternate function is SMOSI signal of the SPI bus TTL voltage
thresholds. Although Vreg is not available with the
CY7C63310, 3.3 V I/O is still available.

25 – 23 22 17 4 16 P1.6/SMISO GPIO Port 1 bit 6. Configured individually.
Alternate function is SMISO signal of the SPI bus TTL voltage
thresholds. Although Vreg is not available with the
CY7C63310, 3.3 V I/O is still available.

26 – 24 23 18 5 – P1.7 GPIO Port 1 bit 7. Configured individually.
TTL voltage threshold.

7 7 9 9 8 13 7 P0.0 GPIO Port 0 bit 0. Configured individually.
External clock input when configured as Clock In.

6 6 8 8 7 12 6 P0.1 GPIO Port 0 bit 1. Configured individually.
Clock output when configured as Clock Out.

5 5 7 7 6 11 5 P0.2/INT0 GPIO Port 0 bit 2. Configured individually.
Optional rising edge interrupt INT0.

4 4 6 6 5 10 4 P0.3/INT1 GPIO Port 0 bit 3. Configured individually.
Optional rising edge interrupt INT1.

3 3 5 5 4 9 3 P0.4/INT2 GPIO Port 0 bit 4. Configured individually.
Optional rising edge interrupt INT2.

Note
1. P1.0(D+) and P1.1(D–) pins must be in I/O mode when used as GPIO and in Isb mode.

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 9 of 92

CPU Architecture

This family of microcontrollers is based on a high performance,
8-bit, Harvard architecture microprocessor. Five registers control
the primary operation of the CPU core. These registers are
affected by various instructions, but are not directly accessible
through the register space by the user.

The 16-bit Program Counter Register (CPU_PC) allows direct
addressing of the full 8 Kbytes of program memory space.

The Accumulator Register (CPU_A) is the general purpose
register, which holds the results of instructions that specify any
of the source addressing modes.

The Index Register (CPU_X) holds an offset value that is used
in the indexed addressing modes. Typically, this is used to
address a block of data within the data memory space.

The Stack Pointer Register (CPU_SP) holds the address of the
current top of the stack in the data memory space. It is affected
by the PUSH, POP, LCALL, CALL, RETI, and RET instructions,
which manage the software stack. It is also affected by the SWAP
and ADD instructions.

The Flag Register (CPU_F) has three status bits: Zero Flag bit
[1]; Carry Flag bit [2]; Supervisory State bit [3]. The Global
Interrupt Enable bit [0] globally enables or disables interrupts.
The user cannot manipulate the Supervisory State status bit [3].
The flags are affected by arithmetic, logic, and shift operations.
The manner in which each flag is changed is dependent upon
the instruction being executed, such as AND, OR, XOR, and
others. See Table 18 on page 14.

2 2 4 4 3 8 2 P0.5/TIO0 GPIO Port 0 bit 5. Configured individually
Alternate function Timer capture inputs or Timer output TIO0

1 – 3 3 2 7 1 P0.6/TIO1 GPIO Port 0 bit 6. Configured individually
Alternate function Timer capture inputs or Timer output TIO1

32 – 2 2 1 6 – P0.7 GPIO Port 0 bit 7. Configured individually
Not present in the 16 pin SOIC package

10 8 1 1 – – – NC No connect

11 9 12 24 – – – NC No connect

12 10 – – – – – NC No connect

17 20 – – – – – NC No connect

19 21 – – – – – NC No connect

27 22 – – – – – NC No connect

28 23 – – – – – NC No connect

29 24 – – – – – NC No connect

30 – – – – – – NC No connect

31 – – – – – – NC No connect

16 14 16 15 12 17 11 Vcc Supply

13 11 13 12 9 14 8 VSS Ground

Pin Descriptions (continued)

32
QFN

24
QFN

24
QSOP

24
SOIC

18
SIOC

18
PDIP

16
SOIC

Name Description

Table 1. CPU Registers and Register Names

CPU Register Register Name

Flags CPU_F

Program Counter CPU_PC

Accumulator CPU_A

Stack Pointer CPU_SP

Index CPU_X

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 10 of 92

CPU Registers

The CPU registers in enCoRe II devices are in two banks with 256 registers in each bank. Bit[4]/XI/O bit in the CPU Flags register
must be set/cleared to select between the two register banks Table 2 on page 10.

Flags Register

The Flags Register is set or reset only with logical instruction.

Table 2. CPU Flags Register (CPU_F) [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved XIO Super Carry Zero Global IE

Read/Write – – – R/W R RW RW RW

Default 0 0 0 0 0 0 1 0

Bit [7:5]: Reserved

Bit 4: XIO

Set by the user to select between the register banks

0 = Bank 0

1 = Bank 1

Bit 3: Super

Indicates whether the CPU is executing user code or Supervisor Code. (This code cannot be accessed directly by the user.)

0 = User Code

1 = Supervisor Code

Bit 2: Carry

Set by the CPU to indicate whether there has been a carry in the previous logical/arithmetic operation.

0 = No Carry

1 = Carry

Bit 1: Zero

Set by the CPU to indicate whether there has been a zero result in the previous logical/arithmetic operation.

0 = Not Equal to Zero

1 = Equal to Zero

Bit 0: Global IE

Determines whether all interrupts are enabled or disabled

0 = Disabled

1 = Enabled

Note CPU_F register is only readable with the explicit register address 0xF7. The OR F, expr and AND F, expr instructions must
be used to set and clear the CPU_F bits.

Table 3. CPU Accumulator Register (CPU_A)

Bit # 7 6 5 4 3 2 1 0

Field CPU Accumulator [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: CPU Accumulator [7:0]

8-bit data value holds the result of any logical/arithmetic instruction that uses a source addressing mode.

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 11 of 92

Addressing Modes

Source Immediate

The result of an instruction using this addressing mode is placed
in the A register, the F register, the SP register, or the X register,
which is specified as part of the instruction opcode. Operand 1
is an immediate value that serves as a source for the instruction.
Arithmetic instructions require two sources; the second source is
the A or the X register specified in the opcode. Instructions using
this addressing mode are two bytes in length.

Examples

Table 4. CPU X Register (CPU_X)

Bit # 7 6 5 4 3 2 1 0

Field X [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: X [7:0]

8-bit data value holds an index for any instruction that uses an indexed addressing mode.

Table 5. CPU Stack Pointer Register (CPU_SP)

Bit # 7 6 5 4 3 2 1 0

Field Stack Pointer [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: Stack Pointer [7:0]

8-bit data value holds a pointer to the current top of the stack.

Table 6. CPU Program Counter High Register (CPU_PCH)

Bit # 7 6 5 4 3 2 1 0

Field Program Counter [15:8]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: Program Counter [15:8]

8-bit data value holds the higher byte of the program counter.

Table 7. CPU Program Counter Low Register (CPU_PCL)

Bit # 7 6 5 4 3 2 1 0

Field Program Counter [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: Program Counter [7:0]

8-bit data value holds the lower byte of the program counter.

Table 8. Source Immediate

Opcode Operand 1

Instruction Immediate Value

ADD A 7 The immediate value of 7 is added with the
Accumulator and the result is placed in the
Accumulator.

MOV X 8 The immediate value of 8 is moved to the X
register.

AND F 9 The immediate value of 9 is logically ANDed with
the F register and the result is placed in the F
register.

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 12 of 92

Source Direct

The result of an instruction using this addressing mode is placed
in either the A register or the X register, which is specified as part
of the instruction opcode. Operand 1 is an address that points to
a location in the RAM memory space or the register space that
is the source of the instruction. Arithmetic instructions require
two sources; the second source is the A register or X register
specified in the opcode. Instructions using this addressing mode
are two bytes in length.

Examples

Source Indexed

The result of an instruction using this addressing mode is placed
in either the A register or the X register, which is specified as part
of the instruction opcode. Operand 1 is added to the X register
forming an address that points to a location in the RAM memory
space or the register space that is the source of the instruction.
Arithmetic instructions require two sources; the second source is
the A register or X register specified in the opcode. Instructions
using this addressing mode are two bytes in length.

Examples

Destination Direct

The result of an instruction using this addressing mode is placed
within the RAM memory space or the register space. Operand 1
is an address that points to the location of the result. The source
for the instruction is either the A register or the X register, which
is specified as part of the instruction opcode. Arithmetic
instructions require two sources; the second source is the
location specified by Operand 1. Instructions using this
addressing mode are two bytes in length.

Examples

Destination Indexed

The result of an instruction using this addressing mode is placed
within the RAM memory space or the register space. Operand 1
is added to the X register forming the address that points to the
location of the result. The source for the instruction is the A
register. Arithmetic instructions require two sources; the second
source is the location specified by Operand 1 added with the X
register. Instructions using this addressing mode are two bytes
in length.

Example

Table 9. Source Direct

Opcode Operand 1

Instruction Source address

ADD A [7] The value in the RAM memory location at
address 7 is added with the Accumulator,
and the result is placed in the Accumu-
lator.

MOV X REG[8] The value in the register space at address
8 is moved to the X register.

Table 10. Source Indexed

Opcode Operand 1

Instruction Source index

ADD A [X+7] The value in the memory location at
address X + 7 is added with the
Accumulator, and the result is placed
in the Accumulator.

MOV X REG[X+8] The value in the register space at
address X + 8 is moved to the X
register.

Table 11. Destination Direct

Opcode Operand 1

Instruction Destination address

ADD [7] A The value in the memory location at
address 7 is added with the Accumu-
lator, and the result is placed in the
memory location at address 7. The
Accumulator is unchanged.

MOV REG[8] A The Accumulator is moved to the
register space location at address 8.
The Accumulator is unchanged.

Table 12. Destination Indexed

Opcode Operand 1

Instruction Destination index

ADD [X+7] A The value in the; memory location at
address X+7 is added with the Accumu-
lator, and the result is placed in the
memory location at address x+7. The
Accumulator is unchanged.

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 13 of 92

Destination Direct Source Immediate

The result of an instruction using this addressing mode is placed
within the RAM memory space or the register space. Operand 1
is the address of the result. The source of the instruction is
Operand 2, which is an immediate value. Arithmetic instructions
require two sources; the second source is the location specified
by Operand 1. Instructions using this addressing mode are three
bytes in length.

Examples

Destination Indexed Source Immediate

The result of an instruction using this addressing mode is placed
within the RAM memory space or the register space. Operand 1
is added to the X register to form the address of the result. The
source of the instruction is Operand 2, which is an immediate
value. Arithmetic instructions require two sources; the second
source is the location specified by Operand 1 added with the X
register. Instructions using this addressing mode are three bytes
in length.

Examples

Destination Direct Source Direct

The result of an instruction using this addressing mode is placed
within the RAM memory. Operand 1 is the address of the result.
Operand 2 is an address that points to a location in the RAM
memory that is the source for the instruction. This addressing
mode is only valid on the MOV instruction. The instruction using
this addressing mode is three bytes in length.

.

Example

Source Indirect Post Increment

The result of an instruction using this addressing mode is placed
in the Accumulator. Operand 1 is an address pointing to a
location within the memory space, which contains an address
(the indirect address) for the source of the instruction. The
indirect address is incremented as part of the instruction
execution. This addressing mode is only valid on the MVI
instruction. The instruction using this addressing mode is two
bytes in length. Refer to the PSoC Designer: Assembly
Language User Guide for further details on MVI instruction.

Example

Destination Indirect Post Increment

The result of an instruction using this addressing mode is placed
within the memory space. Operand 1 is an address pointing to a
location within the memory space, which contains an address
(the indirect address) for the destination of the instruction. The
indirect address is incremented as part of the instruction
execution. The source for the instruction is the Accumulator. This
addressing mode is only valid on the MVI instruction. The
instruction using this addressing mode is two bytes in length.

Example

Table 13. Destination Direct Source Immediate

Opcode Operand 1 Operand 2

Instruction Destination address Immediate Value

ADD [7] 5 The value in the memory location at address
7 is added to the immediate value of 5, and
the result is placed in the memory location at
address 7.

MOV REG[8] 6 The immediate value of 6 is moved into the
register space location at address 8.

Table 14. Destination Indexed Source Immediate

Opcode Operand 1 Operand 2

Instruction Destination index Immediate value

ADD [X+7] 5 The value in the memory location at
address X+7 is added with the
immediate value of 5, and the result
is placed in the memory location at
address X+7.

MOV REG[X+8] 6 The immediate value of 6 is moved
into the location in the register space
at address X+8.

Table 15. Destination Direct Source Direct

Opcode Operand 1 Operand 2

Instruction Destination address Source address

MOV [7] [8] The value in the memory location at address 8
is moved to the memory location at address 7.

Table 16. Source Indirect Post Increment

Opcode Operand 1

Instruction Source address address

MVI A [8] The value in the memory location at address
8 is an indirect address. The memory location
pointed to by the indirect address is moved
into the Accumulator. The indirect address is
then incremented.

Table 17. Destination Indirect Post Increment

Opcode Operand 1

Instruction Destination address address

MVI [8] A The value in the memory location at
address 8 is an indirect address. The
Accumulator is moved into the memory
location pointed to by the indirect
address. The indirect address is then
incremented.

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 14 of 92

Instruction Set Summary

The instruction set is summarized in Table 18 numerically and serves as a quick reference. If more information is needed, the
Instruction Set Summary tables are described in detail in the PSoC Designer Assembly Language User Guide (available on the
Cypress web site at http://www.cypress.com/?docID=15538).

Table 18. Instruction Set Summary Sorted Numerically by Opcode Order [2, 3]

O
p

c
o

d
e

 H
e
x

C
y
c
le

s

B
y
te

s

Instruction Format Flags O
p

c
o

d
e

 H
e
x

C
y
c
le

s

B
y
te

s

Instruction Format Flags O
p

c
o

d
e

 H
e
x

C
y
c
le

s

B
y
te

s

Instruction Format Flags

00 15 1 SSC – 2D 8 2 OR [X+expr], A Z 5A 5 2 MOV [expr], X –

01 4 2 ADD A, expr C, Z 2E 9 3 OR [expr], expr Z 5B 4 1 MOV A, X Z

02 6 2 ADD A, [expr] C, Z 2F 10 3 OR [X+expr], expr Z 5C 4 1 MOV X, A –

03 7 2 ADD A, [X+expr] C, Z 30 9 1 HALT – 5D 6 2 MOV A, reg[expr] Z

04 7 2 ADD [expr], A C, Z 31 4 2 XOR A, expr Z 5E 7 2 MOV A, reg[X+expr] Z

05 8 2 ADD [X+expr], A C, Z 32 6 2 XOR A, [expr] Z 5F 10 3 MOV [expr], [expr] –

06 9 3 ADD [expr], expr C, Z 33 7 2 XOR A, [X+expr] Z 60 5 2 MOV reg[expr], A –

07 10 3 ADD [X+expr], expr C, Z 34 7 2 XOR [expr], A Z 61 6 2 MOV reg[X+expr], A –

08 4 1 PUSH A – 35 8 2 XOR [X+expr], A Z 62 8 3 MOV reg[expr], expr –

09 4 2 ADC A, expr C, Z 36 9 3 XOR [expr], expr Z 63 9 3 MOV reg[X+expr], expr –

0A 6 2 ADC A, [expr] C, Z 37 10 3 XOR [X+expr], expr Z 64 4 1 ASL A C, Z

0B 7 2 ADC A, [X+expr] C, Z 38 5 2 ADD SP, expr – 65 7 2 ASL [expr] C, Z

0C 7 2 ADC [expr], A C, Z 39 5 2 CMP A, expr

if (A=B) Z=1

if (A<B) C=1

66 8 2 ASL [X+expr] C, Z

0D 8 2 ADC [X+expr], A C, Z 3A 7 2 CMP A, [expr] 67 4 1 ASR A C, Z

0E 9 3 ADC [expr], expr C, Z 3B 8 2 CMP A, [X+expr] 68 7 2 ASR [expr] C, Z

0F 10 3 ADC [X+expr], expr C, Z 3C 8 3 CMP [expr], expr 69 8 2 ASR [X+expr] C, Z

10 4 1 PUSH X – 3D 9 3 CMP [X+expr], expr 6A 4 1 RLC A C, Z

11 4 2 SUB A, expr C, Z 3E 10 2 MVI A, [[expr]++] Z 6B 7 2 RLC [expr] C, Z

12 6 2 SUB A, [expr] C, Z 3F 10 2 MVI [[expr]++], A – 6C 8 2 RLC [X+expr] C, Z

13 7 2 SUB A, [X+expr] C, Z 40 4 1 NOP – 6D 4 1 RRC A C, Z

14 7 2 SUB [expr], A C, Z 41 9 3 AND reg[expr], expr Z 6E 7 2 RRC [expr] C, Z

15 8 2 SUB [X+expr], A C, Z 42 10 3 AND reg[X+expr], expr Z 6F 8 2 RRC [X+expr] C, Z

16 9 3 SUB [expr], expr C, Z 43 9 3 OR reg[expr], expr Z 70 4 2 AND F, expr C, Z

17 10 3 SUB [X+expr], expr C, Z 44 10 3 OR reg[X+expr], expr Z 71 4 2 OR F, expr C, Z

18 5 1 POP A Z 45 9 3 XOR reg[expr], expr Z 72 4 2 XOR F, expr C, Z

19 4 2 SBB A, expr C, Z 46 10 3 XOR reg[X+expr], expr Z 73 4 1 CPL A Z

1A 6 2 SBB A, [expr] C, Z 47 8 3 TST [expr], expr Z 74 4 1 INC A C, Z

1B 7 2 SBB A, [X+expr] C, Z 48 9 3 TST [X+expr], expr Z 75 4 1 INC X C, Z

1C 7 2 SBB [expr], A C, Z 49 9 3 TST reg[expr], expr Z 76 7 2 INC [expr] C, Z

1D 8 2 SBB [X+expr], A C, Z 4A 10 3 TST reg[X+expr], expr Z 77 8 2 INC [X+expr] C, Z

1E 9 3 SBB [expr], expr C, Z 4B 5 1 SWAP A, X Z 78 4 1 DEC A C, Z

1F 10 3 SBB [X+expr], expr C, Z 4C 7 2 SWAP A, [expr] Z 79 4 1 DEC X C, Z

20 5 1 POP X – 4D 7 2 SWAP X, [expr] – 7A 7 2 DEC [expr] C, Z

21 4 2 AND A, expr Z 4E 5 1 SWAP A, SP Z 7B 8 2 DEC [X+expr] C, Z

22 6 2 AND A, [expr] Z 4F 4 1 MOV X, SP – 7C 13 3 LCALL –

23 7 2 AND A, [X+expr] Z 50 4 2 MOV A, expr Z 7D 7 3 LJMP –

24 7 2 AND [expr], A Z 51 5 2 MOV A, [expr] Z 7E 10 1 RETI C, Z

25 8 2 AND [X+expr], A Z 52 6 2 MOV A, [X+expr] Z 7F 8 1 RET –

26 9 3 AND [expr], expr Z 53 5 2 MOV [expr], A – 8x 5 2 JMP –

27 10 3 AND [X+expr], expr Z 54 6 2 MOV [X+expr], A – 9x 11 2 CALL –

28 11 1 ROMX Z 55 8 3 MOV [expr], expr – Ax 5 2 JZ –

29 4 2 OR A, expr Z 56 9 3 MOV [X+expr], expr – Bx 5 2 JNZ –

2A 6 2 OR A, [expr] Z 57 4 2 MOV X, expr – Cx 5 2 JC –

2B 7 2 OR A, [X+expr] Z 58 6 2 MOV X, [expr] – Dx 5 2 JNC –

2C 7 2 OR [expr], A Z 59 7 2 MOV X, [X+expr] – Ex 7 2 JACC –

Fx 13 2 INDEX Z

Notes
2. Interrupt routines take 13 cycles before execution resumes at interrupt vector table.
3. The number of cycles required by an instruction is increased by one for instructions that span 256 byte boundaries in the flash memory space.

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 15 of 92

Memory Organization

Flash Program Memory Organization

Figure 4. Program Memory Space with Interrupt Vector Table

after reset Address

 16-bit PC 0x0000 Program execution begins here after a reset

0x0004 POR/LVD

0x0008 INT0

0x000C SPI transmitter empty

0x0010 SPI receiver full

0x0014 GPIO port 0

0x0018 GPIO port 1

0x001C INT1

0x0020 EP0

0x0024 EP1

0x0028 EP2

0x002C USB reset

0x0030 USB active

0x0034 1 ms interval timer

0x0038 Programmable interval timer

0x003C Timer capture 0

0x0040 Timer capture 1

0x0044 16-bit free running timer wrap

0x0048 INT2

0x004C PS2 data low

0x0050 GPIO port 2

0x0054 GPIO port 3

0x0058 Reserved

0x005C Reserved

0x0060 Reserved

0x0064 Sleep timer

0x0068 Program Memory begins here (if below interrupts not used,
program memory can start lower)

0x0BFF 3 KB ends here (CY7C63310)

0x0FFF 4 KB ends here (CY7C63801)

0x1FFF 8 KB ends here (CY7C638x3)

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 16 of 92

Data Memory Organization

The CY7C63310/638xx microcontrollers provide up to 256 bytes of data RAM.

Flash

This section describes the flash block of the enCoRe II. Much of
the user visible flash functionality including programming and
security are implemented in the M8C Supervisory Read Only
Memory (SROM). The enCoRe II flash has an endurance of 1000
cycles and a 10 year data retention capability.

Flash Programming and Security

All flash programming is performed by code in the SROM. The
registers that control the flash programming are only visible to
the M8C CPU when it executes out of SROM. This makes it
impossible to read, write or erase the flash by bypassing the
security mechanisms implemented in the SROM.

Customer firmware can program the flash only through SROM
calls. The data or code images are sourced through any interface
with the appropriate support firmware. This type of programming
requires a ‘boot-loader’, which is a piece of firmware resident on
the flash. For safety reasons this boot-loader must not be
overwritten during firmware rewrites.

The flash provides four extra auxiliary rows that are used to hold
flash block protection flags, boot time calibration values,
configuration tables, and any device values. The routines for
accessing these auxiliary rows are documented in the section
SROM on page 16 section. The auxiliary rows are not affected
by the device erase function.

In System Programming

Most designs that include an enCoRe II part have a USB
connector attached to the USB D+ and D– pins on the device.
These designs require the ability to program or reprogram a part
through the USB D+ and D– pins alone.

The enCoRe II devices enable this type of in system
programming by using the D+ and D– pins as the serial
programming mode interface. This allows an external controller

to enable the enCoRe II part to enter the serial programming
mode, and then use the test queue to issue flash access
functions in the SROM. The programming protocol is not USB.

SROM

The SROM holds code that boots the part, calibrates circuitry,
and performs flash operations (Table 19 on page 16 lists the
SROM functions). The functions of the SROM are accessed in
the normal user code or operating from flash. The SROM exists
in a separate memory space from the user code. The SROM
functions are accessed by executing the Supervisory System
Call instruction (SSC), which has an opcode of 00h. Before
executing the SSC the M8C’s accumulator must be loaded with
the desired SROM function code from Table 19 on page 16.
Undefined functions cause a HALT if called from the user code.
The SROM functions are executing code with calls; as a result,
the functions require stack space. With the exception of Reset,
all of the SROM functions have a parameter block in SRAM that
must be configured before executing the SSC. Table 20 on page
17 lists all possible parameter block variables. The meaning of
each parameter, with regards to a specific SROM function, is
described later in this section.

Figure 5. Data Memory Organization

after reset Address

8-bit PSP 0x00 Stack begins here and grows upward.

Top of RAM Memory 0xFF

Table 19. SROM Function Codes

Function Code Function Name Stack Space

00h SWBootReset 0

01h ReadBlock 7

02h WriteBlock 10

03h EraseBlock 9

05h EraseAll 11

06h TableRead 3

07h CheckSum 3

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 17 of 92

Two important variables that are used for all functions are KEY1
and KEY2. These variables are used to help discriminate
between valid SSCs and inadvertent SSCs. KEY1 must always
have a value of 3Ah, while KEY2 must have the same value as
the stack pointer when the SROM function begins execution.
This would be the Stack Pointer value when the SSC opcode is
executed, plus three. If either of the keys do not match the
expected values, the M8C halts (with the exception of the
SWBootReset function). The following code puts the correct
value in KEY1 and KEY2. The code starts with a halt, to force the
program to jump directly into the setup code and not run into it.
halt

SSCOP: mov [KEY1], 3ah

mov X, SP

mov A, X

add A, 3

mov [KEY2], A

Return Codes

The SROM also features Return Codes and Lockouts.

Return codes aid in the determination of the success or failure of
a particular function. The return code is stored in KEY1’s position
in the parameter block. The CheckSum and TableRead functions
do not have return codes because KEY1’s position in the
parameter block is used to return other data.

Read, write, and erase operations may fail if the target block is
read or write protected. Block protection levels are set during
device programming.

The EraseAll function overwrites data in addition to leaving the
entire user flash in the erase state. The EraseAll function loops
through the number of flash macros in the product, executing the
following sequence: erase, bulk program all zeros, erase. After
all the user space in all the flash macros are erased, a second
loop erases and then programs each protection block with zeros.

SROM Function Descriptions

SWBootReset Function

The SROM function, SWBootReset, is the function that is
responsible for transitioning the device from a reset state to
running user code. The SWBootReset function is executed
whenever the SROM is entered with an M8C accumulator value
of 00h: the SRAM parameter block is not used as an input to the
function. This happens by design after a hardware reset,
because the M8C's accumulator is reset to 00h or when the user
code executes the SSC instruction with an accumulator value of
00h. The SWBootReset function is not executed when the SSC
instruction is executed with a bad key value and a non-zero
function code. An enCoRe II device executes the HALT
instruction if a bad value is given for either KEY1 or KEY2.

The SWBootReset function verifies the integrity of the calibration
data by way of a 16-bit checksum, before releasing the M8C to
run user code.

ReadBlock Function

The ReadBlock function is used to read 64 contiguous bytes
from flash: a block.

This function first checks the protection bits and determines if the
desired BLOCKID is readable. If the read protection is turned on,
the ReadBlock function exits setting the accumulator and KEY2
back to 00h. KEY1 has a value of 01h, indicating a read failure.
If read protection is not enabled, the function reads 64 bytes from
the flash using a ROMX instruction and stores the results in the
SRAM using an MVI instruction. The first of the 64 bytes are
stored in the SRAM at the address indicated by the value of the
POINTER parameter. When the ReadBlock completes
successfully, the accumulator, KEY1, and KEY2 all have a value
of 00h.

Table 20. SROM Function Parameters

Variable Name SRAM Address

Key1/Counter/Return Code 0,F8h

Key2/TMP 0,F9h

BlockID 0,FAh

Pointer 0,FBh

Clock 0,FCh

Mode 0,FDh

Delay 0,FEh

PCL 0,FFh

Table 21. SROM Return Codes

Return Code Description

00h Success

01h Function not allowed due to level of protection
on block.

02h Software reset without hardware reset.

03h Fatal error, SROM halted.

Table 22. ReadBlock Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value, when SSC is
executed.

BLOCKID 0,FAh flash block number

POINTER 0,FBh First of 64 addresses in SRAM
where returned data must be stored.

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 18 of 92

WriteBlock Function

The WriteBlock function is used to store data in the flash. Data
is moved 64 bytes at a time from SRAM to flash using this
function. The WriteBlock function first checks the protection bits
and determines if the desired BLOCKID is writable. If write
protection is turned on, the WriteBlock function exits setting the
accumulator and KEY2 back to 00h. KEY1 has a value of 01h,
indicating a write failure. The configuration of the WriteBlock
function is straightforward. The BLOCKID of the flash block,
where the data is stored, must be determined and stored at
SRAM address FAh.

The SRAM address of the first of the 64 bytes to be stored in
flash must be indicated using the POINTER variable in the
parameter block (SRAM address FBh). Finally, the CLOCK and
DELAY value must be set correctly. The CLOCK value deter-
mines the length of the write pulse that is used to store the data
in the flash. The CLOCK and DELAY values are dependent on
the CPU speed and must be set correctly.

EraseBlock Function

The EraseBlock function is used to erase a block of 64
contiguous bytes in flash. The EraseBlock function first checks
the protection bits and determines if the desired BLOCKID is
writable. If write protection is turned on, the EraseBlock function
exits setting the accumulator and KEY2 back to 00h. KEY1 has
a value of 01h, indicating a write failure. The EraseBlock function
is only useful as the first step in programming. When a block is
erased, the data in the block is not one hundred percent
unreadable. If the objective is to obliterate data in a block, the
best method is to perform an EraseBlock followed by a Write-
Block of all zeros.

To set up the parameter block for the EraseBlock function,
correct key values must be stored in KEY1 and KEY2. The block
number to be erased must be stored in the BLOCKID variable
and the CLOCK and DELAY values must be set based on the
current CPU speed.

ProtectBlock Function

The enCoRe II devices offer flash protection on a block by block
basis. Table 25 lists the protection modes available. In this table,
ER and EW indicate the ability to perform external reads and
writes. For internal writes, IW is used. Internal reading is
permitted by way of the ROMX instruction. The ability to read by
way of the SROM ReadBlock function is indicated by SR. The
protection level is stored in two bits according to Table 25. These
bits are bit packed into the 64 bytes of the protection block. As a
result, each protection block byte stores the protection level for
four flash blocks. The bits are packed into a byte, with the lowest
numbered block’s protection level stored in the lowest numbered
bits Table 25.

The first address of the protection block contains the protection
level for blocks 0 through 3; the second address is for blocks 4
through 7. The 64th byte stores the protection level for blocks
252 through 255.

The level of protection is only decreased by an EraseAll, which
places zeros in all locations of the protection block. To set the
level of protection, the ProtectBlock function is used. This
function takes data from SRAM, starting at address 80h, and
ORs it with the current values in the protection block. The result
of the OR operation is then stored in the protection block. The
EraseBlock function does not change the protection level for a
block. Because the SRAM location for the protection data is fixed
and there is only one protection block per flash macro, the
ProtectBlock function expects very few variables in the
parameter block to be set before calling the function. The
parameter block values that must be set, besides the keys, are
the CLOCK and DELAY values.

Table 23. WriteBlock Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value, when SSC is
executed.

BLOCKID 0,FAh 8KB flash block number (00h–7Fh)
4KB flash block number (00h–3Fh)
3KB flash block number (00h–2Fh)

POINTER 0,FBh First of 64 addresses in SRAM, where
the data to be stored in flash is
located before calling WriteBlock.

CLOCK 0,FCh Clock divider used to set the write
pulse width.

DELAY 0,FEh For a CPU speed of 12 MHz set to
56h.

Table 24. EraseBlock Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value, when SSC is
executed.

BLOCKID 0,FAh 8KB flash block number (00h–7Fh)
4KB flash block number (00h–3Fh)
3KB flash block number (00h–2Fh)

CLOCK 0,FCh Clock divider used to set the erase
pulse width.

DELAY 0,FEh For a CPU speed of 12 MHz set to 56h

Table 25. Protection Modes

Mode Settings Description Marketing

00b SR ER EW IW Unprotected Unprotected

01b SR ER EW IW Read protect Factory upgrade

10b SR ER EW IW Disable external write Field upgrade

11b SR ER EW IW Disable internal write Full protection

7 6 5 4 3 2 1 0

Block n+3 Block n+2 Block n+1 Block n

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 19 of 92

EraseAll Function

The EraseAll function performs a series of steps that destroy the
user data in the flash macros and resets the protection block in
each flash macro to all zeros (the unprotected state). The
EraseAll function does not affect the three hidden blocks above
the protection block, in each flash macro. The first of these four
hidden blocks is used to store the protection table for its eight
Kbytes of user data.

The EraseAll function begins by erasing the user space of the
flash macro with the highest address range. A bulk program of
all zeros is then performed on the same flash macro, to destroy
all traces of the previous contents. The bulk program is followed
by a second erase that leaves the flash macro in a state ready
for writing. The erase, program, erase sequence is then
performed on the next lowest flash macro in the address space
if it exists. After the erase of the user space, the protection block
for the flash macro with the highest address range is erased.
Following the erase of the protection block, zeros are written into
every bit of the protection table. The next lowest flash macro in
the address space then has its protection block erased and filled
with zeros.

The end result of the EraseAll function is that all user data in the
flash is destroyed and the flash is left in an unprogrammed state,
ready to accept one of the various write commands. The
protection bits for all user data are also reset to the zero state

The parameter block values that must be set, besides the keys,
are the CLOCK and DELAY values.

TableRead Function

The TableRead function gives the user access to part specific
data stored in the flash during manufacturing. It also returns a
Revision ID for the die (not to be confused with the Silicon ID).

The table space for the enCoRe II is simply a 64 byte row broken
up into eight tables of eight bytes. The tables are numbered zero
through seven. All user and hidden blocks in the CY7C638xx
parts consist of 64 bytes.

An internal table (Table 0) holds the Silicon ID and returns the
Revision ID. The Silicon ID is returned in SRAM, while the
Revision and Family IDs are returned in the CPU_A and CPU_X
registers. The Silicon ID is a value placed in the table by
programming the flash and is controlled by Cypress Semicon-
ductor Product Engineering. The Revision ID is hard coded into
the SROM and also redundantly placed in SROM Table 1. This
is discussed in more detail later in this section.

SROM Table 1 holds Family/Die ID and Revision ID values for
the device and returns a one-byte internal revision counter. The
internal revision counter starts out with a value of zero and is
incremented when one of the other revision numbers is not
incremented. It is reset to zero when one of the other revision
numbers is incremented. The internal revision count is returned
in the CPU_A register. The CPU_X register is always set to FFh
when Table 1 is read. The CPU_A and CPU_X registers always
return a value of FFh when Tables 2-7 are read. The BLOCKID
value, in the parameter block, indicates which table must be
returned to the user. Only the three least significant bits of the
BLOCKID parameter are used by TableRead function for
enCoRe II devices. The upper five bits are ignored. When the
function is called, it transfers bytes from the table to SRAM
addresses F8h–FFh.

The M8C’s A and X registers are used by the TableRead function
to return the die’s Revision ID. The Revision ID is a 16-bit value
hard coded into the SROM that uniquely identifies the die’s
design.

The return values for corresponding Table calls are tabulated as
shown in Table 29 on page 19.

Table 26. ProtectBlock Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value when SSC is
executed.

CLOCK 0,FCh Clock divider used to set the write pulse
width.

DELAY 0,FEh For a CPU speed of 12 MHz set to 56h.

Table 27. EraseAll Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value when SSC is
executed.

CLOCK 0,FCh Clock divider used to set the write pulse
width.

DELAY 0,FEh For a CPU speed of 12 MHz set to 56h

Table 28. Table Read Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value when SSC is
executed.

BLOCKID 0,FAh Table number to read.

Table 29. Return values for Table Read

Table Number
Return Value

A X

0 Revision ID Family ID

1 Internal revision counter 0xFF

2-7 0xFF 0xFF

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 20 of 92

Figure 6. SROM Table

The Silicon IDs for enCoRe II devices are stored in SROM tables in the part, as shown in Figure 6.

The Silicon ID can be read out from the part using SROM Table reads (Table 0). This is demonstrated in the following pseudo code.
As mentioned in the section SROM on page 16, the SROM variables occupy address F8h through FFh in the SRAM. Each of the
variables and their definition is given in the section SROM on page 16.

AREA SSCParmBlkA(RAM,ABS)

 org F8h // Variables are defined starting at address F8h

SSC_KEY1: ; F8h supervisory key

SSC_RETURNCODE: blk 1 ; F8h result code

SSC_KEY2 : blk 1 ;F9h supervisory stack ptr key

SSC_BLOCKID: blk 1 ; FAh block ID

SSC_POINTER: blk 1 ; FBh pointer to data buffer

SSC_CLOCK: blk 1 ; FCh Clock

SSC_MODE: blk 1 ; FDh ClockW ClockE multiplier

SSC_DELAY: blk 1 ; FEh flash macro sequence delay count

SSC_WRITE_ResultCode: blk 1 ; FFh temporary result code

_main:

 mov A, 0

 mov [SSC_BLOCKID], A// To read from Table 0 - Silicon ID is stored in Table 0

//Call SROM operation to read the SROM table

mov X, SP ; copy SP into X

 mov A, X ; A temp stored in X

 add A, 3 ; create 3 byte stack frame (2 + pushed A)

 mov [SSC_KEY2], A ; save stack frame for supervisory code

 ; load the supervisory code for flash operations

 mov [SSC_KEY1], 3Ah ;flash_OPER_KEY - 3Ah

 mov A,6 ; load A with specific operation. 06h is the code for Table read Table 19

 SSC ; SSC call the supervisory ROM

// At the end of the SSC command the silicon ID is stored in F8 (MSB) and F9(LSB) of the SRAM

.terminate:

 jmp .terminate

F8h F9h FAh FBh FCh FDh FEh FFh

Table 0

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Silicon ID

[15-8]

Silicon ID

[7-0]

Family/
Die ID

Revision
ID

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 21 of 92

Checksum Function

The Checksum function calculates a 16-bit checksum over a
user specifiable number of blocks, within a single flash macro
(Bank) starting from block zero. The BLOCKID parameter is
used to pass in the number of blocks to calculate the checksum
over. A BLOCKID value of 1 calculates the checksum of only
block 0, while a BLOCKID value of 0 calculates the checksum of
all 256 user blocks. The 16-bit checksum is returned in KEY1 and
KEY2. The parameter KEY1 holds the lower eight bits of the
checksum and the parameter KEY2 holds the upper eight bits of
the checksum.

The checksum algorithm executes the following sequence of
three instructions over the number of blocks times 64 to be
checksummed.
romx

add [KEY1], A

adc [KEY2], 0

Clocking

The enCoRe II has two internal oscillators, the Internal 24 MHz
Oscillator and the 32 kHz Low power Oscillator.

The Internal 24 MHz Oscillator is designed such that it may be
trimmed to an output frequency of 24 MHz over temperature and
voltage variation. With the presence of USB traffic, the Internal
24 MHz Oscillator may be set to precisely tune to the USB timing
requirements (24 MHz ± 1.5%). Without USB traffic, the Internal
24 MHz Oscillator accuracy is 24 MHz ± 5% (between
0 °C–70 °C). No external components are required to achieve
this level of accuracy.

The internal low speed oscillator of nominally 32 kHz provides a
slow clock source for the enCoRe II in suspend mode,
particularly to generate a periodic wakeup interrupt and also to
provide a clock to sequential logic during power up and power
down events when the main clock is stopped. In addition, this
oscillator can also be used as a clocking source for the Interval
Timer clock (ITMRCLK) and Capture Timer clock (TCAPCLK).
The 32 kHz Low power Oscillator can operate in low power mode
or can provide a more accurate clock in normal mode. The
Internal 32 kHz Low power Oscillator accuracy ranges
(between 0 °C–70 °C) follow:

■ 5 V Normal mode: –8% to + 16%

■ 5 V LP mode: +12% to + 48%

When using the 32 kHz oscillator, the PITMRL/H registers must
be read until 2 consecutive readings match before the result is
considered valid. The following firmware example assumes the
developer is interested in the lower byte of the PIT.
Read_PIT_counter:

mov A, reg[PITMRL]

mov [57h], A

mov A, reg[PITMRL]

mov [58h], A

mov [59h], A

mov A, reg[PITMRL]

mov [60h], A

;;;Start comparison

mov A, [60h]

mov X, [59h]

sub A, [59h]

jz done

mov A, [59h]

mov X, [58h]

sub A, [58h]

jz done

mov X, [57h]

;;;correct data is in memory location 57h

done:

mov [57h], X

ret

Table 30. Checksum Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value when SSC is
executed.

BLOCKID 0,FAh Number of flash blocks to calculate
checksum on.

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 22 of 92

Figure 7. Clock Block Diagram

CPU_CLK

EXT

24 MHz

MUX CLK_USB

SEL SCALE

CLK_24MHz

CLK_EXT

CPUCLK

SEL

MUX
SCALE (divide by 2

n
,

n = 0-5,7)

CLK_32
KHz

LP OSC
32 KHz

SEL SCALE OUT

0 X 12 MHz

0 X 12 MHz

1 0 EXT/2

1 1 EXT

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 23 of 92

Clock Architecture Description

The enCoRe II clock selection circuitry allows the selection of
independent clocks for the CPU, USB, Interval Timers and
Capture Timers.

The CPU clock CPUCLK is sourced from an external clock or the
Internal 24 MHz Oscillator. The selected clock source is
optionally divided by 2n, where n is 0-5,7 (see Table 34 on page
25).

USBCLK, which must be 12 MHz for the USB SIE to function
properly, is sourced by the Internal 24 MHz Oscillator or an
external 12 MHz/24 MHz clock. An optional divide by two allows
the use of 24 MHz source.

The Interval Timer clock (ITMRCLK), is sourced from an external
clock, the Internal 24 MHz Oscillator, the Internal 32 kHz low
power oscillator, or from the timer capture clock (TCAPCLK). A

programmable prescaler of 1, 2, 3, 4 then divides the selected
source.

The Timer Capture clock (TCAPCLK) is sourced from an external
clock, Internal 24 MHz Oscillator, or the Internal 32 kHz low
power oscillator.

The CLKOUT pin (P0.1) is driven from one of many sources. This
is used for test and is also used in some applications. The
sources that drive the CLKOUT follow:

■ CLKIN after the optional EFTB filter

■ Internal 24 MHz Oscillator

■ Internal 32 kHz low power oscillator

■ CPUCLK after the programmable divider

Table 31. IOSC Trim (IOSCTR) [0x34] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field foffset[2:0] Gain[4:0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Default 0 0 0 D D D D D

The IOSC Calibrate register calibrates the internal oscillator. The reset value is undefined but during boot the SROM writes a
calibration value that is determined during manufacturing test. This value does not require change during normal use. This is
the meaning of ‘D’ in the Default field.

Bit [7:5]: foffset [2:0]

This value is used to trim the frequency of the internal oscillator. These bits are not used in factory calibration and are zero.
Setting each of these bits causes the appropriate fine offset in oscillator frequency.

foffset bit 0 = 7.5 kHz

foffset bit 1 = 15 kHz

foffset bit 2 = 30 kHz

Bit [4:0]: Gain [4:0]

The effective frequency change of the offset input is controlled through the gain input. A lower value of the gain setting increases
the gain of the offset input. This value sets the size of each offset step for the internal oscillator. Nominal gain change
(kHz/offsetStep) at each bit, typical conditions (24 MHz operation):

Gain bit 0 = –1.5 kHz

Gain bit 1 = –3.0 kHz

Gain bit 2 = –6 kHz

Gain bit 3 = –12 kHz

Gain bit 4 = –24 kHz

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 24 of 92

Table 32. LPOSC Trim (LPOSCTR) [0x36] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field 32 kHz Low
Power

Reserved 32 kHz Bias Trim [1:0] 32 kHz Freq Trim [3:0]

Read/Write R/W – R/W R/W R/W R/W R/W R/W

Default 0 D D D D D D D

This register is used to calibrate the 32 kHz Low speed Oscillator. The reset value is undefined but during boot the SROM writes
a calibration value that is determined during manufacturing tests. This value does not require change during normal use. This
is the meaning of ‘D’ in the Default field. If the 32 kHz Low power bit is written, care must be taken to not disturb the
32 kHz Bias Trim and the 32 kHz Freq Trim fields from their factory calibrated values.

Bit 7: 32 kHz Low Power

0 = The 32 kHz Low speed Oscillator operates in normal mode

1 = The 32 kHz Low speed Oscillator operates in a low power mode. The oscillator continues to function normally, but with
reduced accuracy.

Bit 6: Reserved

Bit [5:4]: 32 kHz Bias Trim [1:0]

These bits control the bias current of the low power oscillator.

0 0 = Mid bias

0 1 = High bias

1 0 = Reserved

1 1 = Reserved

Note Do not program the 32 kHz Bias Trim [1:0] field with the reserved 10b value because the oscillator does not oscillate at all
corner conditions with this setting.

Bit [3:0]: 32 kHz Freq Trim [3:0]

These bits are used to trim the frequency of the low power oscillator.

Table 33. CPU/USB Clock Config (CPUCLKCR) [0x30] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved USB CLK/2
Disable

USB CLK Select Reserved CPUCLK Select

Read/Write – R/W R/W – – – – R/W

Default 0 0 0 0 0 0 0 0

Bit 7: Reserved

Bit 6: USB CLK/2 Disable

This bit only affects the USBCLK when the source is the external clock. When the USBCLK source is the Internal 24 MHz
Oscillator, the divide by two is always enabled

0 = USBCLK source is divided by two. This is the correct setting to use when the Internal 24 MHz Oscillator is used, or when
the external source is used with a 24 MHz clock

1 = USBCLK is undivided. Use this setting only with a 12 MHz external clock

Bit 5: USB CLK Select

This bit controls the clock source for the USB SIE.

0 = Internal 24 MHz Oscillator. With the presence of USB traffic, the Internal 24 MHz Oscillator is trimmed to meet the USB
requirement of 1.5% tolerance (see Table 35 on page 26)

1 = External clock—Internal Oscillator is not trimmed to USB traffic. Proper USB SIE operation requires a 12 MHz or 24 MHz
clock accurate to <1.5%.

Bit [4:1]: Reserved

Bit 0: CPU CLK Select

0 = Internal 24 MHz Oscillator.

1 = External clock—External clock at CLKIN (P0.0) pin.

Note The CPU speed selection is configured using the OSC_CR0 Register (Table 34 on page 25).

CY7C63310/CY7C638xx

Document Number: 38-08035 Rev. *S Page 25 of 92

Table 34. OSC Control 0 (OSC_CR0) [0x1E0] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved No Buzz Sleep Timer [1:0] CPU Speed [2:0]

Read/Write – – R/W R/W R/W R/W R/W R/W

Default 0 0 0 0 0 0 0 0

Bit [7:6]: Reserved

Bit 5: No Buzz

During sleep (the Sleep bit is set in the CPU_SCR Register—Table 38 on page 30), the LVD and POR detection circuit is turned
on periodically to detect any POR and LVD events on the VCC pin (the Sleep Duty Cycle bits in the ECO_TR are used to control
the duty cycle—Table 42 on page 35). To facilitate the detection of POR and LVD events, the No Buzz bit is used to force the
LVD and POR detection circuit to be continuously enabled during sleep. This results in a faster response to an LVD or POR
event during sleep at the expense of a slightly higher than average sleep current.

0 = The LVD and POR detection circuit is turned on periodically as configured in the Sleep Duty Cycle.

1 = The Sleep Duty Cycle value is overridden. The LVD and POR detection circuit is always enabled.

Note The periodic Sleep Duty Cycle enabling is independent with the sleep interval shown in the Sleep [1:0] bits below.

Bit [4:3]: Sleep Timer [1:0]

Note Sleep intervals are approximate.

Bit [2:0]: CPU Speed [2:0]

The enCoRe II may operate over a range of CPU clock speeds. The reset value for the CPU Speed bits is zero; as a result, the
default CPU speed is one-eighth of the internal 24 MHz, or 3 MHz

Regardless of the CPU Speed bit’s setting, if the actual CPU speed is greater than 12 MHz, the 24 MHz operating requirements
apply. An example of this scenario is a device that is configured to use an external clock, which supplies a frequency of 20 MHz.
If the CPU speed register’s value is 0b011, the CPU clock is at 20 MHz. Therefore, the supply voltage requirements for the device
are the same as if the part were operating at 24 MHz. The operating voltage requirements are not relaxed until the CPU speed
is at 12 MHz or less.

Note Correct USB operations require the CPU clock speed be at least 1.5 MHz or not less than USB clock/8. If the two clocks
have the same source, then the CPU clock divider must not be set to divide by more than 8. If the two clocks have different
sources, the maximum ratio of USB Clock/CPU Clock must never exceed 8 across the full specification range of both clock
sources.

Note This register exists in the second bank of I/O space. This requires setting the XIO bit in the CPU flags register.

CPU Speed
[2:0]

CPU when Internal
Oscillator is selected External Clock

000 3 MHz (Default) Clock In/8

001 6 MHz Clock In/4

010 12 MHz Clock In/2

011 24 MHz Clock In/1

100 1.5 MHz Clock In/16

101 750 kHz Clock In/32

110 187 kHz Clock In/128

111 Reserved Reserved

	Contact us
	enCoRe™ II Low Speed USB Peripheral Controller
	Features
	Applications
	Logic Block Diagram
	More Information
	PSoC Designer

	Contents
	Introduction
	Conventions
	Pinouts
	Pin Descriptions
	CPU Architecture
	CPU Registers
	Flags Register
	Addressing Modes

	Instruction Set Summary
	Memory Organization
	Flash Program Memory Organization
	Data Memory Organization
	Flash
	SROM
	SROM Function Descriptions

	Clocking
	Clock Architecture Description

