
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

CY7C64013C

CY7C64113C

Full-Speed USB (12-Mbps) Function

Cypress Semiconductor Corporation � 198 Champion Court � San Jose, CA 95134-1709 � 408-943-2600

Document Number: 38-08001 Rev. *E Revised April 16, 2014

Full-Speed USB (12-Mbps) Function

Features

■ Full-speed USB Microcontroller

■ 8-bit USB Optimized Microcontroller

❐ Harvard architecture

❐ 6-MHz external clock source

❐ 12-MHz internal CPU clock

❐ 48-MHz internal clock

■ Internal memory

❐ 256 bytes of RAM

❐ 8 KB of PROM (CY7C64013C, CY7C64113C)

■ Integrated Master/Slave I2C-compatible Controller (100 kHz)
enabled through General-Purpose I/O (GPIO) pins

■ Hardware Assisted Parallel Interface (HAPI) for data transfer
to external devices

■ I/O ports

❐ Three GPIO ports (Port 0 to 2) capable of sinking 7 mA per
pin (typical)

❐ An additional GPIO port (Port 3) capable of sinking 12 mA
per pin (typical) for high current requirements: LEDs

❐ Higher current drive achievable by connecting multiple GPIO
pins together to drive a common output

❐ Each GPIO port can be configured as inputs with internal
pull-ups or open drain outputs or traditional CMOS outputs

❐ A Digital to Analog Conversion (DAC) port with
programmable current sink outputs is available on the
CY7C64113C devices

❐ Maskable interrupts on all I/O pins

■ 12-bit free-running timer with one microsecond clock ticks

■ Watchdog Timer (WDT)

■ Internal Power-On Reset (POR)

■ USB Specification Compliance

❐ Conforms to USB Specification, Version 1.1

❐ Conforms to USB HID Specification, Version 1.1

❐ Supports up to five user configured endpoints

� Up to four 8-byte data endpoints

� Up to two 32-byte data endpoints

❐ Integrated USB transceivers

■ Improved output drivers to reduce EMI

■ Operating voltage from 4.0 V to 5.5 V DC

■ Operating temperature from 0 to 70 degrees Celsius

❐ CY7C64013C available in 28-pin SOIC and 28-pin PDIP
packages

❐ CY7C64113C available in 48-pin SSOP packages

■ Industry-standard programmer support

Functional Overview

The CY7C64013C and CY7C64113C are 8-bit One Time
Programmable microcontrollers that are designed for full-speed
USB applications. The instruction set has been optimized
specifically for USB operations, although the microcontrollers
can be used for a variety of non-USB embedded applications.

GPIO

The CY7C64013C features 19 GPIO pins to support USB and
other applications. The I/O pins are grouped into three ports
(P0[7:0], P1[2:0], P2[6:2], P3[2:0]) where each port can be
configured as inputs with internal pull-ups, open drain outputs, or
traditional CMOS outputs. There are 16 GPIO pins (Ports 0 and
1) which are rated at 7 mA typical sink current. Port 3 pins are
rated at 12 mA typical sink current, a current sufficient to drive
LEDs. Multiple GPIO pins can be connected together to drive a
single output for more drive current capacity. Additionally, each
GPIO can be used to generate a GPIO interrupt to the
microcontroller. All of the GPIO interrupts share the same “GPIO”
interrupt vector.

The CY7C64113C has 32 GPIO pins (P0[7:0], P1[7:0], P2[7:0],
P3[7:0]).

DAC

The CY7C64113C has four programmable sink current I/O pins
(DAC) pins (P4[7,2:0]). Every DAC pin includes an integrated
14-k pull-up resistor. When a ‘1’ is written to a DAC I/O pin, the
output current sink is disabled and the output pin is driven HIGH
by the internal pull-up resistor. When a ‘0’ is written to a DAC I/O
pin, the internal pull-up resistor is disabled and the output pin
provides the programmed amount of sink current. A DAC I/O pin
can be used as an input with an internal pull-up by writing a ‘1’
to the pin.

The sink current for each DAC I/O pin can be individually
programmed to one of 16 values using dedicated Isink registers.
DAC bits P4[1:0] can be used as high-current outputs with a
programmable sink current range of 3.2 to 16 mA (typical). DAC
bits P4[7,2] have a programmable current sink range of 0.2 to
1.0 mA (typical). Multiple DAC pins can be connected together
to drive a single output that requires more sink current capacity.
Each I/O pin can be used to generate a DAC interrupt to the
microcontroller. Also, the interrupt polarity for each DAC I/O pin
is individually programmable.

Clock

The microcontroller uses an external 6-MHz crystal and an
internal oscillator to provide a reference to an internal PLL-based
clock generator. This technology allows the customer application
to use an inexpensive 6-MHz fundamental crystal that reduces
the clock-related noise emissions (EMI). A PLL clock generator
provides the 6-, 12-, and 48-MHz clock signals for distribution
within the microcontroller.

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 2 of 53

Memory

The CY7C64013C and CY7C64113C have 8 KB of PROM.

Power on Reset, Watchdog and Free running Time

These parts include power-on reset logic, a Watchdog timer, and
a 12-bit free-running timer. The power-on reset (POR) logic
detects when power is applied to the device, resets the logic to
a known state, and begins executing instructions at PROM
address 0x0000. The Watchdog timer is used to ensure the
microcontroller recovers after a period of inactivity. The firmware
may become inactive for a variety of reasons, including errors in
the code or a hardware failure such as waiting for an interrupt
that never occurs.

I2C and HAPI Interface

The microcontroller can communicate with external electronics
through the GPIO pins. An I2C-compatible interface
accommodates a 100-kHz serial link with an external device.
There is also a Hardware Assisted Parallel Interface (HAPI)
which can be used to transfer data to an external device.

Timer

The free-running 12-bit timer clocked at 1 MHz provides two
interrupt sources, 128-µs and 1.024-ms. The timer can be used
to measure the duration of an event under firmware control by
reading the timer at the start of the event and after the event is
complete. The difference between the two readings indicates the

duration of the event in microseconds. The upper four bits of the
timer are latched into an internal register when the firmware
reads the lower eight bits. A read from the upper four bits actually
reads data from the internal register, instead of the timer. This
feature eliminates the need for firmware to try to compensate if
the upper four bits increment immediately after the lower eight
bits are read.

Interrupts

The microcontroller supports 11 maskable interrupts in the
vectored interrupt controller. Interrupt sources include the USB
Bus Reset interrupt, the 128-µs (bit 6) and 1.024-ms (bit 9)
outputs from the free-running timer, five USB endpoints, the DAC
port, the GPIO ports, and the I2C-compatible master mode
interface. The timer bits cause an interrupt (if enabled) when the
bit toggles from LOW ‘0’ to HIGH ‘1.’ The USB endpoints interrupt
after the USB host has written data to the endpoint FIFO or after
the USB controller sends a packet to the USB host. The DAC
ports have an additional level of masking that allows the user to
select which DAC inputs can cause a DAC interrupt. The GPIO
ports also have a level of masking to select which GPIO inputs
can cause a GPIO interrupt. For additional flexibility, the input
transition polarity that causes an interrupt is programmable for
each pin of the DAC port. Input transition polarity can be
programmed for each GPIO port as part of the port configuration.
The interrupt polarity can be rising edge (‘0’ to ‘1’) or falling edge
(‘1’ to ‘0’).

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 3 of 53

Interrupt
Controller

PROM

12-bit
Timer

Reset

Watchdog
Timer

Power-On

SCLKI2C

GPIO
PORT 1

GPIO
PORT 0

P0[7:0]

P1[2:0]

P1[7:3]

SDATA

8
-b

it
 B

u
s

6-MHz crystal

RAM

USB
SIE

USB

Transceiver

D+[0]

D–[0]

Upstream
USB Port

P3[2:0]

DAC
PORT

DAC[0]

DAC[2]

High Current
Outputs

CY7C64113C only

256 byte

8 KB

Clock

6 MHz

12-MHz
8-bit
CPU

*I2C-compatible interface enabled by firmware through

Interface

P3[7:3]
Additional

Outputs
High Current

PLL

12 MHz

48 MHz

Divider

GPIO/

PORT 2

P2[0,1,7]

P2[3]; Data_Ready
P2[4]; STB

P2[5]; OE
P2[6]; CS

P2[2]; Latch_Empty HAPI

 P2[1:0] or P1[1:0]

CY7C64113C only

PORT 3

GPIO

DAC[7]

Logic Block Diagram

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 4 of 53

Contents

Pin Configurations ... 5

Product Summary Tables .. 6

Pin Assignments .. 6

I/O Register Summary ... 6

Instruction Set Summary ... 9

Programming Model ...10

14-Bit Program Counter (PC) 10

8-Bit Accumulator (A) .. 12

8-Bit Temporary Register (X) 12

8-Bit Program Stack Pointer (PSP) 12

8-Bit Data Stack Pointer (DSP) 13

Address Modes ... 13

Clocking .. 13

Reset .. 14

Power-On Reset (POR) ... 14

Watchdog Reset (WDR) .. 14

Suspend Mode .. 14

General-Purpose I/O (GPIO) Ports 15

GPIO Configuration Port ... 16

GPIO Interrupt Enable Ports 17

DAC Port .. 18

DAC Isink Registers .. 19

DAC Port Interrupts ... 20

12-Bit Free-Running Timer .. 20

I2C and HAPI Configuration Register 21

I2C-compatible Controller .. 22

Hardware Assisted Parallel Interface (HAPI) 24

Processor Status and Control Register 25

Interrupts ... 26

Interrupt Vectors .. 27

Interrupt Latency ...29

USB Bus Reset Interrupt ... 29

Timer Interrupt ... 29

USB Endpoint Interrupts .. 29

DAC Interrupt .. 29

GPIO/HAPI Interrupt .. 29

I2C Interrupt ... 30

USB Overview ... 30

USB Serial Interface Engine (SIE) 31

USB Enumeration .. 31

USB Upstream Port Status and Control 31

USB Serial Interface Engine Operation 32

USB Device Address ... 32

USB Device Endpoints .. 32

USB Control Endpoint Mode Register 32

USB Non-Control Endpoint Mode Registers 33

USB Endpoint Counter Registers 34

Endpoint Mode/Count Registers Update and

Locking Mechanism .. 34

USB Mode Tables ... 36

Register Summary .. 41

Sample Schematic .. 44

Absolute Maximum Ratings .. 45

Electrical Characteristics ... 45

Switching Characteristics .. 46

Ordering Information .. 48

Ordering Code Definitions ... 48

Package Diagrams .. 49

Acronyms .. 51

Document Conventions ... 51

Units of Measure ... 51

Document History Page ... 52

Sales, Solutions, and Legal Information 53

Worldwide Sales and Design Support 53

Products .. 53

PSoC® Solutions .. 53

Cypress Developer Community 53

Technical Support ... 53

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 5 of 53

Pin Configurations

1

2

3

4

5

6

7

9

11

12

13

14

15

16

18

17

XTALIN

10

8

19

20

31

30

29

33

32

35

34

37

36

39

38

41

40

43

42

45

44

46

48

47

21

22

23

24 25

27

26

28

VCC

P1[1]

P1[0]

P1[2]

P1[4]

P1[6]

P3[0]

P3[2]

VREF

P1[3]

P1[5]

P1[7]

P3[1]

D+[0]

D–[0]

P3[3]

GND

P3[5]

P3[7]

P2[1]

P2[3]

GND

P2[5]

P2[7]

DAC[7]

P0[7]

P0[5]

P0[3]

P0[1]

DAC[1]

XTALOUT

GND

P3[4]

NC

P3[6]

P2[0]

P2[2]

GND

P2[4]

P2[6]

DAC[0]

VPP

P0[0]

P0[2]

P0[4]

P0[6]

DAC[2]

CY7C64113C

48-pin SSOP

CY7C64013C

1

2

3

4

5

6

7

9

11

12

13

14

XTALIN

10

8

15

17

16

19

18

21

20

23

22

25

24

26

28

27

VCC

P1[1]

P1[0]

P1[2]

P3[0]

P3[2]

GND

P2[2]

VREF

GND

P3[1]

D+[0]

D–[0]

P2[3]

P2[5]

P0[7]

P0[5]

P0[3]

P0[1]

P0[6]

XTALOUT

P2[4]

P2[6]

VPP

P0[0]

P0[2]

P0[4]

28-pin SOIC

CY7C64013C

28-pin PDIP

TOP VIEW

1

2

3

4

5

6

7

9

11

12

13

14

XTALIN

10

8

15

17

16

19

18

21

20

23

22

25

24

26

28

27

VCC

P1[0]

P1[2]

P3[0]

P3[2]

P2[2]

GND

P2[4]

VREF

P1[1]

GND

P3[1]

D+[0]

D–[0]

P2[3]

P2[5]

P0[7]

P0[5]

P0[3]

P0[1]

XTALOUT

P2[6]

VPP

P0[0]

P0[2]

P0[4]

P0[6]

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 6 of 53

Product Summary Tables

Pin Assignments

I/O Register Summary

I/O registers are accessed via the I/O Read (IORD) and I/O Write
(IOWR, IOWX) instructions. IORD reads data from the selected
port into the accumulator. IOWR performs the reverse; it writes
data from the accumulator to the selected port. Indexed I/O Write
(IOWX) adds the contents of X to the address in the instruction
to form the port address and writes data from the accumulator to

the specified port. Specifying address 0 (e.g., IOWX 0h) means
the I/O register is selected solely by the contents of X.

All undefined registers are reserved. It is important not to write
to reserved registers as this may cause an undefined operation
or increased current consumption during operation. When
writing to registers with reserved bits, the reserved bits must be
written with ‘0.’

Table 1. Pin Assignments

Name I/O 28-pin SOIC 28-pin PDIP 48-pin SSOP Description

D+[0], D–[0] I/O 6, 7 7, 8 7, 8 Upstream port, USB differential data.

P0 I/O P0[7:0]
10, 14, 11, 15,
12, 16, 13, 17

P0[7:0]
11, 15, 12, 16,
13, 17, 14, 18

P0[7:0]
20, 26, 21, 27,
22, 28, 23, 29

GPIO Port 0 capable of sinking 7 mA (typical).

P1 I/O P1[2:0]
25, 27, 26

P1[2:0]
26, 4, 27

P1[7:0]
6, 43, 5, 44,
4, 45, 47, 46

GPIO Port 1 capable of sinking 7 mA (typical).

P2 I/O P2[6:2]
19, 9, 20, 8,

21

P2[6:2]
20, 10, 21,

9, 23

P2[7:0]
18, 32, 17, 33,
15, 35, 14, 36

GPIO Port 2 capable of sinking 7 mA (typical). HAPI
is also supported through P2[6:2].

P3 I/O P3[2:0]
23, 5, 24

P3[2:0]
24, 6, 25

P3[7:0]
13, 37, 12, 39,
10, 41, 7, 42

GPIO Port 3, capable of sinking 12 mA (typical).

DAC I/O DAC[7,2:0]
19, 25, 24, 31

DAC Port with programmable current sink outputs.
DAC[1:0] offer a programmable range of 3.2 to 16 mA
typical. DAC[7,2] have a programmable sink current
range of 0.2 to 1.0 mA typical.

XTALIN IN 2 2 2 6-MHz crystal or external clock input.

XTALOUT OUT 1 1 1 6-MHz crystal out.

VPP IN 18 19 30 Programming voltage supply, tie to ground during
normal operation.

VCC IN 28 28 48 Voltage supply.

GND IN 4, 22 5, 22 11, 16, 34, 40 Ground.

VREF IN 3 3 3 External 3.3 V supply voltage for the differential data
output buffers and the D+ pull-up.

NC 38 No Connect.

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 7 of 53

Table 2. I/O Register Summary

Register Name I/O Address Read/Write Function Page

Port 0 Data 0x00 R/W GPIO Port 0 Data 15

Port 1 Data 0x01 R/W GPIO Port 1 Data 16

Port 2 Data 0x02 R/W GPIO Port 2 Data 16

Port 3 Data 0x03 R/W GPIO Port 3 Data 16

Port 0 Interrupt Enable 0x04 W Interrupt Enable for Pins in Port 0 17

Port 1 Interrupt Enable 0x05 W Interrupt Enable for Pins in Port 1 17

Port 2 Interrupt Enable 0x06 W Interrupt Enable for Pins in Port 2 18

Port 3 Interrupt Enable 0x07 W Interrupt Enable for Pins in Port 3 18

GPIO Configuration 0x08 R/W GPIO Port Configurations 16

HAPI and I2C Configuration 0x09 R/W HAPI Width and I2C Position Configuration 21

USB Device Address A 0x10 R/W USB Device Address A 32

EP A0 Counter Register 0x11 R/W USB Address A, Endpoint 0 Counter 32

EP A0 Mode Register 0x12 R/W USB Address A, Endpoint 0 Configuration 32

EP A1 Counter Register 0x13 R/W USB Address A, Endpoint 1 Counter 32

EP A1 Mode Register 0x14 R/W USB Address A, Endpoint 1 Configuration 32

EP A2 Counter Register 0x15 R/W USB Address A, Endpoint 2 Counter 32

EP A2 Mode Register 0x16 R/W USB Address A, Endpoint 2 Configuration 32

USB Status & Control 0x1F R/W USB Upstream Port Traffic Status and Control 31

Global Interrupt Enable 0x20 R/W Global Interrupt Enable 26

Endpoint Interrupt Enable 0x21 R/W USB Endpoint Interrupt Enables 27

Timer (LSB) 0x24 R Lower 8 Bits of Free-running Timer (1 MHz) 20

Timer (MSB) 0x25 R Upper 4 Bits of Free-running Timer 21

WDT Clear 0x26 W Watchdog Timer Clear 14

I2C Control & Status 0x28 R/W I2C Status and Control 22

I2C Data 0x29 R/W I2C Data 22

DAC Data 0x30 R/W DAC Data 19

DAC Interrupt Enable 0x31 W Interrupt Enable for each DAC Pin 20

DAC Interrupt Polarity 0x32 W Interrupt Polarity for each DAC Pin 20

DAC Isink 0x38-0x3F W Input Sink Current Control for each DAC Pin 19

Reserved 0x40 Reserved

EP A3 Counter Register 0x41 R/W USB Address A, Endpoint 3 Counter 32

EP A3 Mode Register 0x42 R/W USB Address A, Endpoint 3 Configuration 32

EP A4 Counter Register 0x43 R/W USB Address A, Endpoint 4 Counter 32

EP A4 Mode Register 0x44 R/W USB Address A, Endpoint 4 Configuration 32

Reserved 0x48 Reserved

Reserved 0x49 Reserved

Reserved 0x4A Reserved

Reserved 0x4B Reserved

Reserved 0x4C Reserved

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 8 of 53

Reserved 0x4D Reserved

Reserved 0x4E Reserved

Reserved 0x4F Reserved

Reserved 0x50 Reserved

Reserved 0x51 Reserved

Processor Status & Control 0xFF R/W Microprocessor Status and Control Register 23

Table 2. I/O Register Summary (continued)

Register Name I/O Address Read/Write Function Page

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 9 of 53

Instruction Set Summary

Refer to the CYASM Assembler User’s Guide for more details.

Table 3. Instruction Set Summary

MNEMONIC operand opcode cycles MNEMONIC operand opcode cycles

HALT 00 7 NOP 20 4

ADD A,expr data 01 4 INC A acc 21 4

ADD A,[expr] direct 02 6 INC X x 22 4

ADD A,[X+expr] index 03 7 INC [expr] direct 23 7

ADC A,expr data 04 4 INC [X+expr] index 24 8

ADC A,[expr] direct 05 6 DEC A acc 25 4

ADC A,[X+expr] index 06 7 DEC X x 26 4

SUB A,expr data 07 4 DEC [expr] direct 27 7

SUB A,[expr] direct 08 6 DEC [X+expr] index 28 8

SUB A,[X+expr] index 09 7 IORD expr address 29 5

SBB A,expr data 0A 4 IOWR expr address 2A 5

SBB A,[expr] direct 0B 6 POP A 2B 4

SBB A,[X+expr] index 0C 7 POP X 2C 4

OR A,expr data 0D 4 PUSH A 2D 5

OR A,[expr] direct 0E 6 PUSH X 2E 5

OR A,[X+expr] index 0F 7 SWAP A,X 2F 5

AND A,expr data 10 4 SWAP A,DSP 30 5

AND A,[expr] direct 11 6 MOV [expr],A direct 31 5

AND A,[X+expr] index 12 7 MOV [X+expr],A index 32 6

XOR A,expr data 13 4 OR [expr],A direct 33 7

XOR A,[expr] direct 14 6 OR [X+expr],A index 34 8

XOR A,[X+expr] index 15 7 AND [expr],A direct 35 7

CMP A,expr data 16 5 AND [X+expr],A index 36 8

CMP A,[expr] direct 17 7 XOR [expr],A direct 37 7

CMP A,[X+expr] index 18 8 XOR [X+expr],A index 38 8

MOV A,expr data 19 4 IOWX [X+expr] index 39 6

MOV A,[expr] direct 1A 5 CPL 3A 4

MOV A,[X+expr] index 1B 6 ASL 3B 4

MOV X,expr data 1C 4 ASR 3C 4

MOV X,[expr] direct 1D 5 RLC 3D 4

reserved 1E RRC 3E 4

XPAGE 1F 4 RET 3F 8

MOV A,X 40 4 DI 70 4

MOV X,A 41 4 EI 72 4

MOV PSP,A 60 4 RETI 73 8

CALL addr 50 - 5F 10 JC addr C0-CF 5

JMP addr 80-8F 5 JNC addr D0-DF 5

CALL addr 90-9F 10 JACC addr E0-EF 7

JZ addr A0-AF 5 INDEX addr F0-FF 14

JNZ addr B0-BF 5

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 10 of 53

Programming Model

14-Bit Program Counter (PC)

The 14-bit program counter (PC) allows access to up to 8 KB of
PROM available with the CY7C64x13C architecture. The top
32 bytes of the ROM in the 8 Kb part are reserved for testing
purposes. The program counter is cleared during reset, such that
the first instruction executed after a reset is at address 0x0000h.
Typically, this is a jump instruction to a reset handler that
initializes the application (see Interrupt Vectors on page 27).

The lower eight bits of the program counter are incremented as
instructions are loaded and executed. The upper six bits of the
program counter are incremented by executing an XPAGE
instruction. As a result, the last instruction executed within a
256-byte “page” of sequential code should be an XPAGE

instruction. The assembler directive “XPAGEON” causes the
assembler to insert XPAGE instructions automatically. Because
instructions can be either one or two bytes long, the assembler
may occasionally need to insert a NOP followed by an XPAGE
to execute correctly.

The address of the next instruction to be executed, the carry flag,
and the zero flag are saved as two bytes on the program stack
during an interrupt acknowledge or a CALL instruction. The
program counter, carry flag, and zero flag are restored from the
program stack during a RETI instruction. Only the program
counter is restored during a RET instruction.

The program counter cannot be accessed directly by the
firmware. The program stack can be examined by reading SRAM
from location 0x00 and up.

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 11 of 53

Program Memory Organization

after reset Address

 14-bit PC 0x0000 Program execution begins here after a reset

0x0002 USB Bus Reset interrupt vector

0x0004 128-µs timer interrupt vector

0x0006 1.024-ms timer interrupt vector

0x0008 USB address A endpoint 0 interrupt vector

0x000A USB address A endpoint 1 interrupt vector

0x000C USB address A endpoint 2 interrupt vector

0x000E USB address A endpoint 3 interrupt vector

0x0010 USB address A endpoint 4 interrupt vector

0x0012 Reserved

0x0014 DAC interrupt vector

0x0016 GPIO interrupt vector

0x0018 I2C interrupt vector

0x001A Program Memory begins here

0x1FDF 8 KB (-32) PROM ends here (CY7C64013C, CY7C64113C)

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 12 of 53

8-Bit Accumulator (A)

The accumulator is the general-purpose register for the
microcontroller.

8-Bit Temporary Register (X)

The “X” register is available to the firmware for temporary storage
of intermediate results. The microcontroller can perform indexed
operations based on the value in X. Refer to Indexed on page 13
for additional information.

8-Bit Program Stack Pointer (PSP)

During a reset, the program stack pointer (PSP) is set to 0x00
and “grows” upward from this address. The PSP may be set by
firmware, using the MOV PSP,A instruction. The PSP supports
interrupt service under hardware control and CALL, RET, and
RETI instructions under firmware control. The PSP is not
readable by the firmware.

During an interrupt acknowledge, interrupts are disabled and the
14-bit program counter, carry flag, and zero flag are written as
two bytes of data memory. The first byte is stored in the memory
addressed by the PSP, then the PSP is incremented. The second
byte is stored in memory addressed by the PSP, and the PSP is
incremented again. The overall effect is to store the program

counter and flags on the program “stack” and increment the PSP
by two.

The Return from Interrupt (RETI) instruction decrements the
PSP, then restores the second byte from memory addressed by
the PSP. The PSP is decremented again and the first byte is
restored from memory addressed by the PSP. After the program
counter and flags have been restored from stack, the interrupts
are enabled. The overall effect is to restore the program counter
and flags from the program stack, decrement the PSP by two,
and reenable interrupts.

The Call Subroutine (CALL) instruction stores the program
counter and flags on the program stack and increments the PSP
by two.

The Return from Subroutine (RET) instruction restores the
program counter but not the flags from the program stack and
decrements the PSP by two.

Data Memory Organization

The CY7C64x13C microcontrollers provide 256 bytes of data
RAM. Normally, the SRAM is partitioned into four areas: program
stack, user variables, data stack, and USB endpoint FIFOs. The
following is one example of where the program stack, data stack,
and user variables areas could be located.

After reset Address

8-bit DSP 8-bit PSP 0x00 Program Stack Growth

(Move DSP[1])

8-bit DSP user selected Data Stack Growth

User variables

USB FIFO space for five endpoints[2]

0xFF

Notes
1. Refer to 8-Bit Data Stack Pointer (DSP) on page 13 for a description of DSP.
2. Endpoint sizes are fixed by the Endpoint Size Bit (I/O register 0x1F, Bit 7), see Table 34 on page 32.

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 13 of 53

8-Bit Data Stack Pointer (DSP)

The data stack pointer (DSP) supports PUSH and POP
instructions that use the data stack for temporary storage. A
PUSH instruction pre-decrements the DSP, then writes data to
the memory location addressed by the DSP. A POP instruction
reads data from the memory location addressed by the DSP,
then post-increments the DSP.

During a reset, the DSP is reset to 0x00. A PUSH instruction
when DSP equals 0x00 writes data at the top of the data RAM
(address 0xFF). This writes data to the memory area reserved
for USB endpoint FIFOs. Therefore, the DSP should be indexed
at an appropriate memory location that does not compromise the
Program Stack, user-defined memory (variables), or the USB
endpoint FIFOs.

For USB applications, the firmware should set the DSP to an
appropriate location to avoid a memory conflict with RAM
dedicated to USB FIFOs. The memory requirements for the USB
endpoints are described in USB Device Endpoints on page 32.
Example assembly instructions to do this with two device
addresses (FIFOs begin at 0xD8) are shown below:

MOV A,20h ; Move 20 hex into Accumulator (must be D8h
or less)

SWAP A,DSP ; swap accumulator value into DSP register

Address Modes

The CY7C64013C and CY7C64113C microcontrollers support
three addressing modes for instructions that require data
operands: data, direct, and indexed.

Data (Immediate)

“Data” address mode refers to a data operand that is actually a
constant encoded in the instruction. As an example, consider the
instruction that loads A with the constant 0xD8:

■ MOV A,0D8h

This instruction requires two bytes of code where the first byte
identifies the “MOV A” instruction with a data operand as the
second byte. The second byte of the instruction is the constant

“0xD8.” A constant may be referred to by name if a prior “EQU”
statement assigns the constant value to the name. For example,
the following code is equivalent to the example shown above:

■ DSPINIT: EQU 0D8h

■ MOV A,DSPINIT

Direct

“Direct” address mode is used when the data operand is a
variable stored in SRAM. In that case, the one byte address of
the variable is encoded in the instruction. As an example,
consider an instruction that loads A with the contents of memory
address location 0x10:

■ MOV A,[10h]

Normally, variable names are assigned to variable addresses
using “EQU” statements to improve the readability of the
assembler source code. As an example, the following code is
equivalent to the example shown above:

■ buttons: EQU 10h

■ MOV A,[buttons]

Indexed

“Indexed” address mode allows the firmware to manipulate
arrays of data stored in SRAM. The address of the data operand
is the sum of a constant encoded in the instruction and the
contents of the “X” register. Normally, the constant is the “base”
address of an array of data and the X register contains an index
that indicates which element of the array is actually addressed:

■ array: EQU 10h

■ MOV X,3

■ MOV A,[X+array]

This would have the effect of loading A with the fourth element
of the SRAM “array” that begins at address 0x10. The fourth
element would be at address 0x13.

Clocking

The XTALIN and XTALOUT are the clock pins to the
microcontroller. The user can connect an external oscillator or a
crystal to these pins. When using an external crystal, keep PCB
traces between the chip leads and crystal as short as possible
(less than 2 cm). A 6-MHz fundamental frequency parallel

resonant crystal can be connected to these pins to provide a
reference frequency for the internal PLL. The two internal 30-pF
load caps appear in series to the external crystal and would be
equivalent to a 15-pF load. Therefore, the crystal must have a
required load capacitance of about 15–18 pF. A ceramic

XTALOUT

XTALIN
To Internal PLL

30 pF 30 pF

(pin 1)

(pin 2)

Figure 1. Clock Oscillator On-Chip Circuit

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 14 of 53

resonator does not allow the microcontroller to meet the timing
specifications of full speed USB and therefore a ceramic
resonator is not recommended with these parts.

An external 6-MHz clock can be applied to the XTALIN pin if the
XTALOUT pin is left open. Grounding the XTALOUT pin when
driving XTALIN with an oscillator does not work because the
internal clock is effectively shorted to ground.

Reset

The CY7C64x13C supports two resets: Power-On Reset (POR)
and a Watchdog Reset (WDR). Each of these resets causes:

■ all registers to be restored to their default states,

■ the USB Device Address to be set to 0,

■ all interrupts to be disabled,

■ the PSP and Data Stack Pointer (DSP) to be set to memory
address 0x00.

The occurrence of a reset is recorded in the Processor Status
and Control Register, as described in Processor Status and
Control Register on page 25. Bits 4 and 6 are used to record the
occurrence of POR and WDR, respectively. Firmware can
interrogate these bits to determine the cause of a reset.

Program execution starts at ROM address 0x0000 after a reset.
Although this looks like interrupt vector 0, there is an important
difference. Reset processing does NOT push the program
counter, carry flag, and zero flag onto program stack. The
firmware reset handler should configure the hardware before the
“main” loop of code. Attempting to execute a RET or RETI in the
firmware reset handler causes unpredictable execution results.

Power-On Reset (POR)

When VCC is first applied to the chip, the Power-On Reset (POR)
signal is asserted and the CY7C64x13C enters a

“semi-suspend” state. During the semi-suspend state, which is
different from the suspend state defined in the USB specification,
the oscillator and all other blocks of the part are functional,
except for the CPU. This semi-suspend time ensures that both a
valid VCC level is reached and that the internal PLL has time to
stabilize before full operation begins. When the VCC has risen
above approximately 2.5 V, and the oscillator is stable, the POR
is deasserted and the on-chip timer starts counting. The first
1 ms of suspend time is not interruptible, and the semi-suspend
state continues for an additional 95 ms unless the count is
bypassed by a USB Bus Reset on the upstream port. The 95 ms
provides time for VCC to stabilize at a valid operating voltage
before the chip executes code.

If a USB Bus Reset occurs on the upstream port during the
95-ms semi-suspend time, the semi-suspend state is aborted
and program execution begins immediately from address
0x0000. In this case, the Bus Reset interrupt is pending but not
serviced until firmware sets the USB Bus Reset Interrupt Enable
bit (bit 0 of register 0x20) and enables interrupts with the EI
command.

The POR signal is asserted whenever VCC drops below
approximately 2.5 V, and remains asserted until VCC rises above
this level again. Behavior is the same as described above.

Watchdog Reset (WDR)

The Watchdog Timer Reset (WDR) occurs when the internal
Watchdog timer rolls over. Writing any value to the write-only
Watchdog Restart Register at address 0x26 clears the timer. The
timer rolls over and WDR occurs if it is not cleared within tWATCH
(8 ms minimum) of the last clear. Bit 6 of the Processor Status
and Control Register is set to record this event (the register
contents are set to 010X0001 by the WDR). A Watchdog Timer
Reset lasts for 2 ms, after which the microcontroller begins
execution at ROM address 0x0000.

The USB transmitter is disabled by a Watchdog Reset because
the USB Device Address Register is cleared. Otherwise, the
USB Controller would respond to all address 0 transactions.

It is possible for the WDR bit of the Processor Status and Control
Register (0xFF) to be set following a POR event. The WDR bit
should be ignored If the firmware interrogates the Processor
Status and Control Register for a Set condition on the WDR bit
and if the POR (bit 3 of register 0xFF) bit is set.

Suspend Mode

The CY7C64x13C can be placed into a low-power state by
setting the Suspend bit of the Processor Status and Control
register. All logic blocks in the device are turned off except the
GPIO interrupt logic and the USB receiver. The clock oscillator
and PLL, as well as the free-running and Watchdog timers, are
shut down. Only the occurrence of an enabled GPIO interrupt or
non-idle bus activity at a USB upstream or downstream port

Last write to
Watchdog Timer
Register

No write to WDT
register, so WDR
goes HIGH

Execution begins at
Reset Vector 0x0000

tWATCH
2 ms

Figure 2. Watchdog Reset (WDR)

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 15 of 53

wakes the part out of suspend. The Run bit in the Processor
Status and Control Register must be set to resume a part out of
suspend.

The clock oscillator restarts immediately after exiting suspend
mode. The microcontroller returns to a fully functional state 1 ms
after the oscillator is stable. The microcontroller executes the
instruction following the I/O write that placed the device into
suspend mode before servicing any interrupt requests.

The GPIO interrupt allows the controller to wake-up periodically
and poll system components while maintaining a very low
average power consumption. To achieve the lowest possible
current during suspend mode, all I/O should be held at VCC or
Gnd. This also applies to internal port pins that may not be
bonded in a particular package.

Typical code for entering suspend is shown below:

... ; All GPIO set to low-power state (no floating pins)

... ; Enable GPIO interrupts if desired for wake-up
mov a, 09h ; Set suspend and run bits
iowr FFh ; Write to Status and Control Register - Enter suspend, wait for USB activity (or GPIO Interrupt)
nop ; This executes before any ISR
... ; Remaining code for exiting suspend routine

General-Purpose I/O (GPIO) Ports

There are up to 32 GPIO pins (P0[7:0], P1[7:0], P2[7:0], and
P3[7:0]) for the hardware interface. The number of GPIO pins
changes based on the package type of the chip. Each port can
be configured as inputs with internal pull-ups, open drain outputs,
or traditional CMOS outputs. Port 3 offers a higher current drive,

with typical current sink capability of 12 mA. The data for each
GPIO port is accessible through the data registers. Port data
registers are shown in Table 4 through Table 7, and are set to 1
on reset.

Figure 3. Block Diagram of a GPIO Pin

GPIO

VCC

14 k

GPIO
CFG mode

2-bits

Data
Out
Latch

Internal
Data Bus

Port Read

Port Write

Interrupt
Enable

C
o

n
tr

o
l

C
o

n
tr

o
l

Interrupt
Controller

Q1

Q3*

Q2

*Port 0,1,2: Low Isink

Port 3: High Isink

Data
Interrupt
Latch

OE

Reg_Bit

STRB

Data

In

Latch

(Latch is Transparent
except in HAPI mode)

PIN

Table 4. Port 0 Data

Port 0 Data ADDRESS 0x00

Bit # 7 6 5 4 3 2 1 0

Bit Name P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Reset 1 1 1 1 1 1 1 1

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 16 of 53

Special care should be taken with any unused GPIO data bits.
An unused GPIO data bit, either a pin on the chip or a port bit
that is not bonded on a particular package, must not be left
floating when the device enters the suspend state. If a GPIO data
bit is left floating, the leakage current caused by the floating bit
may violate the suspend current limitation specified by the USB
Specifications. If a ‘1’ is written to the unused data bit and the
port is configured with open drain outputs, the unused data bit
remains in an indeterminate state. Therefore, if an unused port
bit is programmed in open-drain mode, it must be written with a
‘0.’ Notice that the CY7C64013C part always requires that the
data bits P1[7:3], P2[7,1,0], and P3[7:3] be written with a ‘0.’

In normal non-HAPI mode, reads from a GPIO port always return
the present state of the voltage at the pin, independent of the
settings in the Port Data Registers. If HAPI mode is activated for

a port, reads of that port return latched data as controlled by the
HAPI signals (see Hardware Assisted Parallel Interface (HAPI)
on page 24). During reset, all of the GPIO pins are set to a
high-impedance input state (‘1’ in open drain mode). Writing a ‘0’
to a GPIO pin drives the pin LOW. In this state, a ‘0’ is always
read on that GPIO pin unless an external source overdrives the
internal pull-down device.

GPIO Configuration Port

Every GPIO port can be programmed as inputs with internal
pull-ups, outputs LOW or HIGH, or Hi-Z (floating, the pin is not
driven internally). In addition, the interrupt polarity for each port
can be programmed. The Port Configuration bits (Table 8) and
the Interrupt Enable bit (Table 10 on page 17 through Table 13
on page 18) determine the interrupt polarity of the port pins.

As shown in Table 9 on page 17 below, a positive polarity on an
input pin represents a rising edge interrupt (LOW to HIGH), and
a negative polarity on an input pin represents a falling edge
interrupt (HIGH to LOW).

The GPIO interrupt is generated when all of the following
conditions are met: the Interrupt Enable bit of the associated Port

Interrupt Enable Register is enabled, the GPIO Interrupt Enable
bit of the Global Interrupt Enable Register (Table 28 on page 26)
is enabled, the Interrupt Enable Sense (bit 2,
Table 27 on page 25) is set, and the GPIO pin of the port sees
an event matching the interrupt polarity.

Table 5. Port 1 Data

Port 1 Data ADDRESS 0x01

Bit # 7 6 5 4 3 2 1 0

Bit Name P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Reset 1 1 1 1 1 1 1 1

Table 6. Port 2 Data

Port 2 Data ADDRESS 0x02

Bit # 7 6 5 4 3 2 1 0

Bit Name P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Reset 1 1 1 1 1 1 1 1

Table 7. Port 3 Data

Port 3 Data ADDRESS 0x03

Bit # 7 6 5 4 3 2 1 0

Bit Name P3.7 P3.6 P3.5 P3.4 P3.3 P32 P3.1 P3.0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Reset 1 1 1 1 1 1 1 1

Table 8. GPIO Configuration Register

GPIO
Configuration

ADDRESS 0x08

Bit # 7 6 5 4 3 2 1 0

Bit Name Port 3
Config Bit 1

Port 3
Config Bit 0

Port 2
Config Bit 1

Port 2
Config Bit 0

Port 1
Config Bit 1

Port 1
Config Bit 0

Port 0
Config Bit 1

Port 0
Config Bit 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 17 of 53

The driving state of each GPIO pin is determined by the value
written to the pin’s Data Register (Table 4 on page 15 through
Table 7 on page 16) and by its associated Port Configuration bits
as shown in the GPIO Configuration Register
(Table 8 on page 16). These ports are configured on a per-port
basis, so all pins in a given port are configured together. The
possible port configurations are detailed in Table 9. As shown in

this table below, when a GPIO port is configured with CMOS
outputs, interrupts from that port are disabled.

During reset, all of the bits in the GPIO Configuration Register
are written with ‘0’ to select Hi-Z mode for all GPIO ports as the
default configuration.

Q1, Q2, and Q3 discussed below are the transistors referenced
in Figure 3 on page 15. The available GPIO drive strength are:

■ Output LOW Mode: The pin’s Data Register is set to ‘0’

Writing ‘0’ to the pin’s Data Register puts the pin in output
LOW mode, regardless of the contents of the Port
Configuration Bits[1:0]. In this mode, Q1 and Q2 are OFF. Q3
is ON. The GPIO pin is driven LOW through Q3.

■ Output HIGH Mode: The pin’s Data Register is set to 1 and the
Port Configuration Bits[1:0] is set to ‘10’

In this mode, Q1 and Q3 are OFF. Q2 is ON. The GPIO is
pulled up through Q2. The GPIO pin is capable of sourcing of
current.

■ Resistive Mode: The pin’s Data Register is set to 1 and the Port
Configuration Bits[1:0] is set to ‘11’

Q2 and Q3 are OFF. Q1 is ON. The GPIO pin is pulled up with
an internal 14 kresistor. In resistive mode, the pin may serve
as an input. Reading the pin’s Data Register returns a logic
HIGH if the pin is not driven LOW by an external source.

■ Hi-Z Mode: The pin’s Data Register is set to1 and Port
Configuration Bits[1:0] is set either ‘00’ or ‘01’

Q1, Q2, and Q3 are all OFF. The GPIO pin is not driven
internally. In this mode, the pin may serve as an input.
Reading the Port Data Register returns the actual logic value
on the port pins.

GPIO Interrupt Enable Ports

Each GPIO pin can be individually enabled or disabled as an
interrupt source. The Port 0–3 Interrupt Enable registers provide
this feature with an interrupt enable bit for each GPIO pin. When
HAPI mode (discussed in Hardware Assisted Parallel Interface
(HAPI) on page 24) is enabled the GPIO interrupts are blocked,
including ports not used by HAPI, so GPIO pins cannot be used
as interrupt sources.

During a reset, GPIO interrupts are disabled by clearing all of the
GPIO interrupt enable ports. Writing a ‘1’ to a GPIO Interrupt
Enable bit enables GPIO interrupts from the corresponding input
pin. All GPIO pins share a common interrupt, as discussed in
GPIO/HAPI Interrupt on page 29.

Table 9. GPIO Port Output Control Truth Table and Interrupt Polarity

Port Config Bit 1 Port Config Bit 0 Data Register Output Drive Strength Interrupt Enable Bit Interrupt Polarity

1 1 0 Output LOW 0 Disabled

1 Resistive 1 – (Falling Edge)

1 0 0 Output LOW 0 Disabled

1 Output HIGH 1 Disabled

0 1 0 Output LOW 0 Disabled

1 Hi-Z 1 – (Falling Edge)

0 0 0 Output LOW 0 Disabled

1 Hi-Z 1 + (Rising Edge)

Table 10. Port 0 Interrupt Enable

Port 0 Interrupt
Enable

ADDRESS 0x04

Bit # 7 6 5 4 3 2 1 0

Bit Name P0.7 Intr Enable P0.6 Intr Enable P0.5 Intr Enable P0.4 Intr Enable P0.3 Intr Enable P0.2 Intr Enable P0.1 Intr Enable P0.0 Intr Enable

Read/Write W W W W W W W W

Reset 0 0 0 0 0 0 0 0

Table 11. Port 1 Interrupt Enable

Port 1 Interrupt
Enable

ADDRESS 0x05

Bit # 7 6 5 4 3 2 1 0

Bit Name P1.7 Intr Enable P1.6 Intr Enable P1.5 Intr Enable P1.4 Intr Enable P1.3 Intr Enabl P1.2 Intr Enable P1.1 Intr Enable P1.0 Intr Enable

Read/Write W W W W W W W W

Reset 0 0 0 0 0 0 0 0

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 18 of 53

DAC Port

The CY7C64113C features a programmable current sink 4 bit
port which is also known as a DAC port. Each of these port I/O
pins have a programmable current sink. Writing a ‘1’ to a DAC
I/O pin disables the output current sink (Isink DAC) and drives

the I/O pin HIGH through an integrated 14-k resistor. When a
‘0’ is written to a DAC I/O pin, the Isink DAC is enabled and the
pull-up resistor is disabled. This causes the Isink DAC to sink
current to drive the output LOW. Figure 4 shows a block diagram
of the DAC port pin.

Table 12. Port 2 Interrupt Enable

Port 2 Interrupt
Enable

ADDRESS 0x06

Bit # 7 6 5 4 3 2 1 0

Bit Name P2.7 Intr Enable P2.6 Intr Enable P2.5 Intr Enable P2.4 Intr Enable P2.3 Intr Enable P2.2 Intr Enable P2.1 Intr Enable P2.0 Intr Enable

Read/Write W W W W W W W W

Reset 0 0 0 0 0 0 0 0

Table 13. Port 3 Interrupt Enable

Port 3 Interrupt
Enable

ADDRESS 0x07

Bit # 7 6 5 4 3 2 1 0

Bit Name Reserved
(Set to 0)

P3.6 Intr Enable P3.5 Intr Enable P3.4 Intr Enable P3.3 Intr Enable P3.2 Intr Enable P3.1 Intr Enable P3.0 Intr Enable

Read/Write W W W W W W W W

Reset 0 0 0 0 0 0 0 0

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 19 of 53

The amount of sink current for the DAC I/O pin is programmable
over 16 values based on the contents of the DAC Isink Register
for that output pin. DAC[1:0] are high-current outputs that are
programmable from 3.2 mA to 16 mA (typical). DAC[7:2] are
low-current outputs, programmable from 0.2 mA to 1.0 mA
(typical).

When the suspend bit in Processor Status and Control Register
(see Table 27 on page 25) is set, the Isink DAC block of the DAC

circuitry is disabled. Special care should be taken when the
CY7C64x13C device is placed in the suspend mode. The DAC
Port Data Register (see Table 14) should normally be loaded
with all ‘1’s (0xFF) before setting the suspend bit. If any of the
DAC bits are set to ‘0’ when the device is suspended, that DAC
input will float. The floating pin could result in excessive current
consumption by the device, unless an external load places the
pin in a deterministic state.

Bit [1..0]: High Current Output 3.2 mA to 16 mA typical

1= I/O pin is an output pulled HGH through the 14-k resistor.

0 = I/O pin is an input with an internal 14-k pull-up resistor

Bit [3..2]: Low Current Output 0.2 mA to 1 mA typical

1= I/O pin is an output pulled HGH through the 14-k resistor.

0 = I/O pin is an input with an internal 14-k pull-up resistor

DAC Isink Registers

Each DAC I/O pin has an associated DAC Isink register to
program the output sink current when the output is driven LOW.
The first Isink register (0x38) controls the current for DAC[0], the
second (0x39) for DAC[1], and so on until the Isink register at
0x3F controls the current to DAC[7].

Figure 4. Block Diagram of a DAC Pin

VCC

14 k

Data
Out
Latch

Internal
Data Bus

DAC Read

DAC Write

Interrupt
Enable

In
te

rr
u

p
t

L
o

g
ic

to Interrupt
Controller

Q1

Internal
Buffer

Interrupt
Polarity

Isink
DAC

Isink
Register

4 bits

DAC
I/O Pin

Suspend
(Bit 3 of Register 0xFF)

Table 14. DAC Port Data

DAC Port Data ADDRESS 0x30

Bit # 7 6 5 4 3 2 1 0

Bit Name DAC[7] Reserved Reserved Reserved Reserved DAC[2] DAC[1] DAC[0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Reset 1 1 1 1 1 1 1 1

Table 15. DAC Sink Register

DAC Sink
Register

ADDRESS 0x38 -0x3F

Bit # 7 6 5 4 3 2 1 0

Bit Name Reserved Reserved Reserved Reserved Isink[3] Isink[2] Isink[1] Isink[0]

Read/Write W W W W

Reset - - - - 0 0 0 0

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 20 of 53

Bit [4..0]: Isink [x] (x= 0..4)

Writing all ‘0’s to the Isink register causes 1/5 of the max current
to flow through the DAC I/O pin. Writing all ‘1’s to the Isink
register provides the maximum current flow through the pin. The
other 14 states of the DAC sink current are evenly spaced
between these two values.

Bit [7..5]: Reserved

DAC Port Interrupts

A DAC port interrupt can be enabled/disabled for each pin
individually. The DAC Port Interrupt Enable register provides this
feature with an interrupt enable bit for each DAC I/O pin.All of the
DAC Port Interrupt Enable register bits are cleared to ‘0’ during
a reset. All DAC pins share a common interrupt, as explained in
DAC Interrupt on page 29.

Bit [7..0]: Enable bit x (x= 0..2, 7)

1= Enables interrupts from the corresponding bit position;

0= Disables interrupts from the corresponding bit position

As an additional benefit, the interrupt polarity for each DAC pin
is programmable with the DAC Port Interrupt Polarity register.
Writing a ‘0’ to a bit selects negative polarity (falling edge) that

causes an interrupt (if enabled) if a falling edge transition occurs
on the corresponding input pin. Writing a ‘1’ to a bit in this register
selects positive polarity (rising edge) that causes an interrupt (if
enabled) if a rising edge transition occurs on the corresponding
input pin. All of the DAC Port Interrupt Polarity register bits are
cleared during a reset.

Bit [7..0]: Enable bit x (x= 0..2, 7)

1= Selects positive polarity (rising edge) that causes an interrupt
(if enabled);

0= Selects negative polarity (falling edge) that causes an
interrupt (if enabled)

12-Bit Free-Running Timer

The 12-bit timer provides two interrupts (128-µs and 1.024-ms)
and allows the firmware to directly time events that are up to 4 ms

in duration. The lower 8 bits of the timer can be read directly by
the firmware. Reading the lower 8 bits latches the upper 4 bits
into a temporary register. When the firmware reads the upper
4 bits of the timer, it is accessing the count stored in the
temporary register. The effect of this logic is to ensure a stable
12-bit timer value can be read, even when the two reads are
separated in time.

Table 16. DAC Port Interrupt Enable

DAC Port
Interrupt

ADDRESS 0x31

Bit # 7 6 5 4 3 2 1 0

Bit Name Enable Bit 7 Reserved Reserved Reserved Reserved Enable Bit 2 Enable Bit 1 Enable Bit 0

Read/Write W W W W W W W W

Reset 0 0 0 0 0 0 0 0

Table 17. DAC Port Interrupt Polarity

DAC Port
Interrupt
Polarity

ADDRESS 0x32

Bit # 7 6 5 4 3 2 1 0

Bit Name Enable Bit 7 Reserved Reserved Reserved Reserved Enable Bit 2 Enable Bit 1 Enable Bit 0

Read/Write W W W W W W W W

Reset 0 0 0 0 0 0 0 0

Table 18. Timer LSB Register

Timer LSB ADDRESS 0x24

Bit # 7 6 5 4 3 2 1 0

Bit Name Timer Bit 7 Timer Bit 6 Timer Bit 5 Timer Bit 4 Timer Bit 3 Timer Bit 2 Timer Bit 1 Timer Bit 0

Read/Write R R R R R R R R

Reset 0 0 0 0 0 0 0 0

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 21 of 53

Bit [7:0]: Timer lower 8 bits

Bit [3:0]: Timer higher nibble Bit [7:4]: Reserved

I2C and HAPI Configuration Register

Internal hardware supports communication with external devices
through two interfaces: a two-wire I2C-compatible interface, and

a HAPI for 1, 2, or 3 byte transfers. The I2C-compatible interface
and HAPI functions, discussed in detail in I2C-compatible
Controller on page 22 and Hardware Assisted Parallel Interface
(HAPI) on page 24, share a common configuration register (see
Table 21). All bits of this register are cleared on reset.

Note: I2C-compatible function must be separately enabled as
described in I2C-compatible Controller on page 22.

Bits [7,1:0] of the HAPI/I2C Configuration Register control the pin
out configuration of the HAPI and I2C-compatible interfaces. Bits
[5:2] are used in HAPI mode only, and are described in
Hardware Assisted Parallel Interface (HAPI) on page 24.
Table 21 on page 22 shows the HAPI port configurations, and
Table 22 on page 22 shows I2C pin location configuration

options. These I2C-compatible options exist due to pin limitations
in certain packages, and to allow simultaneous HAPI and
I2C-compatible operation.

HAPI operation is enabled whenever either HAPI Port Width Bit
(Bit 1 or 0) is non-zero. This affects GPIO operation as described
in Hardware Assisted Parallel Interface (HAPI) on page 24.
I2C-compatible blocks must be separately enabled as described
in I2C-compatible Controller on page 22.

Table 19. Timer MSB Register

Timer MSB ADDRESS 0x25

Bit # 7 6 5 4 3 2 1 0

Bit Name Reserved Reserved Reserved Reserved Timer Bit 11 Timer Bit 10 Timer Bit 9 Timer Bit 8

Read/Write - - - - R R R R

Reset 0 0 0 0 0 0 0 0

Figure 5. Timer Block Diagram

10 9 78 56 4 3 2 1-MHz Clock

1.024-ms Interrupt

128- µs Interrupt

To Timer Register

8

1 011

L1 L0L2L3

D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0

Table 20. HAPI/I2C Configuration Register

I2C
Configuration

ADDRESS 0x09

Bit # 7 6 5 4 3 2 1 0

Bit Name I2C Position Reserved LEMPTY
Polarity

DRDY
Polarity

Latch
Empty

Data
Ready

HAPI Port Width
Bit 1

HAPI Port Width
Bit 0

Read/Write R/W - R/W R/W R R R/W R/W

Reset 0 0 0 0 0 0 0 0

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 22 of 53

 I2C-compatible Controller

I2C-compatible Controller

The I2C-compatible block provides a versatile two-wire
communication with external devices, supporting master, slave,
and multi-master modes of operation. The I2C-compatible block
functions by handling the low-level signaling in hardware, and
issuing interrupts as needed to allow firmware to take
appropriate action during transactions. While waiting for
firmware response, the hardware keeps the I2C-compatible bus
idle if necessary.

The I2C-compatible block generates an interrupt to the
microcontroller at the end of each received or transmitted byte,
when a stop bit is detected by the slave when in receive mode,
or when arbitration is lost. Details of the interrupt responses are
given in I2C Interrupt on page 30.

The I2C-compatible interface consists of two registers, an I2C
Data Register (Table 23) and an I2C Status and Control Register
(Table 24). The Data Register is implemented as separate read

and write registers. Generally, the I2C Status and Control
Register should only be monitored after the I2C interrupt, as all
bits are valid at that time. Polling this register at other times could
read misleading bit status if a transaction is underway.

The I2C SCL clock is connected to bit 0 of GPIO port 1 or GPIO
port 2, and the I2C SDA data is connected to bit 1 of GPIO port
1 or GPIO port 2. Refer to I2C and HAPI Configuration Register
on page 21 for the bit definitions and functionality of the HAPI/I2C
Configuration Register, which is used to set the locations of the
configurable I2C-compatible pins. Once the I2C-compatible
functionality is enabled by setting bit 0 of the I2C Status & Control
Register, the two LSB bits ([1:0]) of the corresponding GPIO port
are placed in Open Drain mode, regardless of the settings of the
GPIO Configuration Register.The electrical characteristics of the
I2C-compatible interface is the same as that of GPIO ports 1 and
2. Note that the IOL (max) is 2 mA @ VOL = 2.0 V for ports 1 and 2.

All control of the I2C clock and data lines is performed by the
I2C-compatible block.

Bits [7..0] : I2C Data

Contains the 8 bit data on the I2C Bus

The I2C Status and Control register bits are defined in Table 26 on page 24, with a more detailed description following.

Table 21. HAPI Port Configuration

Port Width (Bits[1:0]) HAPI Port Width

11 24 Bits: P3[7:0], P1[7:0], P0[7:0]

10 16 Bits: P1[7:0], P0[7:0]

01 8 Bits: P0[7:0]

00 No HAPI Interface

Table 22. I2C Port Configuration

I2C Position (Bit[7]) Port Width (Bit[1]) I2C Position

X 1 I2C on P2[1:0], 0:SCL, 1:SDA

0 0 I2C on P1[1:0], 0:SCL, 1:SDA

1 0 I2C on P2[1:0], 0:SCL, 1:SDA

Table 23. I2C Data Register

I2C Data ADDRESS 0x29

Bit # 7 6 5 4 3 2 1 0

Bit Name I2C Data 7 I2C Data 6 I2C Data 5 I2C Data 4 I2C Data 3 I2C Data 2 I2C Data 1 I2C Data 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Reset X X X X X X X X

Table 24. I2C Status and Control Register

I2C Status and
Control

Bit # 7 6 5 4 3 2 1 0

Bit Name MSTR Mode Continue/Busy Xmit Mode ACK Addr ARB
Lost/Restart

Received Stop I2C Enable

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 23 of 53

Bit 7 : MSTR Mode

Setting this bit to 1 causes the I2C-compatible block to
initiate a master mode transaction by sending a start bit
and transmitting the first data byte from the data register
(this typically holds the target address and R/W bit).
Subsequent bytes are initiated by setting the Continue bit,
as described below.

Clearing this bit (set to 0) causes the GPIO pins to operate
normally

In master mode, the I2C-compatible block generates the
clock (SCK), and drives the data line as required
depending on transmit or receive state. The
I2C-compatible block performs any required arbitration
and clock synchronization. IN the event of a loss of
arbitration, this MSTR bit is cleared, the ARB Lost bit is set,
and an interrupt is generated by the microcontroller. If the
chip is the target of an external master that wins arbitration,
then the interrupt is held off until the transaction from the
external master is completed.

When MSTR Mode is cleared from 1 to 0 by a firmware
write, an I2C Stop bit is generated.

Bit 6 : Continue / Busy

This bit is written by the firmware to indicate that the
firmware is ready for the next byte transaction to begin. In
other words, the bit has responded to an interrupt request
and has completed the required update or read of the data
register. During a read this bit indicates if the hardware is
busy and is locking out additional writes to the I2C Status
and Control register. This locking allows the hardware to
complete certain operations that may require an extended
period of time. Following an I2C interrupt, the
I2C-compatible block does not return to the Busy state until
firmware sets the Continue bit. This allows the firmware to
make one control register write without the need to check
the Busy bit.

Bit 5 : Xmit Mode

This bit is set by firmware to enter transmit mode and
perform a data transmit in master or slave mode. Clearing
this bit sets the part in receive mode. Firmware generally
determines the value of this bit from the R/W bit associated
with the I2C address packet. The Xmit Mode bit state is
ignored when initially writing the MSTR Mode or the
Restart bits, as these cases always cause transmit mode
for the first byte.

Bit 4 : ACK

This bit is set or cleared by firmware during receive
operation to indicate if the hardware should generate an
ACK signal on the I2C-compatible bus. Writing a 1 to this
bit generates an ACK (SDA LOW) on the I2C-compatible
bus at the ACK bit time. During transmits (Xmit Mode = 1),
this bit should be cleared.

Bit 3 : Addr

This bit is set by the I2C-compatible block during the first
byte of a slave receive transaction, after an I2C start or
restart. The Addr bit is cleared when the firmware sets the
Continue bit. This bit allows the firmware to recognize
when the master has lost arbitration, and in slave mode it
allows the firmware to recognize that a start or restart has
occurred.

Bit 2 : ARB Lost/Restart

This bit is valid as a status bit (ARB Lost) after master
mode transactions. In master mode, set this bit (along with
the Continue and MSTR Mode bits) to perform an I2C
restart sequence. The I2C target address for the restart
must be written to the data register before setting the
Continue bit. To prevent false ARB Lost signals, the
Restart bit is cleared by hardware during the restart
sequence.

Table 25. I2C Status and Control Register Bit Definitions

Bit Name Description

0 I2C Enable When set to ‘1’, the I2C-compatible function is enabled. When cleared, I2C GPIO pins
operate normally.

1 Received Stop Reads 1 only in slave receive mode, when I2C Stop bit detected (unless firmware did not
ACK the last transaction).

2 ARB Lost/Restart Reads 1 to indicate master has lost arbitration. Reads 0 otherwise.
Write to 1 in master mode to perform a restart sequence (also set Continue bit).

3 Addr Reads 1 during first byte after start/restart in slave mode, or if master loses arbitration.
Reads 0 otherwise. This bit should always be written as 0.

4 ACK In receive mode, write 1 to generate ACK, 0 for no ACK.
In transmit mode, reads 1 if ACK was received, 0 if no ACK received.

5 Xmit Mode Write to 1 for transmit mode, 0 for receive mode.

6 Continue/Busy Write 1 to indicate ready for next transaction.
Reads 1 when I2C-compatible block is busy with a transaction, 0 when transaction is
complete.

7 MSTR Mode Write to 1 for master mode, 0 for slave mode. This bit is cleared if master loses arbitration.
Clearing from 1 to 0 generates Stop bit.

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 24 of 53

Bit 1 : Receive Stop

This bit is set when the slave is in receive mode and
detects a stop bit on the bus. The Receive Stop bit is not
set if the firmware terminates the I2C transaction by not
acknowledging the previous byte transmitted on the
I2C-compatible bus, e.g. in receive mode if firmware sets
the Continue bit and clears the ACK bit.

Bit 0 : I2C Enable

Set this bit to override GPIO definition with I2C-compatible
function on the two I2C-compatible pins. When this bit is
cleared, these pins are free to function as GPIOs. In
I2C-compatible mode, the two pins operate in open drain
mode, independent of the GPIO configuration setting.

Hardware Assisted Parallel Interface (HAPI)

The CY7C64x13C processor provides a hardware assisted
parallel interface for bus widths of 8, 16, or 24 bits, to
accommodate data transfer with an external microcontroller or
similar device. Control bits for selecting the byte width are in the
HAPI/I2C Configuration Register (Table 20 on page 21), bits 1
and 0.

Signals are provided on Port 2 to control the HAPI interface.
Table 26 describes these signals and the HAPI control bits in the
HAPI/I2C Configuration Register. Enabling HAPI causes the
GPIO setting in the GPIO Configuration Register (0x08) to be
overridden. The Port 2 output pins are in CMOS output mode and
Port 2 input pins are in input mode (open drain mode with Q3
OFF in Figure 3 on page 15).

HAPI Read by External Device from CY7C64x13C:

In this case (see Figure 12), firmware writes data to the GPIO
ports. If 16-bit or 24-bit transfers are being made, Port 0 should
be written last, since writes to Port 0 asserts the Data Ready bit
and the DReady Pin to signal the external device that data is
available.

The external device then drives the OE and CS pins active
(LOW), which causes the HAPI data to be output on the port pins.
When OE is returned HIGH (inactive), the HAPI/GPIO interrupt
is generated. At that point, firmware can reload the HAPI latches
for the next output, again writing Port 0 last.

The Data Ready bit reads the opposite state from the external
DReadyPin on pin P2[3]. If the DRDY Polarity bit is 0, DReadyPin
is active HIGH, and the Data Ready bit is active LOW.

HAPI Write by External Device to CY7C64x13C:

In this case (see Figure 13 on page 48), the external device
drives the STB and CS pins active (LOW) when it drives new
data onto the port pins. When this happens, the internal latches
become full, which causes the Latch Empty bit to be deasserted.
When STB is returned HIGH (inactive), the HAPI/GPIO interrupt
is generated. Firmware then reads the parallel ports to empty the
HAPI latches. If 16-bit or 24-bit transfers are being made, Port 0
should be read last because reads from Port 0 assert the Latch
Empty bit and the LatEmptyPin to signal the external device for
more data.

The Latch Empty bit reads the opposite state from the external
LatEmptyPin on pin P2[2]. If the LEMPTY Polarity bit is 0,
LatEmptyPin is active HIGH, and the Latch Empty bit is active
LOW.

Table 26. Port 2 Pin and HAPI Configuration Bit Definitions

Pin Name Direction Description (Port 2 Pin)

P2[2] LatEmptyPin Out Ready for more input data from external interface.

P2[3] DReadyPin Out Output data ready for external interface.

P2[4] STB In Strobe signal for latching incoming data.

P2[5] OE In Output Enable, causes chip to output data.

P2[6] CS In Chip Select (Gates STB and OE).

Bit Name R/W Description (HAPI/I2C Configuration Register)

2 Data Ready R Asserted after firmware writes data to Port 0, until OE driven LOW.

3 Latch Empty R Asserted after firmware reads data from Port 0, until STB driven LOW.

4 DRDY Polarity R/W Determines polarity of Data Ready bit and DReadyPin:
If 0, Data Ready is active LOW, DReadyPin is active HIGH.
If 1, Data Ready is active HIGH, DReadyPin is active LOW.

5 LEMPTY Polarity R/W Determines polarity of Latch Empty bit and LatEmptyPin:
If 0, Latch Empty is active LOW, LatEmptyPin is active HIGH.
If 1, Latch Empty is active HIGH, LatEmptyPin is active LOW.

CY7C64013C

CY7C64113C

Document Number: 38-08001 Rev. *E Page 25 of 53

Processor Status and Control Register

Bit 0: Run

This bit is manipulated by the HALT instruction. When Halt
is executed, all the bits of the Processor Status and Control
Register are cleared to 0. Since the run bit is cleared, the
processor stops at the end of the current instruction. The
processor remains halted until an appropriate reset occurs
(power-on or Watchdog). This bit should normally be
written as a ‘1.’

Bit 1: Reserved

Bit 1 is reserved and must be written as a zero.

Bit 2: Interrupt Enable Sense

This bit indicates whether interrupts are enabled or
disabled. Firmware has no direct control over this bit as
writing a zero or one to this bit position has no effect on
interrupts. A ‘0’ indicates that interrupts are masked off and
a ‘1’ indicates that the interrupts are enabled. This bit is
further gated with the bit settings of the Global Interrupt
Enable Register (Table 28 on page 26) and USB End Point
Interrupt Enable Register (Table 29 on page 27).
Instructions DI, EI, and RETI manipulate the state of this
bit.

Bit 3: Suspend

Writing a ‘1’ to the Suspend bit halts the processor and
cause the microcontroller to enter the suspend mode that
significantly reduces power consumption. A pending,
enabled interrupt or USB bus activity causes the device to
come out of suspend. After coming out of suspend, the
device resumes firmware execution at the instruction
following the IOWR which put the part into suspend. An
IOWR attempting to put the part into suspend is ignored if
USB bus activity is present. See Suspend Mode on page
14 for more details on suspend mode operation.

Bit 4: Power-On Reset

The Power-On Reset is set to ‘1’ during a power-on reset.
The firmware can check bits 4 and 6 in the reset handler
to determine whether a reset was caused by a power-on
condition or a Watchdog timeout. A POR event may be
followed by a Watchdog reset before firmware begins
executing, as explained below.

Bit 5: USB Bus Reset Interrupt

The USB Bus Reset Interrupt bit is set when the USB Bus
Reset is detected on receiving a USB Bus Reset signal on
the upstream port. The USB Bus Reset signal is a
single-ended zero (SE0) that lasts from 12 to 16 µs. An
SE0 is defined as the condition in which both the D+ line
and the D– line are LOW at the same time.

Bit 6: Watchdog Reset

The Watchdog Reset is set during a reset initiated by the
Watchdog Timer. This indicates the Watchdog Timer went
for more than tWATCH (8 ms minimum) between Watchdog
clears. This can occur with a POR event, as noted below.

Bit 7: IRQ Pending

The IRQ pending, when set, indicates that one or more of
the interrupts has been recognized as active. An interrupt
remains pending until its interrupt enable bit is set (Table
28 on page 26, Table 29 on page 27) and interrupts are
globally enabled. At that point, the internal interrupt
handling sequence clears this bit until another interrupt is
detected as pending.

During power-up, the Processor Status and Control
Register is set to 00010001, which indicates a POR (bit 4
set) has occurred and no interrupts are pending (bit 7
clear). During the 96 ms suspend at start-up (explained in
Power-On Reset (POR) on page 14), a Watchdog Reset
also occurs unless this suspend is aborted by an upstream
SE0 before 8 ms. If a WDR occurs during the power-up
suspend interval, firmware reads 01010001 from the
Status and Control Register after power-up. Normally, the
POR bit should be cleared so a subsequent WDR can be
clearly identified. If an upstream bus reset is received
before firmware examines this register, the Bus Reset bit
may also be set.

During a Watchdog Reset, the Processor Status and
Control Register(Table 27 on page 25) is set to
01XX0001b, which indicates a Watchdog Reset (bit 6 set)
has occurred and no interrupts are pending (bit 7 clear).
The Watchdog Reset does not effect the state of the POR
and the Bus Reset Interrupt bits.

Table 27. Processor Status and Control Register

Processor
Status and
Control

ADDRESS 0xFF

Bit # 7 6 5 4 3 2 1 0

Bit Name IRQ
Pending

 Watchdog
Reset

USB Bus Reset
Interrupt

Power-On
Reset

 Suspend Interrupt
Enable Sense

 Reserved Run

Read/Write R R/W R/W R/W R/W R R/W R/W

Reset 0 0 0 1 0 0 0 1

	Contact us
	Full-Speed USB (12-Mbps) Function
	Features
	Functional Overview
	GPIO
	DAC
	Clock
	Memory
	Power on Reset, Watchdog and Free running Time
	I2C and HAPI Interface
	Timer
	Interrupts

	Logic Block Diagram
	Contents
	Pin Configurations
	Product Summary Tables
	Pin Assignments
	I/O Register Summary
	Instruction Set Summary

	Programming Model
	14-Bit Program Counter (PC)
	8-Bit Accumulator (A)
	8-Bit Temporary Register (X)
	8-Bit Program Stack Pointer (PSP)
	8-Bit Data Stack Pointer (DSP)
	Address Modes

	Clocking
	Reset
	Power-On Reset (POR)
	Watchdog Reset (WDR)

	Suspend Mode
	General-Purpose I/O (GPIO) Ports
	GPIO Configuration Port
	GPIO Interrupt Enable Ports

	DAC Port
	DAC Isink Registers
	DAC Port Interrupts

	12-Bit Free-Running Timer
	I2C and HAPI Configuration Register
	I2C-compatible Controller
	Hardware Assisted Parallel Interface (HAPI)

