
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

enCoRe™ II
Low-Speed USB Peripheral Controller

CY7C63310
CY7C638xx
CY7C639xx

Cypress Semiconductor Corporation • 3901 North First Street • San Jose, CA 95134 • 408-943-2600
Document 38-08035 Rev. *E Revised March 29, 2005

1.0 Features

• enCoRe II USB—“enhanced Component Reduction”

— Crystalless oscillator with support for an external
crystal or resonator. The internal oscillator
eliminates the need for an external crystal or
resonator

— Internal 3.3V regulator and internal USB pull-up
resistor

— Configurable IO for real-world interface without
external components

• USB Specification Compliance

— Conforms to USB Specification, Version 2.0

— Conforms to USB HID Specification, Version 1.1

— Supports one Low-Speed USB device address

— Supports one control endpoint and two data
endpoints

— Integrated USB transceiver

• Enhanced 8-bit microcontroller

— Harvard architecture

— M8C CPU speed can be up to 24 MHz or sourced by
an external crystal, resonator, or signal

• Internal memory

— Up to 256 bytes of RAM

— Up to eight Kbytes of Flash including EEROM
emulation

• Interface can auto-configure to operate as PS/2 or USB

— No external components for switching between PS/2
and USB modes

— No GPIO pins needed to manage dual-mode
capability

• Low power consumption

— Typically 10 mA at 6 MHz

— 10-µA sleep

• In-system re-programmability

— Allows easy firmware update

• General-purpose I/O ports

— Up to 36 General Purpose I/O (GPIO) pins

— High current drive on GPIO pins. Configurable 8- or
50-mA/pin current sink on designated pins

— Each GPIO port supports high-impedance inputs,
configurable pull-up, open drain output, CMOS/TTL
inputs, and CMOS output

— Maskable interrupts on all I/O pins

• 125-mA 3.3V voltage regulator can power external 3.3V
devices

• 3.3V I/O pins

— 4 I/O pins with 3.3V logic levels

— Each 3.3V pin supports high-impedance input,
internal pull-up, open drain output or traditional
CMOS output

• SPI serial communication

— Master or slave operation

— Configurable up to 2-Mbit/second transfers

— Supports half duplex single data line mode for
optical sensors

• 2-channel 8-bit or 1-channel 16-bit capture timer.
Capture timers registers store both rising and falling
edge times

— Two registers each for two input pins

— Separate registers for rising and falling edge capture

— Simplifies interface to RF inputs for wireless
applications

• Internal low-power wake-up timer during suspend
mode

— Periodic wake-up with no external components

• Programmable Interval Timer interrupts

• Reduced RF emissions at 27 MHz and 96 MHz

• Advanced development tools based on Cypress
MicroSystems PSoC™ tools

• Watchdog timer (WDT)

• Low-voltage detection with user-configurable
threshold voltages

• Improved output drivers to reduce EMI

• Operating voltage from 4.0V to 5.25VDC

• Operating temperature from 0–70°C

• Available in 16/18/24/40-pin PDIP, 16/18/24-pin SOIC, 24-
pin QSOP, 28/48-pin SSOP, and DIE form

• Industry standard programmer support

1.1 Applications

The CY7C633xx/CY7C638xx/CY7C639xx is targeted for the
following applications:

• PC HID devices

— Mice (optomechanical, optical, trackball)

— Keyboards

• Gaming

— Joysticks

— Game pads

— Console keyboards

• General-purpose

— Barcode scanners

— POS terminal

— Consumer electronics

— Toys

— Remote controls

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 2 of 68

2.0 Introduction

Cypress has reinvented its leadership position in the low-
speed USB market with a new family of innovative microcon-
trollers. Introducing enCoRe II USB — “enhanced Component
Reduction.” Cypress has leveraged its design expertise in
USB solutions to advance its family of low-speed USB micro-
controllers, which enable peripheral developers to design new
products with a minimum number of components. The
enCoRe II USB technology builds on to the enCoRe family.
The enCoRe family has an integrated oscillator that eliminates
the external crystal or resonator, reducing overall cost. Also
integrated into this chip are other external components
commonly found in low-speed USB applications such as pull-
up resistors, wake-up circuitry, and a 3.3V regulator.

All of this adds up to a lower system cost.

The enCoRe II is an 8-bit Flash-programmable microcontroller
with integrated low-speed USB interface. The instruction set
has been optimized specifically for USB and PS/2 operations,
although the microcontrollers can be used for a variety of other
embedded applications.

The enCoRe II features up to 36 general-purpose I/O (GPIO)
pins to support USB, PS/2 and other applications. The I/O pins
are grouped into five ports (Port 0 to 4). The pins on Port 0 and
Port 1 may each be configured individually while the pins on
Ports 2, 3, and 4 may only be configured as a group. Each
GPIO port supports high-impedance inputs, configurable pull-
up, open drain output, CMOS/TTL inputs, and CMOS output
with up to five pins that support programmable drive strength
of up to 50-mA sink current. GPIO Port 1 features four pins that
interface at a voltage level of 3.3 volts. Additionally, each I/O
pin can be used to generate a GPIO interrupt to the microcon-
troller. Each GPIO port has its own GPIO interrupt vector with
the exception of GPIO Port 0. GPIO Port 0 has three dedicated
pins that have independent interrupt vectors (P0.2 - P0.4).

The enCoRe II features an internal oscillator. With the
presence of USB traffic, the internal oscillator can be set to
precisely tune to USB timing requirements (24 MHz ±1.5%).
Optionally, an external 12-MHz or 24-MHz crystal can be used
to provide a higher precision reference for USB operation. The
clock generator provides the 12-MHz and 24-MHz clocks that
remain internal to the microcontroller.

The enCoRe II has up to eight Kbytes of Flash for user’s code
and up to 256 bytes of RAM for stack space and user
variables.

In addition, the enCoRe II includes a Watchdog timer, a
vectored interrupt controller, a 16-bit Free-Running Timer, and
Capture Timers. The Power-on reset circuit detects logic when
power is applied to the device, generates resets the logic to a
known state, and begins executing instructions at Flash
address 0x0000. When power falls below a programmable trip
voltage generates reset or may be configured to generate
interrupt. There is a Low-voltage detect circuit that detects
when VCC drops below a programmable trip voltage. It may be
configurable to generate an LVD interrupt to inform the
processor about the low-voltage event. POR and LVD share

the same interrupt. There is no separate interrupt for each. The
Watchdog timer can be used to ensure the firmware never gets
stalled in an infinite loop.

The microcontroller supports 23 maskable interrupts in the
vectored interrupt controller. Interrupt sources include a USB
bus reset, LVR/POR, a programmable interval timer, a
1.024-ms output from the Free Running Timer, three USB
endpoints, two capture timers, five GPIO Ports, three GPIO
pins, two SPI, a 16-bit free running timer wrap, an internal
wake-up timer, and a bus active interrupt. The wake-up timer
causes periodic interrupts when enabled. The USB endpoints
interrupt after a USB transaction complete is on the bus. The
capture timers interrupt whenever a new timer value is saved
due to a selected GPIO edge event. A total of eight GPIO
interrupts support both TTL or CMOS thresholds. For
additional flexibility, on the edge sensitive GPIO pins, the
interrupt polarity is programmable to be either rising or falling.

The free-running 16-bit timer provides two interrupt sources:
the programmable interval timer with 1-µs resolution and the
1.024-ms outputs. The timer can be used to measure the
duration of an event under firmware control by reading the
timer at the start and at the end of an event, then calculating
the difference between the two values. The two 8-bit capture
timers save a programmable 8-bit range of the free-running
timer when a GPIO edge occurs on the two capture pins (P0.5,
P0.6). The two 8-bit captures can be ganged into a single
16-bit capture.

The enCoRe II includes an integrated USB serial interface
engine (SIE) that allows the chip to easily interface to a USB
host. The hardware supports one USB device address with
three endpoints.

The USB D+ and D– pins can optionally be used as PS/2
SCLK and SDATA signals so that products can be designed to
respond to either USB or PS/2 modes of operation. PS/2
operation is supported with internal 5-KΩ pull-up resistors on
P1.0 (D+) and P1.1 (D–) and an interrupt to signal the start of
PS/2 activity. In USB mode, the integrated 1.5-KΩ pull-up
resistor on D– can be controlled under firmware. No external
components are necessary for dual USB and PS/2 systems,
and no GPIO pins need to be dedicated to switching between
modes. Slow edge rates operate in both modes to reduce EMI.

The enCoRe II supports in-system programming by using the
D+ and D– pins as the serial programming mode interface.
The programming protocol is not USB.

3.0 Conventions

In this document, bit positions in the registers are shaded to
indicate which members of the enCoRe II family implement the
bits.

 Available in all enCoRe II family members

CY7C639xx and CY7C638xx only

CY7C639xx only

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 3 of 68

4.0 Logic Block Diagram

Figure 4-1. CY7C633xx/CY7C638xx/CY7C639xx Block Diagram

Internal

24 MHz

Oscillator

3.3V

Regulator

Clock

Control

Crystal

Oscillator
POR /

Low-Voltage

Detect

Watchdog

Timer

RAM

Up to 256

Byte

M8C CPU
Flash

Up to 8K

Byte

16 Extended

I/O Pins

Low-Speed

USB/PS2

Transceiver

and Pull-up

16 GPIO

Pins

Wakeup

Timer

Capture

Timers12-bit Timer

4 3VIO/SPI

Pins

V
d

d

Interrupt

Control

Low-Speed

USB SIE

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 4 of 68

5.0 Packages/Pinouts

Figure 5-1. Package Configurations

1

2

3

4

5

6

9

11

15

16

17

18

19

20

22

21

NC

P0.7

TIO1/P0.6

TIO0/P0.5

INT2/P0.4

INT1/P0.3

P0.0

P2.0

P1.5/SMOSI

P1.3/SSEL

P3.1

P3.0

VCC

P1.2/VREG

P1.1/D–

P1.0/D+14

P1.4/SCLK

10P2.1

NC VSS12 13

7

8

INT0/P0.2

P0.1

24

23

P1.7

P1.6/SMISO

24-pin QSOP
CY7C63823

1

2
3

4

6

7
8

10

11

12
13

15

16

18
17

SSEL/P1.3

SCLK/P1.4

SMOSI/P1.5

SMISO/P1.6

P0.7

TIO0/P0.5

P1.2/VREG

P1.1/D–

P1.0/D+

P0.0
P0.1

P0.2/INT0

18-pin PDIP

VCC

9

TIO1/P0.6

INT2/P0.4 P0.3/INT1

CY7C63813

5 14P1.7 VSS

1

2
3

4

6

7
8 9

10
11

13

14

16
15

SSEL/P1.3

SCLK/P1.4

SMOSI/P1.5

SMISO/P1.6

P0.5/TIO0

INT1/P0.3

P1.2

P1.1/D–

P1.0/D+

P0.1
P0.2/INT0

P0.0

16-pin PDIP

VCC

INT2/P0.4

5 12P0.6/TIO1 VSS

Top View

CY7C63310

CY7C63801
16-pin PDIP

1

2
3

4

6

7
8 9

10
11

13

14

16
15

P0.6/TIO1

P0.5/TIO0

P0.4/INT2

P0.3/INT1

P0.1

VSS

P1.6/SMISO

P1.4/SCLK

P1.3/SSEL

P1.1/D–
P1.0/D+

VCC

16-pin SOIC

P1.5/SMOSI

P0.0

5 12P0.2/INT0 P1.2

CY7C63310

CY7C63801
16-pin SOIC

1

2
3

4

6

7
8

10

11

12
13

15

16

18
17

P0.7

P0.6/TIO1

P0.5/TIO0

P0.4/INT2

P0.2/INT0

P0.0

P1.7

P1.5/SMOSI

P1.4/SCLK

P1.2/VREG
VCC

P1.1/D–

18-pin SOIC

P1.6/SMISO

9

P0.1

VSS P1.0/D+

CY7C63813

5 14P0.3/INT1 P1.3/SSEL

1

2

3

4

5

6

9

11

15

16

17

18

19

20

22

21

P3.0

P3.1

SCLK/P1.4

SMOSI/P1.5

SMISO/P1.6

P1.7

P0.7

TIO0/P0.5

VCC

P2.0

P1.0/D+

VSS

P0.0

P2.1

P0.1

P0.2/INT014

P1.1/D–

10TIO1/P0.6

INT2/P0.4 P0.3/INT112 13

7

8

NC

NC

24

23

P1.3/SSEL

P1.2/VREG

24-pin PDIP
CY7C63823

1

2

3

4

5

6

9

11

15

16

17

18

19

20

22

21

NC

P0.7

TIO1/P0.6

TIO0/P0.5

INT2/P0.4

INT1/P0.3

P0.0

P2.0

P1.6/SMISO

P3.0

P1.4/SCLK

P3.1

P1.2/VREG

P1.3/SSEL

VCC

P1.1/D–14

P1.5/SMOSI

10P2.1

VSS P1.0/D+12 13

7

8

INT0/P0.2

P0.1

24

23

NC

P1.7

24-pin SOIC
CY7C63823

1

2

3

4

5

6

9

11

19

20

21

22

23

24

26

25

VCC

P2.7

P2.6

P2.5

P2.4

P0.7

INT2/P0.4

INT0/P0.2

P3.6

P1.6/SMISO

P3.4

P1.7

P1.4/SCLK

P1.5/SMOSI

P1.3/SSEL

P1.2/VREG18

P3.5

10INT1/P0.3

CLKOUT/P0.1 VCC12 17

7

8

TIO1/P0.6

TIO0/P0.5

28

27

VSS

P3.7

28-pin SSOP
CY7C63903

15

16 P1.1/D–

P1.0/D+
13CLKIN/P0.0

14VSS

1

2
3

4

6

7
8 9

10
11

13

14

16
15

P0.6/TIO1

P0.5/TIO0

P0.4/INT2

P0.3/INT1

P0.1

VSS

P1.6/SMISO

P1.4/SCLK

P1.3/SSEL

P1.1/D–
P1.0/D+

VCC

P1.5/SMOSI

P0.0

5 12P0.2/INT0 P1.2/VREG

CY7C63803
16-pin SOIC

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 5 of 68

5.1 Pinouts Assignments

Figure 5-1 Package Configurations (continued)

1

2

3

4

5

6

9

11

NC

NC

NC

NC

VCC

P4.1

P2.6

P2.4

10P2.5

P2.3 12

7

8

P4.0

P2.7

48-pin SSOP
CY7C63923

13

14

15

16

17

18

21

23

P2.2

P2.1

P2.0

P0.7

P0.6/TIO1

P0.5/TIO0

P0.2/INT0

P0.0/CLKIN

22P0.1/CLKOUT

VSS 24

19

20

P0.4/INT2

P0.3/INT1

27

28

29

30

31

32

34

33

P3.0

P1.4/SCLK

P1.6/SMISO

P1.5/SMOSI

P1.2/VREG

P1.3/SSEL

VCC

P1.1/D–26

P1.7

P1.0/D+25

36

35

P3.2

P3.1

39

40

41

42

43

44

46

45

NC

P4.2

VSS

P4.3

P3.6

P3.7

P3.5

P3.438

NC

P3.337

48

47

NC

NC

1

2

3

4

5

6

9

11

VCC

P4.1

P2.6

P2.4

10

P2.5

P2.3

12

7

8

P4.0

P2.7

40-pin PDIP
CY7C63913

13

14

15

16

17

18

P2.2

P2.1

P2.0

P0.7

P0.6/TIO1

P0.5/TIO0

P0.2/INT0

P0.0/CLKIN

P0.1/CLKOUT

VSS

19

P0.4/INT2

P0.3/INT1

21

22

23

24

26

25

P3.0

P1.4/SCLK

P1.6/SMISO

P1.5/SMOSI

P1.2/VREG

P1.3/SSEL

VCC

P1.1/D–

P1.7

P1.0/D+

28

27

P3.2

P3.131

32

33

34

35

36

38

37
P4.2

VSS

P4.3

P3.6

P3.7

P3.5

P3.4

30

P3.3

29

40

39

20

 40

CY7C63923-XC
DIE

Top View

6 5 4 3 2 1 4
4

4
6

4
7

4
8

4
1

4
24
3

 35

 39
 38
 37
 36

 34
 33
 32
 31

 30
 29

 28

27 22

2
6

2
5

2
4

2
3

21
 20

 19
 18
 17
 16
 15
 14

 13
 12
 11
 10

 9
 8
 7

 P
4

.1

 P3.6

 V
C

C
 N

C

 P
4
.3

 N
C

 N
C

 N
C

 V
S

S

 N
C

 N
C

 N
C

 P
4
.2

 P
3
.7

 P3.5
 P3.4
 P3.3
 P3.2
 P3.1

 P3.0

 VCC

 P1.7
 P1.6/SMISO
 P1.5/SMOSI

 P1.4/SCLK
 P1.3/SSEL

 P1.2/VREG

 P
1

.1
/D

–

 P
1
.0

/D
+

 V
S

S

 P
0

.0
/C

L
K

IN

 P0.1/CLKOUT

 P0.2/INT0
 P0.3/INT1
 P0.4/INT2
 P0.5/TIO0
 P0.6/TIO1

 P0.7
 P2.0
 P2.1

 P2.2
 P2.3
 P2.4
 P2.5
 P2.6
 P2.7

 P4.0

Table 5-1. Pin Assignments

48
SSOP

40
PDIP

28
SSOP

24
QSOP

24
SOIC

24
PDIP

18
SIOC

18
PDIP

16
SOIC

16
PDIP

Die
Pad Name Description

7 3 7 P4.0 GPIO Port 4 – configured as a group
(nibble)

6 2 6 P4.1

42 38 42 P4.2

43 39 43 P4.3

34 30 18 1 34 P3.0 GPIO Port 3 – configured as a group
(byte)

35 31 20 19 2 35 P3.1

36 32 19 36 P3.2

37 33 37 P3.3

38 34 24 38 P3.4

39 35 25 39 P3.5

40 36 26 40 P3.6

41 37 27 41 P3.7

15 11 11 11 18 15 P2.0 GPIO Port 2 – configured as a group
(byte)

14 10 10 10 17 14 P2.1

13 9 13 P2.2

12 8 12 P2.3

11 7 5 11 P2.4

10 6 4 10 P2.5

9 5 3 9 P2.6

8 4 2 8 P2.7

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 6 of 68

25 21 15 14 13 20 10 15 9 13 25 P1.0/D+ GPIO Port 1 bit 0 / USB D+[1]

26 22 16 15 14 21 11 16 10 14 26 P1.1/D– GPIO Port 1 bit 1 / USB D–[1]

28 24 18 17 16 23 13 18 12 16 28 P1.2/VREG GPIO Port 1 bit 2—Configured individually.
3.3V if regulator is enabled. (The 3.3V
regulator is not available in the
CY7C63310 and CY7C63801.)

29 25 19 18 17 24 14 1 13 1 29 P1.3/SSEL GPIO Port 1 bit 3—Configured individually.
Alternate function is SSEL signal of the
SPI bus TTL voltage thresholds

30 26 20 21 20 3 15 2 14 2 30 P1.4/SCLK GPIO Port 1 bit 4—Configured individually.
Alternate function is SCLK signal of the
SPI bus TTL voltage thresholds

31 27 21 22 21 4 16 3 15 3 31 P1.5/SMOSI GPIO Port 1 bit 5—Configured individually.
Alternate function is SMOSI signal of the
SPI bus TTL voltage thresholds

32 28 22 23 22 5 17 4 16 4 32 P1.6/SMISO GPIO Port 1 bit 6—Configured individually.
Alternate function is SMISO signal of the
SPI bus TTL voltage thresholds

33 29 23 24 23 6 18 5 33 P1.7 GPIO Port 1 bit 7—Configured individually.
TTL voltage threshold.

23 19 13 9 9 16 8 13 7 11 23 P0.0/CLKIN GPIO Port 0 bit 0—Configured individually.
On CY7C639xx, optional Clock In when
external crystal oscillator is disabled or
crystal input when external crystal oscil-
lator is enabled.
On CY7C638xx and CY7C63310, oscil-
lator input when configured as Clock In

22 18 12 8 8 15 7 12 6 10 22 P0.1 /
CLKOUT

GPIO Port 0 bit 1—Configured individually
On CY7C639xx, optional clock out when
external crystal oscillator is disabled or
crystal output drive when external crystal
oscillator is enabled.
On CY7C638xx and CY7C63310, oscil-
lator output when configured as Clock out.

21 17 11 7 7 14 6 11 5 9 21 P0.2/INT0 GPIO port 0 bit 2—Configured individually
Optional rising edge interrupt INT0

20 16 10 6 6 13 5 10 4 8 20 P0.3/INT1 GPIO port 0 bit 3—Configured individually
Optional rising edge interrupt INT1

19 15 9 5 5 12 4 9 3 7 19 P0.4/INT2 GPIO port 0 bit 4—Configured individually
Optional rising edge interrupt INT2

18 14 8 4 4 11 3 8 2 6 18 P0.5/TIO0 GPIO port 0 bit 5—Configured individually
Alternate function Timer capture inputs or
Timer output TIO0

17 13 7 3 3 10 2 7 1 5 17 P0.6/TIO1 GPIO port 0 bit 6—Configured individually
Alternate function Timer capture inputs or
Timer output TIO1

16 12 6 2 2 9 1 6 16 P0.7 GPIO port 0 bit 7—Configured individually
Not in 16 pin PDIP or SOIC package

1,2,3,
4

1 1 7 1,2,
3,4

NC No connect

Note:

1. P1.0(D+) and P1.1(D-) pins should be in I/O mode when used as GPIO and in ISB mode.

Table 5-1. Pin Assignments (continued)

48
SSOP

40
PDIP

28
SSOP

24
QSOP

24
SOIC

24
PDIP

18
SIOC

18
PDIP

16
SOIC

16
PDIP

Die
Pad Name Description

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 7 of 68

6.0 CPU Architecture

This family of microcontrollers is based on a high performance,
8-bit, Harvard-architecture microprocessor. Five registers
control the primary operation of the CPU core. These registers
are affected by various instructions, but are not directly acces-
sible through the register space by the user.

The 16-bit Program Counter Register (CPU_PC) allows for
direct addressing of the full eight Kbytes of program memory
space.

The Accumulator Register (CPU_A) is the general-purpose
register that holds the results of instructions that specify any
of the source addressing modes.

The Index Register (CPU_X) holds an offset value that is used
in the indexed addressing modes. Typically, this is used to
address a block of data within the data memory space.

The Stack Pointer Register (CPU_SP) holds the address of the
current top-of-stack in the data memory space. It is affected by
the PUSH, POP, LCALL, CALL, RETI, and RET instructions,
which manage the software stack. It can also be affected by
the SWAP and ADD instructions.

The Flag Register (CPU_F) has three status bits: Zero Flag bit
[1]; Carry Flag bit [2]; Supervisory State bit [3]. The Global
Interrupt Enable bit [0] is used to globally enable or disable
interrupts. The user cannot manipulate the Supervisory State
status bit [3]. The flags are affected by arithmetic, logic, and
shift operations. The manner in which each flag is changed is
dependent upon the instruction being executed (i.e., AND,
OR, XOR). See Table 8-1.

45,46,
47,48

12 24 8 45,
46,
47,
48

NC No connect

5 1 5 VCC Power

27 23 1 16 15 22 12 17 11 15 27

44 40 – – – – 44 VSS Ground

24 20 28 13 12 19 9 14 8 12 24

Table 5-1. Pin Assignments (continued)

48
SSOP

40
PDIP

28
SSOP

24
QSOP

24
SOIC

24
PDIP

18
SIOC

18
PDIP

16
SOIC

16
PDIP

Die
Pad Name Description

Table 6-1. CPU Registers and Register Names

Register Register Name

Flags CPU_F

Program Counter CPU_PC

Accumulator CPU_A

Stack Pointer CPU_SP

Index CPU_X

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 8 of 68

7.0 CPU Registers

7.1 Flags Register

The Flags Register can only be set or reset with logical
instruction.

7.1.1 Accumulator Register

7.1.2 Index Register

Table 7-1. CPU Flags Register (CPU_F) [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved XIO Super Carry Zero Global IE

Read/Write – – – R/W R RW RW RW

Default 0 0 0 0 0 0 1 0

Bit [7:5]: Reserved
Bit 4: XIO
Set by the user to select between the register banks
0 = Bank 0
1 = Bank 1
Bit 3: Super
Indicates whether the CPU is executing user code or Supervisor Code. (This code cannot be accessed directly by the user)
0 = User Code
1 = Supervisor Code
Bit 2: Carry
Set by CPU to indicate whether there has been a carry in the previous logical/arithmetic operation
0 = No Carry
1 = Carry
Bit 1: Zero
Set by CPU to indicate whether there has been a zero result in the previous logical/arithmetic operation
0 = Not Equal to Zero
1 = Equal to Zero
Bit 0: Global IE
Determines whether all interrupts are enabled or disabled
0 = Disabled
1 = Enabled
Note: CPU_F register is only readable with explicit register address 0xF7. The OR F, expr and AND F, expr instructions must
be used to set and clear the CPU_F bits

Table 7-2. CPU Accumulator Register (CPU_A)

Bit # 7 6 5 4 3 2 1 0

Field CPU Accumulator [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: CPU Accumulator [7:0]
8-bit data value holds the result of any logical/arithmetic instruction that uses a source addressing mode

Table 7-3. CPU X Register (CPU_X)

Bit # 7 6 5 4 3 2 1 0

Field X [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: X [7:0]
8-bit data value holds an index for any instruction that uses an indexed addressing mode

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 9 of 68

7.1.3 Stack Pointer Register

7.1.4 CPU Program Counter High Register

7.1.5 CPU Program Counter Low Register

7.2 Addressing Modes

7.2.1 Source Immediate

The result of an instruction using this addressing mode is
placed in the A register, the F register, the SP register, or the
X register, which is specified as part of the instruction opcode.
Operand 1 is an immediate value that serves as a source for
the instruction. Arithmetic instructions require two sources.
Instructions using this addressing mode are two bytes in
length.

Examples

7.2.2 Source Direct

The result of an instruction using this addressing mode is
placed in either the A register or the X register, which is
specified as part of the instruction opcode. Operand 1 is an
address that points to a location in either the RAM memory
space or the register space that is the source for the
instruction. Arithmetic instructions require two sources; the
second source is the A register or X register specified in the
opcode. Instructions using this addressing mode are two bytes
in length.

Table 7-4. CPU Stack Pointer Register (CPU_SP)

Bit # 7 6 5 4 3 2 1 0

Field Stack Pointer [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: Stack Pointer [7:0]
8-bit data value holds a pointer to the current top-of-stack

Table 7-5. CPU Program Counter High Register (CPU_PCH)

Bit # 7 6 5 4 3 2 1 0

Field Program Counter [15:8]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: Program Counter [15:8]

8-bit data value holds the higher byte of the program counter

Table 7-6. CPU Program Counter Low Register (CPU_PCL)

Bit # 7 6 5 4 3 2 1 0

Field Program Counter [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: Program Counter [7:0]
8-bit data value holds the lower byte of the program counter

Table 7-7. Source Immediate

Opcode Operand 1

Instruction Immediate Value

ADD A, 7 ;In this case, the immediate value

;of 7 is added with the Accumulator,

;and the result is placed in the

;Accumulator.

MOV X, 8 ;In this case, the immediate value

;of 8 is moved to the X register.

AND F, 9 ;In this case, the immediate value

;of 9 is logically ANDed with the F

;register and the result is placed

;in the F register.

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 10 of 68

Examples

7.2.3 Source Indexed

The result of an instruction using this addressing mode is
placed in either the A register or the X register, which is
specified as part of the instruction opcode. Operand 1 is added
to the X register forming an address that points to a location in
either the RAM memory space or the register space that is the
source for the instruction. Arithmetic instructions require two
sources; the second source is the A register or X register
specified in the opcode. Instructions using this addressing
mode are two bytes in length.

Examples

7.2.4 Destination Direct

The result of an instruction using this addressing mode is
placed within either the RAM memory space or the register
space. Operand 1 is an address that points to the location of
the result. The source for the instruction is either the A register
or the X register, which is specified as part of the instruction
opcode. Arithmetic instructions require two sources; the
second source is the location specified by Operand 1. Instruc-
tions using this addressing mode are two bytes in length.

Examples

7.2.5 Destination Indexed

The result of an instruction using this addressing mode is
placed within either the RAM memory space or the register
space. Operand 1 is added to the X register forming the
address that points to the location of the result. The source for
the instruction is the A register. Arithmetic instructions require
two sources; the second source is the location specified by
Operand 1 added with the X register. Instructions using this
addressing mode are two bytes in length.

Example

7.2.6 Destination Direct Immediate

The result of an instruction using this addressing mode is
placed within either the RAM memory space or the register
space. Operand 1 is the address of the result. The source for
the instruction is Operand 2, which is an immediate value.
Arithmetic instructions require two sources; the second source
is the location specified by Operand 1. Instructions using this
addressing mode are three bytes in length.

Table 7-8. Source Direct

Opcode Operand 1

Instruction Source Address

ADD A, [7] ;In this case, the ;value in

;the RAM memory location at

;address 7 is added with the

;Accumulator, and the result

;is placed in the Accumulator.

MOV X, REG[8] ;In this case, the value in

;the register space at address

;8 is moved to the X register.

Table 7-9. Source Indexed

Opcode Operand 1

Instruction Source Index

ADD A, [X+7] ;In this case, the value in

;the memory location at

;address X + 7 is added with

;the Accumulator, and the

;result is placed in the

;Accumulator.

MOV X, REG[X+8] ;In this case, the value in

;the register space at

;address X + 8 is moved to

;the X register.

Table 7-10. Destination Direct

Opcode Operand 1

Instruction Destination Address

ADD [7], A ;In this case, the value in

;the memory location at

;address 7 is added with the

;Accumulator, and the result

;is placed in the memory

;location at address 7. The

;Accumulator is unchanged.

MOV REG[8], A ;In this case, the Accumula-

;tor is moved to the regis-

;ter space location at

;address 8. The Accumulator

;is unchanged.

Table 7-11. Destination Indexed

Opcode Operand 1

Instruction Destination Index

ADD [X+7], A ;In this case, the value in the

;memory location at address X+7

;is added with the Accumulator,

;and the result is placed in

;the memory location at address

;x+7. The Accumulator is

;unchanged.

Table 7-12. Destination Direct Immediate

Opcode Operand 1 Operand 2

Instruction Destination Address Immediate Value

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 11 of 68

Examples

7.2.7 Destination Indexed Immediate

The result of an instruction using this addressing mode is
placed within either the RAM memory space or the register
space. Operand 1 is added to the X register to form the
address of the result. The source for the instruction is Operand
2, which is an immediate value. Arithmetic instructions require
two sources; the second source is the location specified by
Operand 1 added with the X register. Instructions using this
addressing mode are three bytes in length.

Examples

7.2.8 Destination Direct

The result of an instruction using this addressing mode is
placed within the RAM memory. Operand 1 is the address of
the result. Operand 2 is an address that points to a location in
the RAM memory that is the source for the instruction. This
addressing mode is only valid on the MOV instruction. The
instruction using this addressing mode is three bytes in length.

Example

7.2.9 Source Indirect Post Increment

The result of an instruction using this addressing mode is
placed in the Accumulator. Operand 1 is an address pointing
to a location within the memory space, which contains an
address (the indirect address) for the source of the instruction.
The indirect address is incremented as part of the instruction
execution. This addressing mode is only valid on the MVI
instruction. The instruction using this addressing mode is two
bytes in length. Refer to the PSoC Designer: Assembly
Language User Guide for further details on MVI instruction.

Example

7.2.10 Destination Indirect Post Increment

The result of an instruction using this addressing mode is
placed within the memory space. Operand 1 is an address
pointing to a location within the memory space, which contains
an address (the indirect address) for the destination of the
instruction. The indirect address is incremented as part of the
instruction execution. The source for the instruction is the
Accumulator. This addressing mode is only valid on the MVI
instruction. The instruction using this addressing mode is two
bytes in length.

Example

ADD [7], 5 ;In this case, value in the mem-

;ory location at address 7 is

;added to the immediate value of

;5, and the result is placed in

;the memory location at address 7.

MOV REG[8], 6 ;In this case, the immediate

;value of 6 is moved into the

;register space location at

;address 8.

Table 7-13. Destination Indexed Immediate

Opcode Operand 1 Operand 2

Instruction Destination Index Immediate Value

ADD [X+7], 5 ;In this case, the value in

;the memory location at

;address X+7 is added with

;the immediate value of 5,

;and the result is placed

;in the memory location at

;address X+7.

MOV REG[X+8], 6 ;In this case, the immedi-

;ate value of 6 is moved

;into the location in the

;register space at

;address X+8.

Table 7-14. Destination Direct

Opcode Operand 1 Operand 2

Instruction Destination Address Source Address

MOV [7], [8] ;In this case, the value in the

;memory location at address 8 is

;moved to the memory location at

;address 7.

Table 7-15. Source Indirect Post Increment

Opcode Operand 1

Instruction Source Address Address

MVI A, [8] ;In this case, the value in the

;memory location at address 8 is

;an indirect address. The memory

;location pointed to by the indi-

;rect address is moved into the

;Accumulator. The indirect

;address is then incremented.

Table 7-16. Destination Indirect Post Increment

Opcode Operand 1

Instruction Destination Address Address

MVI [8], A ;In this case, the value in

;the memory location at

;address 8 is an indirect

;address. The Accumulator is

;moved into the memory loca-

;tion pointed to by the indi-

;rect address. The indirect

;address is then incremented.

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 12 of 68

8.0 Instruction Set Summary

The instruction set is summarized in Table 8-1 by numerically
and serves as a quick reference. If more information is

needed, the Instruction Set Summary tables are described in
detail in the PSoC Designer Assembly Language User Guide
(available on the www.cypress.com web site).

Table 8-1. Instruction Set Summary Sorted Numerically by Opcode Order[2, 3]

O
p

c
o

d
e

 H
e
x

C
y
c

le
s

B
y
te

s

Instruction Format Flags O
p

c
o

d
e

 H
e
x

C
y
c

le
s

B
y
te

s

Instruction Format Flags O
p

c
o

d
e

 H
e
x

C
y
c

le
s

B
y
te

s

Instruction Format Flags

00 15 1 SSC 2D 8 2 OR [X+expr], A Z 5A 5 2 MOV [expr], X

01 4 2 ADD A, expr C, Z 2E 9 3 OR [expr], expr Z 5B 4 1 MOV A, X Z

02 6 2 ADD A, [expr] C, Z 2F 10 3 OR [X+expr], expr Z 5C 4 1 MOV X, A

03 7 2 ADD A, [X+expr] C, Z 30 9 1 HALT 5D 6 2 MOV A, reg[expr] Z

04 7 2 ADD [expr], A C, Z 31 4 2 XOR A, expr Z 5E 7 2 MOV A, reg[X+expr] Z

05 8 2 ADD [X+expr], A C, Z 32 6 2 XOR A, [expr] Z 5F 10 3 MOV [expr], [expr]

06 9 3 ADD [expr], expr C, Z 33 7 2 XOR A, [X+expr] Z 60 5 2 MOV reg[expr], A

07 10 3 ADD [X+expr], expr C, Z 34 7 2 XOR [expr], A Z 61 6 2 MOV reg[X+expr], A

08 4 1 PUSH A 35 8 2 XOR [X+expr], A Z 62 8 3 MOV reg[expr], expr

09 4 2 ADC A, expr C, Z 36 9 3 XOR [expr], expr Z 63 9 3 MOV reg[X+expr], expr

0A 6 2 ADC A, [expr] C, Z 37 10 3 XOR [X+expr], expr Z 64 4 1 ASL A C, Z

0B 7 2 ADC A, [X+expr] C, Z 38 5 2 ADD SP, expr 65 7 2 ASL [expr] C, Z

0C 7 2 ADC [expr], A C, Z 39 5 2 CMP A, expr

if (A=B) Z=1

if (A<B) C=1

66 8 2 ASL [X+expr] C, Z

0D 8 2 ADC [X+expr], A C, Z 3A 7 2 CMP A, [expr] 67 4 1 ASR A C, Z

0E 9 3 ADC [expr], expr C, Z 3B 8 2 CMP A, [X+expr] 68 7 2 ASR [expr] C, Z

0F 10 3 ADC [X+expr], expr C, Z 3C 8 3 CMP [expr], expr 69 8 2 ASR [X+expr] C, Z

10 4 1 PUSH X 3D 9 3 CMP [X+expr], expr 6A 4 1 RLC A C, Z

11 4 2 SUB A, expr C, Z 3E 10 2 MVI A, [[expr]++] Z 6B 7 2 RLC [expr] C, Z

12 6 2 SUB A, [expr] C, Z 3F 10 2 MVI [[expr]++], A 6C 8 2 RLC [X+expr] C, Z

13 7 2 SUB A, [X+expr] C, Z 40 4 1 NOP 6D 4 1 RRC A C, Z

14 7 2 SUB [expr], A C, Z 41 9 3 AND reg[expr], expr Z 6E 7 2 RRC [expr] C, Z

15 8 2 SUB [X+expr], A C, Z 42 10 3 AND reg[X+expr], expr Z 6F 8 2 RRC [X+expr] C, Z

16 9 3 SUB [expr], expr C, Z 43 9 3 OR reg[expr], expr Z 70 4 2 AND F, expr C, Z

17 10 3 SUB [X+expr], expr C, Z 44 10 3 OR reg[X+expr], expr Z 71 4 2 OR F, expr C, Z

18 5 1 POP A Z 45 9 3 XOR reg[expr], expr Z 72 4 2 XOR F, expr C, Z

19 4 2 SBB A, expr C, Z 46 10 3 XOR reg[X+expr], expr Z 73 4 1 CPL A Z

1A 6 2 SBB A, [expr] C, Z 47 8 3 TST [expr], expr Z 74 4 1 INC A C, Z

1B 7 2 SBB A, [X+expr] C, Z 48 9 3 TST [X+expr], expr Z 75 4 1 INC X C, Z

1C 7 2 SBB [expr], A C, Z 49 9 3 TST reg[expr], expr Z 76 7 2 INC [expr] C, Z

1D 8 2 SBB [X+expr], A C, Z 4A 10 3 TST reg[X+expr], expr Z 77 8 2 INC [X+expr] C, Z

1E 9 3 SBB [expr], expr C, Z 4B 5 1 SWAP A, X Z 78 4 1 DEC A C, Z

1F 10 3 SBB [X+expr], expr C, Z 4C 7 2 SWAP A, [expr] Z 79 4 1 DEC X C, Z

20 5 1 POP X 4D 7 2 SWAP X, [expr] 7A 7 2 DEC [expr] C, Z

21 4 2 AND A, expr Z 4E 5 1 SWAP A, SP Z 7B 8 2 DEC [X+expr] C, Z

22 6 2 AND A, [expr] Z 4F 4 1 MOV X, SP 7C 13 3 LCALL

23 7 2 AND A, [X+expr] Z 50 4 2 MOV A, expr Z 7D 7 3 LJMP

24 7 2 AND [expr], A Z 51 5 2 MOV A, [expr] Z 7E 10 1 RETI C, Z

25 8 2 AND [X+expr], A Z 52 6 2 MOV A, [X+expr] Z 7F 8 1 RET

26 9 3 AND [expr], expr Z 53 5 2 MOV [expr], A 8x 5 2 JMP

27 10 3 AND [X+expr], expr Z 54 6 2 MOV [X+expr], A 9x 11 2 CALL

28 11 1 ROMX Z 55 8 3 MOV [expr], expr Ax 5 2 JZ

29 4 2 OR A, expr Z 56 9 3 MOV [X+expr], expr Bx 5 2 JNZ

2A 6 2 OR A, [expr] Z 57 4 2 MOV X, expr Cx 5 2 JC

2B 7 2 OR A, [X+expr] Z 58 6 2 MOV X, [expr] Dx 5 2 JNC

2C 7 2 OR [expr], A Z 59 7 2 MOV X, [X+expr] Ex 7 2 JACC

Fx 13 2 INDEX Z

Notes:

2. Interrupt routines take 13 cycles before execution resumes at interrupt vector table.
3. The number of cycles required by an instruction is increased by one for instructions that span 256-byte boundaries in the Flash memory space.

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 13 of 68

9.0 Memory Organization

9.1 Flash Program Memory Organization

after reset Address

 16-bit PC 0x0000 Program execution begins here after a reset

0x0004 POR/LVD

0x0008 INT0

0x000C SPI Transmitter Empty

0x0010 SPI Receiver Full

0x0014 GPIO Port 0

0x0018 GPIO Port 1

0x001C INT1

0x0020 EP0

0x0024 EP1

0x0028 EP2

0x002C USB Reset

0x0030 USB Active

0x0034 1 ms Interval timer

0x0038 Programmable Interval Timer

0x003C Timer Capture 0

0x0040 Timer Capture 1

0x0044 16 Bit Free Running Timer Wrap

0x0048 INT2

0x004C PS2 Data Low

0x0050 GPIO Port 2

0x0054 GPIO Port 3

0x0058 GPIO Port 4

0x005C Reserved

0x0060 Reserved

0x0064 Sleep Timer

0x0068 Program Memory begins here (if below interrupts not used,
program memory can start lower)

0x0BFF 3-KB ends here (CY7C63310)

0x0FFF 4-KB ends here (CY7C63801)

0x1FFF 8-KB ends here (CY7C639xx and CY7C638x3)

Figure 9-1. Program Memory Space with Interrupt Vector Table

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 14 of 68

9.2 Data Memory Organization

The CY7C633xx/638xx/639xx microcontrollers provide up to
256 bytes of data RAM. In normal usage, the SRAM is parti-
tioned into two areas: stack, and user variables:

9.3 Flash

This section describes the Flash block of the enCoRe II. Much
of the user-visible Flash functionality including programming
and security are implemented in the M8C Supervisory Read
Only Memory (SROM).

9.3.1 Flash Programming and Security

All Flash programming is performed by code in the SROM. The
registers that control the Flash programming are only visible
to the M8C CPU when it is executing out of SROM. This makes
it impossible to read, write or erase the Flash by bypassing the
security mechanisms implemented in the SROM.

Customer firmware can only program the Flash via SROM
calls. The data or code images can be sourced via any
interface with the appropriate support firmware. This type of
programming requires a ‘boot-loader’—a piece of firmware
resident on the Flash. For safety reasons this boot-loader
should not be overwritten during firmware rewrites.

The Flash provides four extra auxiliary rows that are used to
hold Flash block protection flags, boot time calibration values,
configuration tables, and any device values. The routines for
accessing these auxiliary rows are documented in the SROM
section. The auxiliary rows are not affected by the device
erase function.

9.3.2 In-System Programming

Most designs that include an enCoRe II part will have a USB
connector attached to the USB D+/D– pins on the device.
These designs require the ability to program or reprogram a
part through these two pins alone. The programming protocol
is not USB.

enCoRe II devices enable this type of in-system programming
by using the D+ and D– pins as the serial programming mode
interface. This allows an external controller to cause the

enCoRe II part to enter serial programming mode and then to
use the test queue to issue Flash access functions in the
SROM.

9.4 SROM

The SROM holds code that is used to boot the part, calibrate
circuitry, and perform Flash operations. (Table 9-1 lists the
SROM functions.) The functions of the SROM may be
accessed in normal user code or operating from Flash. The
SROM exists in a separate memory space from user code.
The SROM functions are accessed by executing the Super-
visory System Call instruction (SSC), which has an opcode of
00h. Prior to executing the SSC the M8C’s accumulator needs
to be loaded with the desired SROM function code from
Table 9-1. Undefined functions will cause a HALT if called from
user code. The SROM functions are executing code with calls;
therefore, the functions require stack space. With the
exception of Reset, all of the SROM functions have a
parameter block in SRAM that must be configured before
executing the SSC. Table 9-2 lists all possible parameter block
variables. The meaning of each parameter, with regards to a
specific SROM function, is described later in this chapter.

after reset Address

8-bit PSP 0x00 Stack begins here and grows upward (user can modify)

The user determines the amount of memory needed for Stack

User Variables

Top of RAM Memory 0xFF

Figure 9-2. Data Memory Organization

Table 9-1. SROM Function Codes

Function Code Function Name Stack Space

00h SWBootReset 0

01h ReadBlock 7

02h WriteBlock 10

03h EraseBlock 9

05h EraseAll 11

06h TableRead 3

07h CheckSum 3

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 15 of 68

Two important variables that are used for all functions are
KEY1 and KEY2. These variables are used to help discrim-
inate between valid SSCs and inadvertent SSCs. KEY1 must
always have a value of 3Ah, while KEY2 must have the same
value as the stack pointer when the SROM function begins
execution. This would be the Stack Pointer value when the
SSC opcode is executed, plus three. If either of the keys do
not match the expected values, the M8C will halt (with the
exception of the SWBootReset function). The following code
puts the correct value in KEY1 and KEY2. The code starts with
a halt, to force the program to jump directly into the setup code
and not run into it.

halt

SSCOP: mov [KEY1], 3ah

mov X, SP

mov A, X

add A, 3

mov [KEY2], A

The SROM also features Return Codes and Lockouts.

9.4.1 Return Codes

Return codes aid in the determination of success or failure of
a particular function. The return code is stored in KEY1’s
position in the parameter block. The CheckSum and
TableRead functions do not have return codes because
KEY1’s position in the parameter block is used to return other
data.

Read, write, and erase operations may fail if the target block
is read or write protected. Block protection levels are set
during device programming.

The EraseAll function overwrites data in addition to leaving the
entire user Flash in the erase state. The EraseAll function
loops through the number of Flash macros in the product,
executing the following sequence: erase, bulk program all
zeros, erase. After all the user space in all the Flash macros

are erased, a second loop erases and then programs each
protection block with zeros.

9.5 SROM Function Descriptions

9.5.1 SWBootReset Function

The SROM function, SWBootReset, is the function that is
responsible for transitioning the device from a reset state to
running user code. The SWBootReset function is executed
whenever the SROM is entered with an M8C accumulator
value of 00h: the SRAM parameter block is not used as an
input to the function. This will happen, by design, after a
hardware reset, because the M8C's accumulator is reset to
00h or when user code executes the SSC instruction with an
accumulator value of 00h. The SWBootReset function will not
execute when the SSC instruction is executed with a bad key
value and a non-zero function code. An enCoRe II device will
execute the HALT instruction if a bad value is given for either
KEY1 or KEY2.

The SWBootReset function verifies the integrity of the
calibration data by way of a 16-bit checksum, before releasing
the M8C to run user code.

9.5.2 ReadBlock Function

The ReadBlock function is used to read 64 contiguous bytes
from Flash: a block.

The first thing this function does is to check the protection bits
and determine if the desired BLOCKID is readable. If read
protection is turned on, the ReadBlock function will exit setting
the accumulator and KEY2 back to 00h. KEY1 will have a
value of 01h, indicating a read failure. If read protection is not
enabled, the function will read 64 bytes from the Flash using
a ROMX instruction and store the results in SRAM using an
MVI instruction. The first of the 64 bytes will be stored in SRAM
at the address indicated by the value of the POINTER
parameter. When the ReadBlock completes successfully the
accumulator, KEY1 and KEY2 will all have a value of 00h.

9.5.3 WriteBlock Function

The WriteBlock function is used to store data in the Flash. Data
is moved 64 bytes at a time from SRAM to Flash using this
function. The first thing the WriteBlock function does is to
check the protection bits and determine if the desired
BLOCKID is writable. If write protection is turned on, the Write-
Block function will exit setting the accumulator and KEY2 back
to 00h. KEY1 will have a value of 01h, indicating a write failure.
The configuration of the WriteBlock function is straightforward.
The BLOCKID of the Flash block, where the data is stored,
must be determined and stored at SRAM address FAh.

Table 9-2. SROM Function Parameters

Variable Name SRAM Address

Key1 / Counter / Return Code 0,F8h

Key2 / TMP 0,F9h

BlockID 0,FAh

Pointer 0,FBh

Clock 0,FCh

Mode 0,FDh

Delay 0,FEh

PCL 0,FFh

Table 9-3. SROM Return Codes

Return Code Description

00h Success

01h Function not allowed due to level of protection
on block.

02h Software reset without hardware reset.

03h Fatal error, SROM halted.

Table 9-4. ReadBlock Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value, when SSC is
executed.

BLOCKID 0,FAh Flash block number

POINTER 0,FBh First of 64 addresses in SRAM
where returned data should be
stored

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 16 of 68

The SRAM address of the first of the 64 bytes to be stored in
Flash must be indicated using the POINTER variable in the
parameter block (SRAM address FBh). Finally, the CLOCK
and DELAY value must be set correctly. The CLOCK value
determines the length of the write pulse that will be used to
store the data in the Flash. The CLOCK and DELAY values are
dependent on the CPU speed and must be set correctly. Refer
to “Clocking” Section for additional information.

9.5.4 EraseBlock Function

The EraseBlock function is used to erase a block of 64
contiguous bytes in Flash. The first thing the EraseBlock
function does is to check the protection bits and determine if
the desired BLOCKID is writable. If write protection is turned
on, the EraseBlock function will exit setting the accumulator
and KEY2 back to 00h. KEY1 will have a value of 01h,
indicating a write failure. The EraseBlock function is only
useful as the first step in programming. Erasing a block will not
cause data in a block to be one hundred percent unreadable.
If the objective is to obliterate data in a block, the best method
is to perform an EraseBlock followed by a WriteBlock of all
zeros.

To set up the parameter block for the EraseBlock function,
correct key values must be stored in KEY1 and KEY2. The
block number to be erased must be stored in the BLOCKID
variable and the CLOCK and DELAY values must be set based
on the current CPU speed.

9.5.5 ProtectBlock Function

The enCoRe II devices offer Flash protection on a block-by-
block basis. Table 9-7 lists the protection modes available. In
the table, ER and EW are used to indicate the ability to perform
external reads and writes. For internal writes, IW is used.

Internal reading is always permitted by way of the ROMX
instruction. The ability to read by way of the SROM ReadBlock
function is indicated by SR. The protection level is stored in
two bits according to Table 9-7. These bits are bit packed into
the 64 bytes of the protection block. Therefore, each protection
block byte stores the protection level for four Flash blocks. The
bits are packed into a byte, with the lowest numbered block’s
protection level stored in the lowest numbered bits Table 9-7.

The first address of the protection block contains the
protection level for blocks 0 through 3; the second address is
for blocks 4 through 7. The 64th byte will store the protection
level for blocks 252 through 255.

The level of protection is only decreased by an EraseAll, which
places zeros in all locations of the protection block. To set the
level of protection, the ProtectBlock function is used. This
function takes data from SRAM, starting at address 80h, and
ORs it with the current values in the protection block. The
result of the OR operation is then stored in the protection
block. The EraseBlock function does not change the
protection level for a block. Because the SRAM location for the
protection data is fixed and there is only one protection block
per Flash macro, the ProtectBlock function expects very few
variables in the parameter block to be set prior to calling the
function. The parameter block values that must be set, besides
the keys, are the CLOCK and DELAY values.

9.5.6 EraseAll Function

The EraseAll function performs a series of steps that destroy
the user data in the Flash macros and resets the protection
block in each Flash macro to all zeros (the unprotected state).
The EraseAll function does not affect the three hidden blocks
above the protection block, in each Flash macro. The first of
these four hidden blocks is used to store the protection table
for its eight Kbytes of user data.

The EraseAll function begins by erasing the user space of the
Flash macro with the highest address range. A bulk program
of all zeros is then performed on the same Flash macro, to

Table 9-5. WriteBlock Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value, when SSC is
executed.

BLOCKID 0,FAh 8KB Flash block number (00h–7Fh)
4KB Flash block number (00h–3Fh)
3KB Flash block number (00h–2Fh)

POINTER 0,FBh First of 64 addresses in SRAM, where
the data to be stored in Flash is
located prior to calling WriteBlock.

CLOCK 0,FCh Clock divider used to set the write
pulse width.

DELAY 0,FEh For a CPU speed of 12 MHz set to 56h

Table 9-6. EraseBlock Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value, when SSC is
executed.

BLOCKID 0,FAh Flash block number (00h–7Fh)

CLOCK 0,FCh Clock divider used to set the erase
pulse width.

DELAY 0,FEh For a CPU speed of 12 MHz set to
56h

Table 9-7. Protection Modes

Mode Settings Description Marketing

00b SR ER EW IW Unprotected Unprotected

01b SR ER EW IW Read protect Factory upgrade

10b SR ER EW IW Disable external
write

Field upgrade

11b SR ER EW IW Disable internal
write

Full protection

7 6 5 4 3 2 1 0

Block n+3 Block n+2 Block n+1 Block n

Table 9-8. ProtectBlock Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value when SSC is
executed.

CLOCK 0,FCh Clock divider used to set the write
pulse width.

DELAY 0,FEh For a CPU speed of 12 MHz set to 56h

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 17 of 68

destroy all traces of the previous contents. The bulk program
is followed by a second erase that leaves the Flash macro in
a state ready for writing. The erase, program, erase sequence
is then performed on the next lowest Flash macro in the
address space if it exists. Following the erase of the user
space, the protection block for the Flash macro with the
highest address range is erased. Following the erase of the
protection block, zeros are written into every bit of the
protection table. The next lowest Flash macro in the address
space then has its protection block erased and filled with
zeros.

The end result of the EraseAll function is that all user data in
the Flash is destroyed and the Flash is left in an unpro-
grammed state, ready to accept one of the various write
commands. The protection bits for all user data are also reset
to the zero state

The parameter block values that must be set, besides the
keys, are the CLOCK and DELAY values.

9.5.7 TableRead Function

The TableRead function gives the user access to part-specific
data stored in the Flash during manufacturing. It also returns
a Revision ID for the die (not to be confused with the Silicon
ID).

The table space for the enCoRe II is simply a 64-byte row
broken up into eight tables of eight bytes. The tables are
numbered zero through seven. All user and hidden blocks in
the CY7C638xx and CY7C639xx parts consist of 64 bytes.

An internal table holds the Silicon ID and returns the Revision
ID. The Silicon ID is returned in SRAM, while the Revision ID
is returned in the CPU_A and CPU_X registers. The Silicon ID
is a value placed in the table by programming the Flash and is
controlled by Cypress Semiconductor Product Engineering.
The Revision ID is hard coded into the SROM. The Revision
ID is discussed in more detail later in this section.

An internal table holds alternate trim values for the device and
returns a one-byte internal revision counter. The internal
revision counter starts out with a value of zero and is incre-
mented each time one of the other revision numbers is not
incremented. It is reset to zero each time one of the other
revision numbers is incremented. The internal revision count
is returned in the CPU_A register. The CPU_X register will

always be set to FFh when trim values are read. The BLOCKID
value, in the parameter block, is used to indicate which table
should be returned to the user. Only the three least significant
bits of the BLOCKID parameter are used by TableRead
function for the CY7C638xx and CY7C639xx. The upper five
bits are ignored. When the function is called, it transfers bytes
from the table to SRAM addresses F8h–FFh.

The M8C’s A and X registers are used by the TableRead
function to return the die’s Revision ID. The Revision ID is a
16-bit value hard coded into the SROM that uniquely identifies
the die’s design.

9.5.8 Checksum Function

The Checksum function calculates a 16-bit checksum over a
user specifiable number of blocks, within a single Flash macro
(Bank) starting from block zero. The BLOCKID parameter is
used to pass in the number of blocks to calculate the
checksum over. A BLOCKID value of 1 will calculate the
checksum of only block 0, while a BLOCKID value of 0 will
calculate the checksum of all 256 user blocks. The 16-bit
checksum is returned in KEY1 and KEY2. The parameter
KEY1 holds the lower eight bits of the checksum and the
parameter KEY2 holds the upper eight bits of the checksum.

The checksum algorithm executes the following sequence of
three instructions over the number of blocks times 64 to be
checksummed.

romx

add [KEY1], A

adc [KEY2], 0

10.0 Clocking

The enCoRe II internal oscillator outputs two frequencies, the
Internal 24-MHz Oscillator and the 32-KHz Low-power Oscil-
lator.

The Internal 24-MHz Oscillator is designed such that it may be
trimmed to an output frequency of 24 MHz over temperature
and voltage variation. With the presence of USB traffic, the
Internal 24-MHz Oscillator can be set to precisely tune to USB
timing requirements (24 MHz ± 1.5%). Without USB traffic, the
Internal 24-MHz Oscillator accuracy is 24 MHz ± 5% (between
0°–70°C). No external components are required to achieve
this level of accuracy.

The internal low-speed oscillator of nominally 32 KHz provides
a slow clock source for the enCoRe II in suspend mode, partic-
ularly to generate a periodic wake-up interrupt and also to
provide a clock to sequential logic during power-up and power-
down events when the main clock is stopped. In addition, this
oscillator can also be used as a clocking source for the Interval
Timer clock (ITMRCLK) and Capture Timer clock (TCAPCLK).
The 32-KHz Low-power Oscillator can operate in low-power
mode or can provide a more accurate clock in normal mode.

Table 9-9. EraseAll Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value when SSC is
executed.

CLOCK 0,FCh Clock divider used to set the write pulse
width.

DELAY 0,FEh For a CPU speed of 12 MHz set to 56h

Table 9-10. Table Read Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value when SSC is
executed.

BLOCKID 0,FAh Table number to read.

Table 9-11. Checksum Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value when SSC is
executed.

BLOCKID 0,FAh Number of Flash blocks to calculate
checksum on.

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 18 of 68

The Internal 32-KHz Low-power Oscillator accuracy ranges
from –85% to +120% (between 0°–70° C).

For applications that require a higher clock accuracy, the
CY7C639xx part can optionally be sourced from an external
crystal oscillator. When operating in USB mode, the supplied
crystal oscillator must be either 12 MHz or 24 MHz in order for
the USB blocks to function properly. In non-USB mode, the
external oscillator can be up to 24 MHz.

10.1 Clock Architecture Description

The enCoRe II clock selection circuitry allows the selection of
independent clocks for the CPU, USB, Interval Timers and
Capture Timers.

On the CY7C639xx, the external oscillator can be sourced by
the crystal oscillator or when the crystal oscillator is disabled it
is sourced directly from the CLKIN pin. The external crystal
oscillator is fed through the EFTB block, which can optionally
be bypassed.

The CPU clock, CPUCLK, can be sourced from the external
crystal oscillator or the Internal 24-MHz Oscillator. The
selected clock source can optionally be divided by 2n where n
is 0-5,7 (see Table 10-5).

USBCLK, which must be 12 MHz for the USB SIE to function
properly, can be sourced by the Internal 24-MHz Oscillator or

the external crystal oscillator. An optional divide by two allows
the use of 24-MHz source.

The Interval Timer clock (ITMRCLK), can be sourced from the
external crystal oscillator, the Internal 24-MHz Oscillator, the
Internal 32-KHz Low-power Oscillator, or from the timer
capture clock (TCAPCLK). A programmable prescaler of 1, 2,
3, 4 then divides the selected source.

The Timer Capture clock (TCAPCLK) can be sourced from the
external crystal oscillator, Internal 24-MHz Oscillator, or the
Internal 32-KHz Low-power Oscillator.

When it is not being used by the external crystal oscillator, the
CLKOUT pin can be driven from one of many sources. This is
used for test and can also be used in some applications. The
sources that can drive the CLKOUT are:

• CLKIN after the optional EFTB filter

• Internal 24-MHz Oscillator

• Internal 32-KHz Low-power Oscillator

• CPUCLK after the programmable divider

10.1.1 Clock Control Registers

10.1.2 Internal Clock Trim

Table 10-1. IOSC Trim (IOSCTR) [0x34] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field foffset[2:0] Gain[4:0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Default 0 0 0 D D D D D

The IOSC Calibrate register is used to calibrate the internal oscillator. The reset value is undefined but during boot the SROM
writes a calibration value that is determined during manufacturing test. This value should not require change during normal use.
This is the meaning of ‘D’ in the Default field
Bit [7:5]: foffset [2:0]
This value is used to trim the frequency of the internal oscillator. These bits are not used in factory calibration and will be zero.
Setting each of these bits causes the appropriate fine offset in oscillator frequency.
foffset bit 0 = 7.5 KHz
foffset bit 1 = 15 KHz
foffset bit 2 = 30 KHz
Bit [4:0]: Gain [4:0]
The effective frequency change of the offset input is controlled through the gain input. A lower value of the gain setting increases
the gain of the offset input. This value sets the size of each offset step for the internal oscillator. Nominal gain change
(KHz/offsetStep) at each bit, typical conditions (24 MHz operation):
Gain bit 0 = –1.5 KHz
Gain bit 1 = –3.0 KHz
Gain bit 2 = –6 KHz
Gain bit 3 = –12 KHz
Gain bit 4 = –24 KHz

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 19 of 68

10.1.3 External Clock Trim

10.1.4 LPOSC Trim

Table 10-2. XOSC Trim (XOSCTR) [0x35] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved XOSC XGM [2:0] Reserved Mode

Read/Write – – – R/W R/W R/W – R/W

Default 0 0 0 D D D 0 D

This register is used to calibrate the external crystal oscillator. The reset value is undefined but during boot the SROM writes a
calibration value that is determined during manufacturing test. This is the meaning of ‘D’ in the Default field
Bit [7:5]: Reserved
Bit [4:2]: XOSC XGM [2:0]
Amplifier transconductance setting. The Xgm settings are recommended for resonators with frequencies of interest for the
enCoRe II as below

Bit 1: Reserved
Bit 0: Mode
0 = Oscillator Mode
1 = Fixed Maximum Bias test Mode

Resonator XGM Setting Worst Case R (Ohms)

6-MHz Crystal 001 403

12-MHz Crystal 011 201

24-MHz Crystal 111 101

6-MHz Ceramic 001 70.4

12-MHz Ceramic 011 41

Table 10-3. LPOSC Trim (LPOSCTR) [0x36] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field 32-KHz Low
Power

Reserved 32-KHz Bias Trim [1:0] 32-KHz Freq Trim [3:0]

Read/Write R/W – R/W R/W R/W R/W R/W R/W

Default D D D D D D D D

This register is used to calibrate the 32-KHz Low-speed Oscillator. The reset value is undefined but during boot the SROM writes
a calibration value that is determined during manufacturing test. This value should not require change during normal use. This
is the meaning of ‘D’ in the Default field. If the 32-KHz Low-power bit needs to be written, care should be taken not to disturb
the 32-KHz Bias Trim and the 32-KHz Freq Trim fields from their factory calibrated values
Bit 7: 32-KHz Low Power
0 = The 32-KHz Low-speed Oscillator operates in normal mode
1 = The 32-KHz Low-speed Oscillator operates in a low-power mode. The oscillator continues to function normally but with
reduced accuracy
Bit 6: Reserved
Bit [5:4]: 32-KHz Bias Trim [1:0]
These bits control the bias current of the low-power oscillator.
0 0 = Mid bias
0 1 = High bias
1 0 = Reserved
1 1 = Disable (off)
Important Note: Do not program the 32-KHz Bias Trim [1:0] field with the reserved 10b value as the oscillator does not oscillate
at all corner conditions with this setting
Bit [3:0]: 32-KHz Freq Trim [3:0]
These bits are used to trim the frequency of the low-power oscillator

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 20 of 68

10.1.5 CPU/USB Clock Configuration

Table 10-4. CPU/USB Clock Config CPUCLKCR) [0x30] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved USB CLK /2
Disable

USB CLK Select Reserved CPUCLK Select

Read/Write – R/W R/W – – – – R/W

Default 0 0 0 0 0 0 0 0

Bit 7: Reserved
Bit 6: USB CLK/2 Disable
This bit only affects the USBCLK when the source is the external crystal oscillator. When the USBCLK source is the Internal
24-MHz Oscillator, the divide by two is always enabled
0 = USBCLK source is divided by two. This is the correct setting to use when the Internal 24-MHz Oscillator is used, or when
the external source is used with a 24-MHz clock
1 = USBCLK is undivided. Use this setting only with a 12-MHz external clock
Bit 5: USB CLK Select
This bit controls the clock source for the USB SIE
0 = Internal 24-MHz Oscillator. With the presence of USB traffic, the Internal 24-MHz Oscillator can be trimmed to meet the USB
requirement of 1.5% tolerance (see Table 10-6)
1 = External clock—external oscillator on CLKIN and CLKOUT if the external oscillator is enabled (the XOSC Enable bit set in
the CLKIOCR Register—Table 10-8), or the CLKIN input if the external oscillator is disabled. Internal Oscillator is not trimmed
to USB traffic. Proper USB SIE operation requires a 12-MHz or 24-MHz clock accurate to <1.5%.
Bit [4:1]: Reserved
Bit 0: CPU CLK Select
0 = Internal 24-MHz Oscillator.
1 = External crystal oscillator—External crystal oscillator on CLKIN and CLKOUT if the external crystal oscillator is enabled,
CLKIN input if the external crystal oscillator is disabled
Note: the CPU speed selection is configured using the OSC_CR0 Register (Table 10-5)

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 21 of 68

10.1.6 OSC_CR0 Clock Configuration

Table 10-5. OSC Control 0 (OSC_CR0) [0x1E0] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved No Buzz Sleep Timer [1:0] CPU Speed [2:0]

Read/Write – – R/W R/W R/W R/W R/W R/W

Default 0 0 0 0 0 0 0 0

Bit [7:6]: Reserved
Bit 5: No Buzz
During sleep (the Sleep bit is set in the CPU_SCR Register—Table 11-1), the LVD and POR detection circuit is turned on
periodically to detect any POR and LVD events on the VCC pin (the Sleep Duty Cycle bits in the ECO_TR are used to control
the duty cycle—Table 13-3). To facilitate the detection of POR and LVD events, the No Buzz bit is used to force the LVD and
POR detection circuit to be continuously enabled during sleep. This results in a faster response to an LVD or POR event during
sleep at the expense of a slightly higher than average sleep current
0 = The LVD and POR detection circuit is turned on periodically as configured in the Sleep Duty Cycle
1 = The Sleep Duty Cycle value is overridden. The LVD and POR detection circuit is always enabled
Note: The periodic Sleep Duty Cycle enabling is independent with the sleep interval shown in the Sleep [1:0] bits below
Bit [4:3]: Sleep Timer [1:0]

Note: Sleep intervals are approximate
Bit [2:0]: CPU Speed [2:0]
The enCoRe II may operate over a range of CPU clock speeds. The reset value for the CPU Speed bits is zero; therefore, the
default CPU speed is one-eighth of the internal 24 MHz, or 3 MHz
Regardless of the CPU Speed bit’s setting, if the actual CPU speed is greater than 12 MHz, the 24-MHz operating requirements
apply. An example of this scenario is a device that is configured to use an external clock, which is supplying a frequency of 20
MHz. If the CPU speed register’s value is 0b011, the CPU clock will be 20 MHz. Therefore the supply voltage requirements for
the device are the same as if the part was operating at 24 MHz. The operating voltage requirements are not relaxed until the
CPU speed is at 12 MHz or less

Important Note: Correct USB operations require the CPU clock speed to be at least eight times greater than the USB clock. If
the two clocks have the same source then the CPU clock divider should not be set to divide by more than 8. If the two clocks
have different sources, care must be taken to ensure that the maximum ratio of USB Clock/CPU Clock can never exceed 8
across the full specification range of both clock sources

Sleep Timer
[1:0]

Sleep Timer Clock
Frequency (Nominal)

Sleep Period
(Nominal)

Watchdog Period
(Nominal)

00 512 Hz 1.95 ms 6 ms

01 64 Hz 15.6 ms 47 ms

10 8 Hz 125 ms 375 ms

11 1 Hz 1 sec 3 sec

CPU Speed
[2:0]

CPU when Internal
Oscillator is selected External Clock

000 3 MHz (Default) Clock In / 8

001 6 MHz Clock In / 4

010 12 MHz Clock In / 2

011 24 MHz Clock In / 1

100 1.5 MHz Clock In / 16

101 750 KHz Clock In / 32

110 187 KHz Clock In / 128

111 Reserved Reserved

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 22 of 68

10.1.7 USB Oscillator Lock Configuration

10.1.8 Timer Clock Configuration

Table 10-6. USB Osclock Clock Configuration (OSCLCKCR) [0x39] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved Fine Tune Only USB Osclock
Disable

Read/Write – – – – – – R/W R/W

Default 0 0 0 0 0 0 0 0

This register is used to trim the Internal 24-MHz Oscillator using received low-speed USB packets as a timing reference. The
USB Osclock circuit is active when the Internal 24-MHz Oscillator provides the USB clock
Bit [7:2]: Reserved
Bit 1: Fine Tune Only
0 = Enable
1 = Disable the oscillator lock from performing the course-tune portion of its retuning. The oscillator lock must be allowed to
perform a course tuning in order to tune the oscillator for correct USB SIE operation. After the oscillator is properly tuned this bit
can be set to reduce variance in the internal oscillator frequency that would be caused course tuning
Bit 0: USB Osclock Disable
0 = Enable. With the presence of USB traffic, the Internal 24-MHz Oscillator precisely tunes to 24 MHz ± 1.5%
1 = Disable. The Internal 24-MHz Oscillator is not trimmed based on USB packets. This setting is useful when the internal
oscillator is not sourcing the USBSIE clock

Table 10-7. Timer Clock Config (TMRCLKCR) [0x31] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field TCAPCLK Divider TCAPCLK Select ITMRCLK Divider ITMRCLK Select

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Default 1 0 0 0 1 1 1 1

Bit [7:6]: TCAPCLK Divider [1:0]
TCAPCLK Divider controls the TCAPCLK divisor
0 0 = Divider Value 2
0 1 = Divider Value 4
1 0 = Divider Value 6
1 1 = Divider Value 8
Bit [5:4]: TCAPCLK Select
The TCAPCLK Select field controls the source of the TCAPCLK
0 0 = Internal 24-MHz Oscillator
0 1 = External crystal oscillator—external crystal oscillator on CLKIN and CLKOUT if the external crystal oscillator is enabled,
CLKIN input if the external crystal oscillator is disabled (the XOSC Enable bit of the CLKIOCR Register is cleared—Table 10-8)
1 0 = Internal 32-KHz Low-power Oscillator
1 1 = TCAPCLK Disabled
Note: The 1024-µs interval timer is based on the assumption that TCAPCLK is running at 4 MHz. Changes in TCAPCLK
frequency will cause a corresponding change in the 1024-µs interval timer frequency
Bit [3:2]: ITMRCLK Divider
ITMRCLK Divider controls the ITMRCLK divisor.
0 0 = Divider value of 1
0 1 = Divider value of 2
1 0 = Divider value of 3
1 1 = Divider value of 4
Bit [1:0]: ITMRCLK Select
0 0 = Internal 24-MHz Oscillator
0 1 = External crystal oscillator – external crystal oscillator on CLKIN and CLKOUT if the external crystal oscillator is enabled,
CLKIN input if the external crystal oscillator is disabled
1 0 = Internal 32-KHz Low-power Oscillator
1 1 = TCAPCLK

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 23 of 68

10.1.9 Clock In / Clock Out Configuration

10.2 CPU Clock During Sleep Mode

When the CPU enters sleep mode the CPUCLK Select (Bit 1,
Table 10-4) is forced to the Internal Oscillator, and the oscil-
lator is stopped. When the CPU comes out of sleep mode it is
running on the internal oscillator. The internal oscillator
recovery time is three clock cycles of the Internal 32-KHz Low-
power Oscillator.

If the system requires the CPU to run off the external clock
after awaking from sleep mode, firmware will need to switch
the clock source for the CPU. If the external clock source is the
external oscillator and the oscillator is disabled, firmware will
need to enable the external oscillator, wait for it to stabilize,
and then change the clock source.

11.0 Reset

The microcontroller supports two types of resets: Power-on
Reset (POR) and Watchdog Reset (WDR). When reset is
initiated, all registers are restored to their default states and all
interrupts are disabled.

The occurrence of a reset is recorded in the System Status and
Control Register (CPU_SCR). Bits within this register record
the occurrence of POR and WDR Reset respectively. The
firmware can interrogate these bits to determine the cause of
a reset.

The microcontroller resumes execution from Flash address
0x0000 after a reset. The internal clocking mode is active after
a reset, until changed by user firmware.

Note: The CPU clock defaults to 3 MHz (Internal 24-MHz
Oscillator divide-by-8 mode) at POR to guarantee operation at
the low VCC that might be present during the supply ramp.

Table 10-8. Clock I/O Config (CLKIOCR) [0x32] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved XOSC
Select

XOSC
Enable

EFTB
Disabled

CLKOUT Select

Read/Write – – – R/W R/W R/W R/W R/W

Default 0 0 0 0 0 0 0 0

Bit [7:5]: Reserved
Bit 4: XOSC Select
This bit when set, selects the external crystal oscillator clock as clock source of external clock. Care needs to be taken while
selecting the crystal oscillator clock. First enable the crystal oscillator and wait for few cycles, which is oscillator stabilization
period. Then select the crystal clock as clock source. Similarly, while deselect crystal clock, first deselect crystal clock as clock
source then disable the crystal oscillator.
0 = Not select external crystal oscillator clock
1 = Select the external crystal oscillator clock
Bit 3: XOSC Enable
This bit when set enables the external crystal oscillator. The external crystal oscillator shares pads CLKIN and CLKOUT with
two GPIOs—P0.0 and P0.1, respectively. When the external crystal oscillator is enabled, the CLKIN signal comes from the
external crystal oscillator block and the output enables on the GPIOs for P0.0 and P0.1 are disabled, eliminating the possibility
of contention. When the external crystal oscillator is disabled the source for CLKIN signal comes from the P0.0 GPIO input.
0 = Disable the external oscillator
1 = Enable the external oscillator
Note: The external crystal oscillator startup time takes up to 2 ms.
Bit 2: EFTB Disabled
This bit is only available on the CY7C639xx
0 = Enable the EFTB filter
1 = Disable the EFTB filter, causing CLKIN to bypass the EFTB filter
Bit [1:0]: CLKOUT Select
0 0 = Internal 24-MHz Oscillator
0 1 = External crystal oscillator – external crystal oscillator on CLKIN and CLKOUT if the external crystal oscillator is enabled,
CLKIN input if the external oscillator is disabled
1 0 = Internal 32-KHz Low-power Oscillator
1 1 = CPUCLK

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 24 of 68

11.1 Power-on Reset

POR occurs every time the power to the device is switched on.
POR is released when the supply is typically 2.6V for the
upward supply transition, with typically 50 mV of hysteresis
during the power-on transient. Bit 4 of the System Status and
Control Register (CPU_SCR) is set to record this event (the
register contents are set to 00010000 by the POR). After a
POR, the microprocessor is held off for approximately 20 ms
for the VCC supply to stabilize before executing the first
instruction at address 0x00 in the Flash. If the VCC voltage
drops below the POR downward supply trip point, POR is
reasserted. The VCC supply needs to ramp linearly from 0 to
4V in 0 to 200 ms.

Important: The PORS status bit is set at POR and can only
be cleared by the user. It cannot be set by firmware.

11.2 Watchdog Timer Reset

The user has the option to enable the WDT. The WDT is
enabled by clearing the PORS bit. Once the PORS bit is

cleared, the WDT cannot be disabled. The only exception to
this is if a POR event takes place, which will disable the WDT.

The sleep timer is used to generate the sleep time period and
the Watchdog time period. The sleep timer uses the Internal
32-KHz Low-power Oscillator system clock to produce the
sleep time period. The user can program the sleep time period
using the Sleep Timer bits of the OSC_CR0 Register
(Table 10-5). When the sleep time elapses (sleep timer
overflows), an interrupt to the Sleep Timer Interrupt Vector will
be generated.

The Watchdog Timer period is automatically set to be three
counts of the Sleep Timer overflows. This represents between
two and three sleep intervals depending on the count in the
Sleep Timer at the previous WDT clear. When this timer
reaches three, a WDR is generated.

The user can either clear the WDT, or the WDT and the Sleep
Timer. Whenever the user writes to the Reset WDT Register
(RES_WDT), the WDT will be cleared. If the data that is written
is the hex value 0x38, the Sleep Timer will also be cleared at
the same time.

Note:

4. C = Clear. This bit can only be cleared by the user and cannot be set by firmware.

Table 11-1. System Status and Control Register (CPU_SCR) [0xFF] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field GIES Reserved WDRS PORS Sleep Reserved Stop

Read/Write R – R/C[4] R/C[4] R/W – – R/W

Default 0 0 0 1 0 0 0 0

The bits of the CPU_SCR register are used to convey status and control of events for various functions of an enCoRe II device
Bit 7: GIES
The Global Interrupt Enable Status bit is a read only status bit and its use is discouraged. The GIES bit is a legacy bit, which
was used to provide the ability to read the GIE bit of the CPU_F register. However, the CPU_F register is now readable. When
this bit is set, it indicates that the GIE bit in the CPU_F register is also set which, in turn, indicates that the microprocessor will
service interrupts
0 = Global interrupts disabled
1 = Global interrupt enabled
Bit 6: Reserved
Bit 5: WDRS
The WDRS bit is set by the CPU to indicate that a WDR event has occurred. The user can read this bit to determine the type of
reset that has occurred. The user can clear but not set this bit
0 = No WDR
1 = A WDR event has occurred
Bit 4: PORS
The PORS bit is set by the CPU to indicate that a POR event has occurred. The user can read this bit to determine the type of
reset that has occurred. The user can clear but not set this bit
0 = No POR
1 = A POR event has occurred. (Note that WDR events will not occur until this bit is cleared)
Bit 3: SLEEP
Set by the user to enable CPU sleep state. CPU will remain in sleep mode until any interrupt is pending. The Sleep bit is covered
in more detail in the Sleep Mode section
0 = Normal operation
1 = Sleep
Bit [2:1]: Reserved
Bit 0: STOP
This bit is set by the user to halt the CPU. The CPU will remain halted until a reset (WDR, POR, or external reset) has taken
place. If an application wants to stop code execution until a reset, the preferred method would be to use the HALT instruction
rather than writing to this bit
0 = Normal CPU operation
1 = CPU is halted (not recommended)

CY7C63310
CY7C638xx
CY7C639xx

Document 38-08035 Rev. *E Page 25 of 68

12.0 Sleep Mode

The CPU can only be put to sleep by the firmware. This is
accomplished by setting the Sleep bit in the System Status and
Control Register (CPU_SCR). This stops the CPU from
executing instructions, and the CPU will remain asleep until an
interrupt comes pending, or there is a reset event (either a
Power-on Reset, or a Watchdog Timer Reset).

The Low-voltage Detection circuit (LVD) drops into fully
functional power-reduced states, and the latency for the LVD
is increased. The actual latency can be traded against power
consumption by changing Sleep Duty Cycle field of the
ECO_TR Register.

The Internal 32-KHz Low-speed Oscillator remains running.
Prior to entering suspend mode, firmware can optionally
configure the 32-KHz Low-speed Oscillator to operate in a low-
power mode to help reduce the over all power consumption
(Using Bit 7, Table 10-3). This will help save approximately
5 µA; however, the trade off is that the 32-KHz Low-speed
Oscillator will be less accurate (–85% to +120% deviation).

All interrupts remain active. Only the occurrence of an interrupt
will wake the part from sleep. The Stop bit in the System Status
and Control Register (CPU_SCR) must be cleared for a part
to resume out of sleep. The Global Interrupt Enable bit of the
CPU Flags Register (CPU_F) does not have any effect. Any
unmasked interrupt will wake the system up. As a result, any

interrupts not intended for waking should be disabled through
the Interrupt Mask Registers.

When the CPU enters sleep mode the CPUCLK Select (Bit 1,
Table 10-4) is forced to the Internal Oscillator. The internal
oscillator recovery time is three clock cycles of the Internal
32-KHz Low-power Oscillator. The Internal 24-MHz Oscillator
restarts immediately on exiting Sleep mode. If the external
crystal oscillator is used, firmware will need to switch the clock
source for the CPU.

Unlike the Internal 24-MHz Oscillator, the external oscillator is
not automatically shut down during sleep. Systems that need
the external oscillator disabled in sleep mode will need to
disable the external oscillator prior to entering sleep mode. In
systems where the CPU runs off the external oscillator,
firmware will need to switch the CPU to the internal oscillator
prior to disabling the external oscillator.

On exiting sleep mode, once the clock is stable and the delay
time has expired, the instruction immediately following the
sleep instruction is executed before the interrupt service
routine (if enabled).

The Sleep interrupt allows the microcontroller to wake up
periodically and poll system components while maintaining
very low average power consumption. The Sleep interrupt
may also be used to provide periodic interrupts during non-
sleep modes.

Table 11-2. Reset Watchdog Timer (RESWDT) [0xE3] [W]

Bit # 7 6 5 4 3 2 1 0

Field Reset Watchdog Timer [7:0]

Read/Write W W W W W W W W

Default 0 0 0 0 0 0 0 0

Any write to this register will clear Watchdog Timer, a write of 0x38 will also clear the Sleep Timer
Bit [7:0]: Reset Watchdog Timer [7:0]

	Contact us
	1.0 Features
	1.1 Applications

	2.0 Introduction
	3.0 Conventions
	4.0 Logic Block Diagram
	5.0 Packages/Pinouts
	5.1 Pinouts Assignments

	6.0 CPU Architecture
	7.0 CPU Registers
	7.1 Flags Register
	7.1.1 Accumulator Register
	7.1.2 Index Register
	7.1.3 Stack Pointer Register
	7.1.4 CPU Program Counter High Register
	7.1.5 CPU Program Counter Low Register

	7.2 Addressing Modes
	7.2.1 Source Immediate
	7.2.2 Source Direct
	7.2.3 Source Indexed
	7.2.4 Destination Direct
	7.2.5 Destination Indexed
	7.2.6 Destination Direct Immediate
	7.2.7 Destination Indexed Immediate
	7.2.8 Destination Direct
	7.2.9 Source Indirect Post Increment
	7.2.10 Destination Indirect Post Increment

	8.0 Instruction Set Summary
	9.0 Memory Organization
	9.1 Flash Program Memory Organization
	9.2 Data Memory Organization
	9.3 Flash
	9.3.1 Flash Programming and Security
	9.3.2 In-System Programming

	9.4 SROM
	9.4.1 Return Codes

	9.5 SROM Function Descriptions
	9.5.1 SWBootReset Function
	9.5.2 ReadBlock Function
	9.5.3 WriteBlock Function
	9.5.4 EraseBlock Function
	9.5.5 ProtectBlock Function
	9.5.6 EraseAll Function
	9.5.7 TableRead Function
	9.5.8 Checksum Function

	10.0 Clocking
	10.1 Clock Architecture Description
	10.1.1 Clock Control Registers
	10.1.2 Internal Clock Trim
	10.1.3 External Clock Trim
	10.1.4 LPOSC Trim
	10.1.5 CPU/USB Clock Configuration
	10.1.6 OSC_CR0 Clock Configuration
	10.1.7 USB Oscillator Lock Configuration
	10.1.8 Timer Clock Configuration
	10.1.9 Clock In / Clock Out Configuration

	10.2 CPU Clock During Sleep Mode

	11.0 Reset
	11.1 Power-on Reset
	11.2 Watchdog Timer Reset

