imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Full-Speed USB (12-Mbps) Function

Features

- Full-speed USB Microcontroller
- 8-bit USB Optimized Microcontroller
- Harvard architecture
- 6-MHz external clock source
- 12-MHz internal CPU clock
- 48-MHz internal clock
- Internal memory
 - □ 256 bytes of RAM
 - □ 8 KB of PROM (CY7C64013C, CY7C64113C)
- Integrated Master/Slave I²C-compatible Controller (100 kHz) enabled through General-Purpose I/O (GPIO) pins
- Hardware Assisted Parallel Interface (HAPI) for data transfer to external devices
- I/O ports
 - Three GPIO ports (Port 0 to 2) capable of sinking 7 mA per pin (typical)
 - An additional GPIO port (Port 3) capable of sinking 12 mA per pin (typical) for high current requirements: LEDs
 - Higher current drive achievable by connecting multiple GPIO pins together to drive a common output
 - Each GPIO port can be configured as inputs with internal pull-ups or open drain outputs or traditional CMOS outputs
 - □ A Digital to Analog Conversion (DAC) port with programmable current sink outputs is available on the CY7C64113C devices
 - □ Maskable interrupts on all I/O pins
- 12-bit free-running timer with one microsecond clock ticks
- Watchdog Timer (WDT)
- Internal Power-On Reset (POR)
- USB Specification Compliance
 - □ Conforms to USB Specification, Version 1.1
 - □ Conforms to USB HID Specification, Version 1.1
 - □ Supports up to five user configured endpoints
 - Up to four 8-byte data endpoints
 - Up to two 32-byte data endpoints
 - Integrated USB transceivers
- Improved output drivers to reduce EMI
- Operating voltage from 4.0 V to 5.5 V DC
- Operating temperature from 0 to 70 degrees Celsius
 CY7C64013C available in 28-pin SOIC and 28-pin PDIP packages
 - CY7C64113C available in 48-pin SSOP packages
- Industry-standard programmer support

Functional Overview

The CY7C64013C and CY7C64113C are 8-bit One Time Programmable microcontrollers that are designed for full-speed USB applications. The instruction set has been optimized specifically for USB operations, although the microcontrollers can be used for a variety of non-USB embedded applications.

GPIO

The CY7C64013C features 19 GPIO pins to support USB and other applications. The I/O pins are grouped into three ports (P0[7:0], P1[2:0], P2[6:2], P3[2:0]) where each port can be configured as inputs with internal pull-ups, open drain outputs, or traditional CMOS outputs. There are 16 GPIO pins (Ports 0 and 1) which are rated at 7 mA typical sink current. Port 3 pins are rated at 12 mA typical sink current, a current sufficient to drive LEDs. Multiple GPIO pins can be connected together to drive a single output for more drive current capacity. Additionally, each GPIO can be used to generate a GPIO interrupt to the microcontroller. All of the GPIO interrupts share the same "GPIO" interrupt vector.

The CY7C64113C has 32 GPIO pins (P0[7:0], P1[7:0], P2[7:0], P3[7:0]).

DAC

The CY7C64113C has four programmable sink current I/O pins (DAC) pins (P4[7,2:0]). Every DAC pin includes an integrated 14-k Ω pull-up resistor. When a '1' is written to a DAC I/O pin, the output current sink is disabled and the output pin is driven HIGH by the internal pull-up resistor. When a '0' is written to a DAC I/O pin, the internal pull-up resistor is disabled and the output pin provides the programmed amount of sink current. A DAC I/O pin can be used as an input with an internal pull-up by writing a '1' to the pin.

The sink current for each DAC I/O pin can be individually programmed to one of 16 values using dedicated lsink registers. DAC bits P4[1:0] can be used as high-current outputs with a programmable sink current range of 3.2 to 16 mA (typical). DAC bits P4[7,2] have a programmable current sink range of 0.2 to 1.0 mA (typical). Multiple DAC pins can be connected together to drive a single output that requires more sink current capacity. Each I/O pin can be used to generate a DAC interrupt to the microcontroller. Also, the interrupt polarity for each DAC I/O pin is individually programmable.

Clock

The microcontroller uses an external 6-MHz crystal and an internal oscillator to provide a reference to an internal PLL-based clock generator. This technology allows the customer application to use an inexpensive 6-MHz fundamental crystal that reduces the clock-related noise emissions (EMI). A PLL clock generator provides the 6-, 12-, and 48-MHz clock signals for distribution within the microcontroller.

Cypress Semiconductor Corporation Document Number: 38-08001 Rev. *E 198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600 Revised April 16, 2014

Memory

The CY7C64013C and CY7C64113C have 8 KB of PROM.

Power on Reset, Watchdog and Free running Time

These parts include power-on reset logic, a Watchdog timer, and a 12-bit free-running timer. The power-on reset (POR) logic detects when power is applied to the device, resets the logic to a known state, and begins executing instructions at PROM address 0x0000. The Watchdog timer is used to ensure the microcontroller recovers after a period of inactivity. The firmware may become inactive for a variety of reasons, including errors in the code or a hardware failure such as waiting for an interrupt that never occurs.

I²C and HAPI Interface

The microcontroller can communicate with external electronics through the GPIO pins. An I^2C -compatible interface accommodates a 100-kHz serial link with an external device. There is also a Hardware Assisted Parallel Interface (HAPI) which can be used to transfer data to an external device.

Timer

The free-running 12-bit timer clocked at 1 MHz provides two interrupt sources, 128-µs and 1.024-ms. The timer can be used to measure the duration of an event under firmware control by reading the timer at the start of the event and after the event is complete. The difference between the two readings indicates the

duration of the event in microseconds. The upper four bits of the timer are latched into an internal register when the firmware reads the lower eight bits. A read from the upper four bits actually reads data from the internal register, instead of the timer. This feature eliminates the need for firmware to try to compensate if the upper four bits increment immediately after the lower eight bits are read.

Interrupts

The microcontroller supports 11 maskable interrupts in the vectored interrupt controller. Interrupt sources include the USB Bus Reset interrupt, the 128-µs (bit 6) and 1.024-ms (bit 9) outputs from the free-running timer, five USB endpoints, the DAC port, the GPIO ports, and the I^2C -compatible master mode interface. The timer bits cause an interrupt (if enabled) when the bit toggles from LOW '0' to HIGH '1.' The USB endpoints interrupt after the USB host has written data to the endpoint FIFO or after the USB controller sends a packet to the USB host. The DAC ports have an additional level of masking that allows the user to select which DAC inputs can cause a DAC interrupt. The GPIO ports also have a level of masking to select which GPIO inputs can cause a GPIO interrupt. For additional flexibility, the input transition polarity that causes an interrupt is programmable for each pin of the DAC port. Input transition polarity can be programmed for each GPIO port as part of the port configuration. The interrupt polarity can be rising edge ('0' to '1') or falling edge ('1' to '0').

Logic Block Diagram

Contents

Pin Configurations	5
Product Summary Tables	6
Pin Assignments	6
I/O Register Summary	6
Instruction Set Summary	9
Programming Model	10
14-Bit Program Counter (PC)	10
8-Bit Accumulator (A)	12
8-Bit Temporary Register (X)	12
8-Bit Program Stack Pointer (PSP)	12
8-Bit Data Stack Pointer (DSP)	13
Address Modes	13
Clocking	13
Reset	14
Power-On Reset (POR)	14
Watchdog Reset (WDR)	14
Suspend Mode	
General-Purpose I/O (GPIO) Ports	15
GPIO Configuration Port	16
GPIO Interrupt Enable Ports	17
DAC Port	18
DAC Isink Registers	19
DAC Port Interrupts	20
12-Bit Free-Running Timer	20
I ² C and HAPI Configuration Register	21
I2C-compatible Controller	22
Hardware Assisted Parallel Interface (HAPI)	24
Processor Status and Control Register	25
Interrupts	
Interrupt Vectors	27
Interrupt Latency	29
USB Bus Reset Interrupt	
Timer Interrupt	29
USB Endpoint Interrupts	
DAC Interrupt	
-	

GPIO/HAPI Interrupt	. 29
I ² C Interrupt	. 30
USB Overview	. 30
USB Serial Interface Engine (SIE)	. 31
USB Enumeration	. 31
USB Upstream Port Status and Control	. 31
USB Serial Interface Engine Operation	. 32
USB Device Address	. 32
USB Device Endpoints	. 32
USB Control Endpoint Mode Register	. 32
USB Non-Control Endpoint Mode Registers	. 33
USB Endpoint Counter Registers	. 34
Endpoint Mode/Count Registers Update and	
Locking Mechanism	. 34
USB Mode Tables	. 36
Register Summary	. 41
Sample Schematic	. 44
Absolute Maximum Ratings	. 45
Electrical Characteristics	. 45
Switching Characteristics	. 46
Ordering Information	. 48
Ordering Code Definitions	. 48
Package Diagrams	. 49
Acronyms	. 51
Document Conventions	. 51
Units of Measure	. 51
Document History Page	. 52
Sales, Solutions, and Legal Information	. 53
Worldwide Sales and Design Support	. 53
Products	. 53
PSoC® Solutions	. 53
Cypress Developer Community	. 53
Technical Support	. 53

Pin Configurations

CY7C64013C 28-pin SOIC

$\overline{}$	-		
1	28		V _{CC}
2	27		P1[1]
3	26		P1[0]
4	25		P1[2]
5	24		P3[0]
6	23		P3[2]
7	22		GND
В	21		P2[2]
9	20		P2[4]
10	19		P2[6]
11	18		V_{PP}
12	17		P0[0]
13	16		P0[2]
14	15		P0[4]
	1 V 2 3 4 5 5 3 9 10 11 12 13 14	1 28 2 27 3 26 4 25 5 24 3 23 7 22 3 21 9 20 10 19 11 18 12 17 13 16 14 15	1 28 2 27 3 26 4 25 5 24 3 21 9 20 11 18 12 17 13 16 14 15

TOP VIEW

CY7C64013C 28-pin PDIP

XTALOUT	Γ	1	\bigcirc	28	Ъ	V _{CC}
XTALIN	Γ	2		27	Б	P1[0]
V _{REF}	Γ	3		26	þ	P1[2]
P1[1]	Γ	4		25		P3[0]
GND	Γ	5		24		P3[2]
P3[1]		6		23		P2[2]
D+[0]	Γ	7		22	Þ	GND
D-[0]	Γ	8		21	Π	P2[4]
P2[3]	Γ	9		20	Π	P2[6]
P2[5]		10		19	Π	V_{PP}
P0[7]		11		18	Π	P0[0]
P0[5]		12		17	Π	P0[2]
P0[3]	П	13		16	Π	P0[4]
P0[1]		14		15	μ	P0[6]

CY7C64113C 48-pin SSOP

XTALOUT	Γ	1	\cup	48		V_{CC}
XTALIN	Π	2		47		P1[1]
V _{REF}	Π	3		46		P1[0]
P1[3]	Π	4		45		P1[2]
P1[5]	П	5		44		P1[4]
P1[7]	Γ	6		43		P1[6]
P3[1]	Γ	7		42		P3[0]
D+[0]	Π	8		41		P3[2]
D–[0]	Π	9		40		GND
P3[3]	Γ	10		39		P3[4]
GND	Γ	11		38		NC
P3[5]	Γ	12		37		P3[6]
P3[7]	Γ	13		36		P2[0]
P2[1]	Γ	14		35		P2[2]
P2[3]	Γ	15		34		GND
GND	Γ	16		33		P2[4]
P2[5]	Γ	17		32		P2[6]
P2[7]	Γ	18		31		DAC[0]
DAC[7]	Γ	19		30		V _{PP}
P0[7]	Г	20		29		P0[0]
P0[5]	Γ	21		28		P0[2]
P0[3]	Г	22		27	П	P0[4]
P0[1]	Ľ	23		26		P0[6]
DAC[1]	Ę	24		25		DAC[2

Product Summary Tables

Pin Assignments

Table 1. Pin Assignments

Name	I/O	28-pin SOIC	28-pin PDIP	48-pin SSOP	Description
D+[0], D–[0]	I/O	6, 7	7, 8	7, 8	Upstream port, USB differential data.
P0	I/O	P0[7:0] 10, 14, 11, 15, 12, 16, 13, 17	P0[7:0] 11, 15, 12, 16, 13, 17, 14, 18	P0[7:0] 20, 26, 21, 27, 22, 28, 23, 29	GPIO Port 0 capable of sinking 7 mA (typical).
P1	I/O	P1[2:0] 25, 27, 26	P1[2:0] 26, 4, 27	P1[7:0] 6, 43, 5, 44, 4, 45, 47, 46	GPIO Port 1 capable of sinking 7 mA (typical).
P2	I/O	P2[6:2] 19, 9, 20, 8, 21	P2[6:2] 20, 10, 21, 9, 23	P2[7:0] 18, 32, 17, 33, 15, 35, 14, 36	GPIO Port 2 capable of sinking 7 mA (typical). HAPI is also supported through P2[6:2].
P3	I/O	P3[2:0] 23, 5, 24	P3[2:0] 24, 6, 25	P3[7:0] 13, 37, 12, 39, 10, 41, 7, 42	GPIO Port 3, capable of sinking 12 mA (typical).
DAC	I/O			DAC[7,2:0] 19, 25, 24, 31	DAC Port with programmable current sink outputs. DAC[1:0] offer a programmable range of 3.2 to 16 mA typical. DAC[7,2] have a programmable sink current range of 0.2 to 1.0 mA typical.
XTAL _{IN}	IN	2	2	2	6-MHz crystal or external clock input.
XTAL _{OUT}	OUT	1	1	1	6-MHz crystal out.
V _{PP}	IN	18	19	30	Programming voltage supply, tie to ground during normal operation.
V _{CC}	IN	28	28	48	Voltage supply.
GND	IN	4, 22	5, 22	11, 16, 34, 40	Ground.
V _{REF}	IN	3	3	3	External 3.3 V supply voltage for the differential data output buffers and the D+ pull-up.
NC				38	No Connect.

I/O Register Summary

I/O registers are accessed via the I/O Read (IORD) and I/O Write (IOWR, IOWX) instructions. IORD reads data from the selected port into the accumulator. IOWR performs the reverse; it writes data from the accumulator to the selected port. Indexed I/O Write (IOWX) adds the contents of X to the address in the instruction to form the port address and writes data from the accumulator to the specified port. Specifying address 0 (e.g., IOWX 0h) means the I/O register is selected solely by the contents of X.

All undefined registers are reserved. It is important not to write to reserved registers as this may cause an undefined operation or increased current consumption during operation. When writing to registers with reserved bits, the reserved bits must be written with '0.'

Table 2. I/O Register Summary

Register Name	I/O Address	Read/Write	Function	Page
Port 0 Data	0x00	R/W	GPIO Port 0 Data	15
Port 1 Data	0x01	R/W	GPIO Port 1 Data	16
Port 2 Data	0x02	R/W	GPIO Port 2 Data	16
Port 3 Data	0x03	R/W	GPIO Port 3 Data	16
Port 0 Interrupt Enable	0x04	W	Interrupt Enable for Pins in Port 0	17
Port 1 Interrupt Enable	0x05	W	Interrupt Enable for Pins in Port 1	17
Port 2 Interrupt Enable	0x06	W	Interrupt Enable for Pins in Port 2	18
Port 3 Interrupt Enable	0x07	W	Interrupt Enable for Pins in Port 3	18
GPIO Configuration	0x08	R/W	GPIO Port Configurations	16
HAPI and I ² C Configuration	0x09	R/W	HAPI Width and I ² C Position Configuration	21
USB Device Address A	0x10	R/W	USB Device Address A	32
EP A0 Counter Register	0x11	R/W	USB Address A, Endpoint 0 Counter	32
EP A0 Mode Register	0x12	R/W	USB Address A, Endpoint 0 Configuration	32
EP A1 Counter Register	0x13	R/W	USB Address A, Endpoint 1 Counter	32
EP A1 Mode Register	0x14	R/W	USB Address A, Endpoint 1 Configuration	32
EP A2 Counter Register	0x15	R/W	USB Address A, Endpoint 2 Counter	32
EP A2 Mode Register	0x16	R/W	USB Address A, Endpoint 2 Configuration	32
USB Status & Control	0x1F	R/W	USB Upstream Port Traffic Status and Control	31
Global Interrupt Enable	0x20	R/W	Global Interrupt Enable	26
Endpoint Interrupt Enable	0x21	R/W	USB Endpoint Interrupt Enables	27
Timer (LSB)	0x24	R	Lower 8 Bits of Free-running Timer (1 MHz)	20
Timer (MSB)	0x25	R	Upper 4 Bits of Free-running Timer	21
WDT Clear	0x26	W	Watchdog Timer Clear	14
I ² C Control & Status	0x28	R/W	I ² C Status and Control	22
I ² C Data	0x29	R/W	I ² C Data	22
DAC Data	0x30	R/W	DAC Data	19
DAC Interrupt Enable	0x31	W	Interrupt Enable for each DAC Pin	20
DAC Interrupt Polarity	0x32	W	Interrupt Polarity for each DAC Pin	20
DAC Isink	0x38-0x3F	W	Input Sink Current Control for each DAC Pin	19
Reserved	0x40		Reserved	
EP A3 Counter Register	0x41	R/W	USB Address A, Endpoint 3 Counter	32
EP A3 Mode Register	0x42	R/W	USB Address A, Endpoint 3 Configuration	32
EP A4 Counter Register	0x43	R/W	USB Address A, Endpoint 4 Counter	32
EP A4 Mode Register	0x44	R/W	USB Address A, Endpoint 4 Configuration	32
Reserved	0x48		Reserved	
Reserved	0x49		Reserved	
Reserved	0x4A		Reserved	
Reserved	0x4B		Reserved	
Reserved	0x4C		Reserved	

Table 2. I/O Register Summary (continued)

Register Name	I/O Address	Read/Write	Function	Page
Reserved	0x4D		Reserved	
Reserved	0x4E		Reserved	
Reserved	0x4F		Reserved	
Reserved	0x50		Reserved	
Reserved	0x51		Reserved	
Processor Status & Control	0xFF	R/W	Microprocessor Status and Control Register	23

Instruction Set Summary

Refer to the CYASM Assembler User's Guide for more details.

Table 3. Instruction Set Summary

MNEMONIC	operand	opcode	cycles
HALT		00	7
ADD A,expr	data	01	4
ADD A,[expr]	direct	02	6
ADD A,[X+expr]	index	03	7
ADC A,expr	data	04	4
ADC A,[expr]	direct	05	6
ADC A,[X+expr]	index	06	7
SUB A,expr	data	07	4
SUB A,[expr]	direct	08	6
SUB A,[X+expr]	index	09	7
SBB A,expr	data	0A	4
SBB A,[expr]	direct	0B	6
SBB A,[X+expr]	index	0C	7
OR A,expr	data	0D	4
OR A,[expr]	direct	0E	6
OR A,[X+expr]	index	0F	7
AND A,expr	data	10	4
AND A,[expr]	direct	11	6
AND A,[X+expr]	index 12		7
XOR A,expr	data	13	4
XOR A,[expr]	direct	14	6
XOR A,[X+expr]	index	15	7
CMP A,expr	data	16	5
CMP A,[expr]	direct	17	7
CMP A,[X+expr]	index	18	8
MOV A,expr	data	19	4
MOV A,[expr]	direct	1A	5
MOV A,[X+expr]	index	1B	6
MOV X,expr	data	1C	4
MOV X,[expr]	direct	1D	5
reserved		1E	
XPAGE		1F	4
MOV A,X		40	4
MOV X,A		41	4
MOV PSP,A		60	4
CALL	addr	50 - 5F	10
JMP	addr	80-8F	5
CALL	addr	90-9F	10
JZ	addr	AU-AF	5
JNZ	addr	B0-BF	5

MNEMONIC	operand	opcode	cycles
NOP		20	4
INC A	acc	21	4
INC X	х	22	4
INC [expr]	direct	23	7
INC [X+expr]	index	24	8
DEC A	acc	25	4
DEC X	х	26	4
DEC [expr]	direct	27	7
DEC [X+expr]	index	28	8
IORD expr	address	29	5
IOWR expr	address	2A	5
POP A		2B	4
POP X		2C	4
PUSH A		2D	5
PUSH X		2E	5
SWAP A,X		2F	5
SWAP A,DSP		30	5
MOV [expr],A	direct	31	5
MOV [X+expr],A	index	32	6
OR [expr],A	direct	33	7
OR [X+expr],A	index	34	8
AND [expr],A	direct	35	7
AND [X+expr],A	index	36	8
XOR [expr],A	direct	37	7
XOR [X+expr],A	index	38	8
IOWX [X+expr]	index	39	6
CPL		3A	4
ASL		3B	4
ASR		3C	4
RLC		3D	4
RRC		3E	4
RET		3F	8
DI		70	4
EI		72	4
RETI		73	8
JC	addr	C0-CF	5
JNC	addr	D0-DF	5
JACC	addr	E0-EF	7
INDEX	addr	F0-FF	14

Programming Model

14-Bit Program Counter (PC)

The 14-bit program counter (PC) allows access to up to 8 KB of PROM available with the CY7C64x13C architecture. The top 32 bytes of the ROM in the 8 Kb part are reserved for testing purposes. The program counter is cleared during reset, such that the first instruction executed after a reset is at address 0x000h. Typically, this is a jump instruction to a reset handler that initializes the application (see Interrupt Vectors on page 27).

The lower eight bits of the program counter are incremented as instructions are loaded and executed. The upper six bits of the program counter are incremented by executing an XPAGE instruction. As a result, the last instruction executed within a 256-byte "page" of sequential code should be an XPAGE

instruction. The assembler directive "XPAGEON" causes the assembler to insert XPAGE instructions automatically. Because instructions can be either one or two bytes long, the assembler may occasionally need to insert a NOP followed by an XPAGE to execute correctly.

The address of the next instruction to be executed, the carry flag, and the zero flag are saved as two bytes on the program stack during an interrupt acknowledge or a CALL instruction. The program counter, carry flag, and zero flag are restored from the program stack during a RETI instruction. Only the program counter is restored during a RET instruction.

The program counter cannot be accessed directly by the firmware. The program stack can be examined by reading SRAM from location 0x00 and up.

Program Memory Organization

8-Bit Accumulator (A)

The accumulator is the general-purpose register for the microcontroller.

8-Bit Temporary Register (X)

The "X" register is available to the firmware for temporary storage of intermediate results. The microcontroller can perform indexed operations based on the value in X. Refer to Indexed on page 13 for additional information.

8-Bit Program Stack Pointer (PSP)

During a reset, the program stack pointer (PSP) is set to 0x00 and "grows" upward from this address. The PSP may be set by firmware, using the MOV PSP,A instruction. The PSP supports interrupt service under hardware control and CALL, RET, and RETI instructions under firmware control. The PSP is not readable by the firmware.

During an interrupt acknowledge, interrupts are disabled and the 14-bit program counter, carry flag, and zero flag are written as two bytes of data memory. The first byte is stored in the memory addressed by the PSP, then the PSP is incremented. The second byte is stored in memory addressed by the PSP, and the PSP is incremented again. The overall effect is to store the program counter and flags on the program "stack" and increment the PSP by two.

The Return from Interrupt (RETI) instruction decrements the PSP, then restores the second byte from memory addressed by the PSP. The PSP is decremented again and the first byte is restored from memory addressed by the PSP. After the program counter and flags have been restored from stack, the interrupts are enabled. The overall effect is to restore the program counter and flags from the program stack, decrement the PSP by two, and reenable interrupts.

The Call Subroutine (CALL) instruction stores the program counter and flags on the program stack and increments the PSP by two.

The Return from Subroutine (RET) instruction restores the program counter but not the flags from the program stack and decrements the PSP by two.

Data Memory Organization

The CY7C64x13C microcontrollers provide 256 bytes of data RAM. Normally, the SRAM is partitioned into four areas: program stack, user variables, data stack, and USB endpoint FIFOs. The following is one example of where the program stack, data stack, and user variables areas could be located.

Notes

^{1.} Refer to 8-Bit Data Stack Pointer (DSP) on page 13 for a description of DSP.

^{2.} Endpoint sizes are fixed by the Endpoint Size Bit (I/O register 0x1F, Bit 7), see Table 34 on page 32.

8-Bit Data Stack Pointer (DSP)

The data stack pointer (DSP) supports PUSH and POP instructions that use the data stack for temporary storage. A PUSH instruction pre-decrements the DSP, then writes data to the memory location addressed by the DSP. A POP instruction reads data from the memory location addressed by the DSP, then post-increments the DSP.

During a reset, the DSP is reset to 0x00. A PUSH instruction when DSP equals 0x00 writes data at the top of the data RAM (address 0xFF). This writes data to the memory area reserved for USB endpoint FIFOs. Therefore, the DSP should be indexed at an appropriate memory location that does not compromise the Program Stack, user-defined memory (variables), or the USB endpoint FIFOs.

For USB applications, the firmware should set the DSP to an appropriate location to avoid a memory conflict with RAM dedicated to USB FIFOs. The memory requirements for the USB endpoints are described in USB Device Endpoints on page 32. Example assembly instructions to do this with two device addresses (FIFOs begin at 0xD8) are shown below:

MOV A,20h ; Move 20 hex into Accumulator (must be D8h or less)

SWAP A,DSP ; swap accumulator value into DSP register

Address Modes

The CY7C64013C and CY7C64113C microcontrollers support three addressing modes for instructions that require data operands: data, direct, and indexed.

Data (Immediate)

"Data" address mode refers to a data operand that is actually a constant encoded in the instruction. As an example, consider the instruction that loads A with the constant 0xD8:

MOV A,0D8h

This instruction requires two bytes of code where the first byte identifies the "MOV A" instruction with a data operand as the second byte. The second byte of the instruction is the constant

Clocking

Figure 1. Clock Oscillator On-Chip Circuit

The XTALIN and XTALOUT are the clock pins to the microcontroller. The user can connect an external oscillator or a crystal to these pins. When using an external crystal, keep PCB traces between the chip leads and crystal as short as possible (less than 2 cm). A 6-MHz fundamental frequency parallel

resonant crystal can be connected to these pins to provide a reference frequency for the internal PLL. The two internal 30-pF load caps appear in series to the external crystal and would be equivalent to a 15-pF load. Therefore, the crystal must have a required load capacitance of about 15–18 pF. A ceramic

- DSPINIT: EQU 0D8h
- MOV A,DSPINIT

Direct

"Direct" address mode is used when the data operand is a variable stored in SRAM. In that case, the one byte address of the variable is encoded in the instruction. As an example, consider an instruction that loads A with the contents of memory address location 0x10:

MOV A,[10h]

Normally, variable names are assigned to variable addresses using "EQU" statements to improve the readability of the assembler source code. As an example, the following code is equivalent to the example shown above:

- buttons: EQU 10h
- MOV A,[buttons]

Indexed

"Indexed" address mode allows the firmware to manipulate arrays of data stored in SRAM. The address of the data operand is the sum of a constant encoded in the instruction and the contents of the "X" register. Normally, the constant is the "base" address of an array of data and the X register contains an index that indicates which element of the array is actually addressed:

- array: EQU 10h
- MOV X,3
- MOV A,[X+array]

This would have the effect of loading A with the fourth element of the SRAM "array" that begins at address 0x10. The fourth element would be at address 0x13.

resonator does not allow the microcontroller to meet the timing specifications of full speed USB and therefore a ceramic resonator is not recommended with these parts.

An external 6-MHz clock can be applied to the XTALIN pin if the XTALOUT pin is left open. Grounding the XTALOUT pin when driving XTALIN with an oscillator does not work because the internal clock is effectively shorted to ground.

Reset

The CY7C64x13C supports two resets: Power-On Reset (POR) and a Watchdog Reset (WDR). Each of these resets causes:

- all registers to be restored to their default states,
- the USB Device Address to be set to 0,
- all interrupts to be disabled,
- the PSP and Data Stack Pointer (DSP) to be set to memory address 0x00.

The occurrence of a reset is recorded in the Processor Status and Control Register, as described in Processor Status and Control Register on page 25. Bits 4 and 6 are used to record the occurrence of POR and WDR, respectively. Firmware can interrogate these bits to determine the cause of a reset.

Program execution starts at ROM address 0x0000 after a reset. Although this looks like interrupt vector 0, there is an important difference. Reset processing does NOT push the program counter, carry flag, and zero flag onto program stack. The firmware reset handler should configure the hardware before the "main" loop of code. Attempting to execute a RET or RETI in the firmware reset handler causes unpredictable execution results.

Power-On Reset (POR)

When V_{CC} is first applied to the chip, the Power-On Reset (POR) signal is asserted and the CY7C64x13C enters a

"semi-suspend" state. During the semi-suspend state, which is different from the suspend state defined in the USB specification, the oscillator and all other blocks of the part are functional, except for the CPU. This semi-suspend time ensures that both a valid V_{CC} level is reached and that the internal PLL has time to stabilize before full operation begins. When the V_{CC} has risen above approximately 2.5 V, and the oscillator is stable, the POR is deasserted and the on-chip timer starts counting. The first 1 ms of suspend time is not interruptible, and the semi-suspend state continues for an additional 95 ms unless the count is bypassed by a USB Bus Reset on the upstream port. The 95 ms provides time for V_{CC} to stabilize at a valid operating voltage before the chip executes code.

If a USB Bus Reset occurs on the upstream port during the 95-ms semi-suspend time, the semi-suspend state is aborted and program execution begins immediately from address 0x0000. In this case, the Bus Reset interrupt is pending but not serviced until firmware sets the USB Bus Reset Interrupt Enable bit (bit 0 of register 0x20) and enables interrupts with the El command.

The POR signal is asserted whenever V_{CC} drops below approximately 2.5 V, and remains asserted until V_{CC} rises above this level again. Behavior is the same as described above.

Watchdog Reset (WDR)

The Watchdog Timer Reset (WDR) occurs when the internal Watchdog timer rolls over. Writing any value to the write-only Watchdog Restart Register at address 0x26 clears the timer. The timer rolls over and WDR occurs if it is not cleared within t_{WATCH} (8 ms minimum) of the last clear. Bit 6 of the Processor Status and Control Register is set to record this event (the register contents are set to 010X0001 by the WDR). A Watchdog Timer Reset lasts for 2 ms, after which the microcontroller begins execution at ROM address 0x0000.

The USB transmitter is disabled by a Watchdog Reset because the USB Device Address Register is cleared. Otherwise, the USB Controller would respond to all address 0 transactions.

It is possible for the WDR bit of the Processor Status and Control Register (0xFF) to be set following a POR event. The WDR bit should be ignored If the firmware interrogates the Processor Status and Control Register for a Set condition on the WDR bit and if the POR (bit 3 of register 0xFF) bit is set.

Suspend Mode

The CY7C64x13C can be placed into a low-power state by setting the Suspend bit of the Processor Status and Control register. All logic blocks in the device are turned off except the GPIO interrupt logic and the USB receiver. The clock oscillator and PLL, as well as the free-running and Watchdog timers, are shut down. Only the occurrence of an enabled GPIO interrupt or non-idle bus activity at a USB upstream or downstream port

The GPIO interrupt allows the controller to wake-up periodically

and poll system components while maintaining a very low average power consumption. To achieve the lowest possible

current during suspend mode, all I/O should be held at V_{CC} or

Gnd. This also applies to internal port pins that may not be

bonded in a particular package.

wakes the part out of suspend. The Run bit in the Processor Status and Control Register must be set to resume a part out of suspend.

The clock oscillator restarts immediately after exiting suspend mode. The microcontroller returns to a fully functional state 1 ms after the oscillator is stable. The microcontroller executes the instruction following the I/O write that placed the device into suspend mode before servicing any interrupt requests.

Typical code for entering suspend is shown below:

	; All GPIO set to low-power state (no floating pins)
	; Enable GPIO interrupts if desired for wake-up
mov a, 09h	; Set suspend and run bits
iowr FFh	; Write to Status and Control Register - Enter suspend, wait for USB activity (or GPIO Interrupt)
nop	; This executes before any ISR
	; Remaining code for exiting suspend routine

General-Purpose I/O (GPIO) Ports

Figure 3. Block Diagram of a GPIO Pin

There are up to 32 GPIO pins (P0[7:0], P1[7:0], P2[7:0], and P3[7:0]) for the hardware interface. The number of GPIO pins changes based on the package type of the chip. Each port can be configured as inputs with internal pull-ups, open drain outputs, or traditional CMOS outputs. Port 3 offers a higher current drive,

with typical current sink capability of 12 mA. The data for each GPIO port is accessible through the data registers. Port data registers are shown in Table 4 through Table 7, and are set to 1 on reset.

Table 4. Port 0 Data

Port 0 Data								ADDRESS 0x00
Bit #	7	6	5	4	3	2	1	0
Bit Name	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
Read/Write	R/W							
Reset	1	1	1	1	1	1	1	1

ADDRESS 0x02

Table 5. Port 1 Data

Port 1 Data								ADDRESS 0x01
Bit #	7	6	5	4	3	2	1	0
Bit Name	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
Read/Write	R/W							
Reset	1	1	1	1	1	1	1	1

Table 6. Port 2 Data

Port 2 Data

Bit #	7	6	5	4	3	2	1	0
Bit Name	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
Read/Write	R/W							
Reset	1	1	1	1	1	1	1	1

Table 7. Port 3 Data

Port 3 Data								ADDRESS 0x03
Bit #	7	6	5	4	3	2	1	0
Bit Name	P3.7	P3.6	P3.5	P3.4	P3.3	P32	P3.1	P3.0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Special care should be taken with any unused GPIO data bits. An unused GPIO data bit, either a pin on the chip or a port bit that is not bonded on a particular package, must not be left floating when the device enters the suspend state. If a GPIO data bit is left floating, the leakage current caused by the floating bit may violate the suspend current limitation specified by the USB Specifications. If a '1' is written to the unused data bit and the port is configured with open drain outputs, the unused data bit remains in an indeterminate state. Therefore, if an unused port bit is programmed in open-drain mode, it must be written with a '0.' Notice that the CY7C64013C part always requires that the data bits P1[7:3], P2[7,1,0], and P3[7:3] be written with a '0.'

In normal non-HAPI mode, reads from a GPIO port always return the present state of the voltage at the pin, independent of the settings in the Port Data Registers. If HAPI mode is activated for

Table 8. GPIO Configuration Register

GPIO Configuration a port, reads of that port return latched data as controlled by the HAPI signals (see Hardware Assisted Parallel Interface (HAPI) on page 24). During reset, all of the GPIO pins are set to a high-impedance input state ('1' in open drain mode). Writing a '0' to a GPIO pin drives the pin LOW. In this state, a '0' is always read on that GPIO pin unless an external source overdrives the internal pull-down device.

GPIO Configuration Port

Every GPIO port can be programmed as inputs with internal pull-ups, outputs LOW or HIGH, or Hi-Z (floating, the pin is not driven internally). In addition, the interrupt polarity for each port can be programmed. The Port Configuration bits (Table 8) and the Interrupt Enable bit (Table 10 on page 17 through Table 13 on page 18) determine the interrupt polarity of the port pins.

ADDRESS 0x08

Bit #	7	6	5	4	3	2	1	0
Bit Name	Port 3 Config Bit 1	Port 3 Config Bit 0	Port 2 Config Bit 1	Port 2 Config Bit 0	Port 1 Config Bit 1	Port 1 Config Bit 0	Port 0 Config Bit 1	Port 0 Config Bit 0
Read/Write	R/W							
Reset	0	0	0	0	0	0	0	0

As shown in Table 9 on page 17 below, a positive polarity on an input pin represents a rising edge interrupt (LOW to HIGH), and a negative polarity on an input pin represents a falling edge interrupt (HIGH to LOW).

The GPIO interrupt is generated when all of the following conditions are met: the Interrupt Enable bit of the associated Port Interrupt Enable Register is enabled, the GPIO Interrupt Enable bit of the Global Interrupt Enable Register (Table 28 on page 26) is enabled, the Interrupt Enable Sense (bit 2,

Table 27 on page 25) is set, and the GPIO pin of the port sees an event matching the interrupt polarity.

The driving state of each GPIO pin is determined by the value written to the pin's Data Register (Table 4 on page 15 through Table 7 on page 16) and by its associated Port Configuration bits as shown in the GPIO Configuration Register

(Table 8 on page 16). These ports are configured on a per-port basis, so all pins in a given port are configured together. The possible port configurations are detailed in Table 9. As shown in

this table below, when a GPIO port is configured with CMOS outputs, interrupts from that port are disabled.

During reset, all of the bits in the GPIO Configuration Register are written with '0' to select Hi-Z mode for all GPIO ports as the default configuration.

Table 9.	GPIO Po	rt Output Co	ntrol Truth	Table and	Interrupt Polarity
----------	---------	--------------	-------------	-----------	--------------------

Port Config Bit 1	Port Config Bit 0	Data Register	Output Drive Strength	Interrupt Enable Bit	Interrupt Polarity
1	1	0	Output LOW	0	Disabled
		1	Resistive	1	– (Falling Edge)
1	0	0	Output LOW	0	Disabled
		1	Output HIGH	1	Disabled
0	1	0	Output LOW	0	Disabled
		1	Hi-Z	1	– (Falling Edge)
0	0	0	Output LOW	0	Disabled
		1	Hi-Z	1	+ (Rising Edge)

Q1, Q2, and Q3 discussed below are the transistors referenced in Figure 3 on page 15. The available GPIO drive strength are:

■ Output LOW Mode: The pin's Data Register is set to '0'

Writing '0' to the pin's Data Register puts the pin in output LOW mode, regardless of the contents of the Port Configuration Bits[1:0]. In this mode, Q1 and Q2 are OFF. Q3 is ON. The GPIO pin is driven LOW through Q3.

Output HIGH Mode: The pin's Data Register is set to 1 and the Port Configuration Bits[1:0] is set to '10'

In this mode, Q1 and Q3 are OFF. Q2 is ON. The GPIO is pulled up through Q2. The GPIO pin is capable of sourcing of current.

Resistive Mode: The pin's Data Register is set to 1 and the Port Configuration Bits[1:0] is set to '11'

Q2 and Q3 are OFF. Q1 is ON. The GPIO pin is pulled up with an internal 14 k Ω resistor. In resistive mode, the pin may serve as an input. Reading the pin's Data Register returns a logic HIGH if the pin is not driven LOW by an external source.

Table 10. Port 0 Interrupt Enable

Port 0 Interrupt Enable ■ Hi-Z Mode: The pin's Data Register is set to1 and Port Configuration Bits[1:0] is set either '00' or '01'

Q1, Q2, and Q3 are all OFF. The GPIO pin is not driven internally. In this mode, the pin may serve as an input. Reading the Port Data Register returns the actual logic value on the port pins.

GPIO Interrupt Enable Ports

Each GPIO pin can be individually enabled or disabled as an interrupt source. The Port 0–3 Interrupt Enable registers provide this feature with an interrupt enable bit for each GPIO pin. When HAPI mode (discussed in Hardware Assisted Parallel Interface (HAPI) on page 24) is enabled the GPIO interrupts are blocked, including ports not used by HAPI, so GPIO pins cannot be used as interrupt sources.

During a reset, GPIO interrupts are disabled by clearing all of the GPIO interrupt enable ports. Writing a '1' to a GPIO Interrupt Enable bit enables GPIO interrupts from the corresponding input pin. All GPIO pins share a common interrupt, as discussed in GPIO/HAPI Interrupt on page 29.

Bit #	7	6	5	4	3	2	1	0
Bit Name	P0.7 Intr Enable	P0.6 Intr Enable	P0.5 Intr Enable	P0.4 Intr Enable	P0.3 Intr Enable	P0.2 Intr Enable	P0.1 Intr Enable	P0.0 Intr Enable
Read/Write	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

Table 11. Port 1 Interrupt Enable

Port 1 Interrupt Enable

Bit #	7	6	5	4	3	2	1	0
Bit Name	P1.7 Intr Enable	P1.6 Intr Enable	P1.5 Intr Enable	P1.4 Intr Enable	P1.3 Intr Enabl	P1.2 Intr Enable	P1.1 Intr Enable	P1.0 Intr Enable
Read/Write	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

ADDRESS 0x04

ADDRESS 0x05

Table 12. Port 2 Interrupt Enable

Port 2 Interrupt Enable								ADDRESS 0x06
Bit #	7	6	5	4	3	2	1	0
Bit Name	P2.7 Intr Enable	P2.6 Intr Enable	P2.5 Intr Enable	P2.4 Intr Enable	P2.3 Intr Enable	P2.2 Intr Enable	P2.1 Intr Enable	P2.0 Intr Enable
Read/Write	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

Table 13. Port 3 Interrupt Enable

Port 3 Interrupt Enable								ADDRESS 0x07
Bit #	7	6	5	4	3	2	1	0
Bit Name	Reserved (Set to 0)	P3.6 Intr Enable	P3.5 Intr Enable	P3.4 Intr Enable	P3.3 Intr Enable	P3.2 Intr Enable	P3.1 Intr Enable	P3.0 Intr Enable
Read/Write	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

DAC Port

The CY7C64113C features a programmable current sink 4 bit port which is also known as a DAC port. Each of these port I/O pins have a programmable current sink. Writing a '1' to a DAC I/O pin disables the output current sink (Isink DAC) and drives

the I/O pin HIGH through an integrated 14-k Ω resistor. When a '0' is written to a DAC I/O pin, the Isink DAC is enabled and the pull-up resistor is disabled. This causes the I_{sink} DAC to sink current to drive the output LOW. Figure 4 shows a block diagram of the DAC port pin.

Figure 4. Block Diagram of a DAC Pin

The amount of sink current for the DAC I/O pin is programmable over 16 values based on the contents of the DAC Isink Register for that output pin. DAC[1:0] are high-current outputs that are programmable from 3.2 mA to 16 mA (typical). DAC[7:2] are low-current outputs, programmable from 0.2 mA to 1.0 mA (typical).

When the suspend bit in Processor Status and Control Register (see Table 27 on page 25) is set, the Isink DAC block of the DAC

circuitry is disabled. Special care should be taken when the CY7C64x13C device is placed in the suspend mode. The DAC Port Data Register (see Table 14) should normally be loaded with all '1's (0xFF) before setting the suspend bit. If any of the DAC bits are set to '0' when the device is suspended, that DAC input will float. The floating pin could result in excessive current consumption by the device, unless an external load places the pin in a deterministic state.

Table 14. DAC Port Data

DAC Port Data

Bit #	7	6	5	4	3	2	1	0
Bit Name	DAC[7]	Reserved	Reserved	Reserved	Reserved	DAC[2]	DAC[1]	DAC[0]
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bit [1..0]: High Current Output 3.2 mA to 16 mA typical

1= I/O pin is an output pulled HGH through the 14-kΩ resistor. 0 = I/O pin is an input with an internal 14-kΩ pull-up resistor

Bit [3..2]: Low Current Output 0.2 mA to 1 mA typical

1= I/O pin is an output pulled HGH through the 14-kΩ resistor.

0 = I/O pin is an input with an internal 14-k Ω pull-up resistor

DAC Isink Registers

Each DAC I/O pin has an associated DAC Isink register to program the output sink current when the output is driven LOW. The first Isink register (0x38) controls the current for DAC[0], the second (0x39) for DAC[1], and so on until the Isink register at 0x3F controls the current to DAC[7].

Table 15. DAC Sink Register

DAC Sink

Register								
Bit #	7	6	5	4	3	2	1	0
Bit Name	Reserved	Reserved	Reserved	Reserved	lsink[3]	lsink[2]	lsink[1]	lsink[0]
Read/Write					W	W	W	W
Reset	-	-	-	-	0	0	0	0

ADDRESS 0x30

ADDRESS 0x38 -0x3F

Bit [4..0]: Isink [x] (x= 0..4)

Writing all '0's to the Isink register causes 1/5 of the max current to flow through the DAC I/O pin. Writing all '1's to the Isink register provides the maximum current flow through the pin. The other 14 states of the DAC sink current are evenly spaced between these two values.

Bit [7..5]: Reserved

Table 16. DAC Port Interrupt Enable

DAC Port Interrupt

Bit #	7	6	5	4	3	2	1	0
Bit Name	Enable Bit 7	Reserved	Reserved	Reserved	Reserved	Enable Bit 2	Enable Bit 1	Enable Bit 0
Read/Write	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

Bit [7..0]: Enable bit x (x= 0..2, 7)

1= Enables interrupts from the corresponding bit position;

0= Disables interrupts from the corresponding bit position

As an additional benefit, the interrupt polarity for each DAC pin is programmable with the DAC Port Interrupt Polarity register. Writing a '0' to a bit selects negative polarity (falling edge) that

Table 17. DAC Port Interrupt Polarity

DAC Port Interrupt Polarity

Bit #	7	6	5	4	3	2	1	0
Bit Name	Enable Bit 7	Reserved	Reserved	Reserved	Reserved	Enable Bit 2	Enable Bit 1	Enable Bit 0
Read/Write	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

Bit [7..0]: Enable bit x (x= 0..2, 7)

1= Selects positive polarity (rising edge) that causes an interrupt (if enabled);

0= Selects negative polarity (falling edge) that causes an interrupt (if enabled)

12-Bit Free-Running Timer

The 12-bit timer provides two interrupts (128-µs and 1.024-ms) and allows the firmware to directly time events that are up to 4 ms

Table 18. Timer LSB Register

Timer LSB								ADDRESS 0x24
Bit #	7	6	5	4	3	2	1	0
Bit Name	Timer Bit 7	Timer Bit 6	Timer Bit 5	Timer Bit 4	Timer Bit 3	Timer Bit 2	Timer Bit 1	Timer Bit 0
Read/Write	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

DAC Port Interrupts

cleared during a reset.

A DAC port interrupt can be enabled/disabled for each pin individually. The DAC Port Interrupt Enable register provides this feature with an interrupt enable bit for each DAC I/O pin.All of the DAC Port Interrupt Enable register bits are cleared to '0' during a reset. All DAC pins share a common interrupt, as explained in DAC Interrupt on page 29.

causes an interrupt (if enabled) if a falling edge transition occurs on the corresponding input pin. Writing a '1' to a bit in this register

selects positive polarity (rising edge) that causes an interrupt (if

enabled) if a rising edge transition occurs on the corresponding input pin. All of the DAC Port Interrupt Polarity register bits are

ADDRESS 0x31

ADDRESS 0x32

in duration. The lower 8 bits of the timer can be read directly by the firmware. Reading the lower 8 bits latches the upper 4 bits into a temporary register. When the firmware reads the upper 4 bits of the timer, it is accessing the count stored in the temporary register. The effect of this logic is to ensure a stable 12-bit timer value can be read, even when the two reads are separated in time.

Bit [7:0]: Timer lower 8 bits

Table 19. Timer MSB Register

Timer MSB								ADDRESS 0x25
Bit #	7	6	5	4	3	2	1	0
Bit Name	Reserved	Reserved	Reserved	Reserved	Timer Bit 11	Timer Bit 10	Timer Bit 9	Timer Bit 8
Read/Write	-	-	-	-	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bit [3:0]: Timer higher nibble

Bit [7:4]: Reserved

I²C and HAPI Configuration Register

Internal hardware supports communication with external devices through two interfaces: a two-wire I²C-compatible interface, and

Table 20. HAPI/I²C Configuration Register

I²C Configuration

Bit #	7	6	5	4	3	2	1	0
Bit Name	I ² C Position	Reserved	LEMPTY Polarity	DRDY Polarity	Latch Empty	Data Ready	HAPI Port Width Bit 1	HAPI Port Width Bit 0
Read/Write	R/W	-	R/W	R/W	R	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Note: I^2C -compatible function must be separately enabled as described in I2C-compatible Controller on page 22.

Bits [7,1:0] of the HAPI/I²C Configuration Register control the pin out configuration of the HAPI and I²C-compatible interfaces. Bits [5:2] are used in HAPI mode only, and are described in Hardware Assisted Parallel Interface (HAPI) on page 24.

Table 21 on page 22 shows the HAPI port configurations, and Table 22 on page 22 shows I²C pin location configuration options. These I²C-compatible options exist due to pin limitations in certain packages, and to allow simultaneous HAPI and I²C-compatible operation.

HAPI operation is enabled whenever either HAPI Port Width Bit (Bit 1 or 0) is non-zero. This affects GPIO operation as described in Hardware Assisted Parallel Interface (HAPI) on page 24. I²C-compatible blocks must be separately enabled as described in I2C-compatible Controller on page 22.

a HAPI for 1, 2, or 3 byte transfers. The I²C-compatible interface and HAPI functions, discussed in detail in I2C-compatible Controller on page 22 and Hardware Assisted Parallel Interface (HAPI) on page 24, share a common configuration register (see Table 21). All bits of this register are cleared on reset.

ADDRESS 0x09

Table 21. HAPI Port Configuration

Port Width (Bits[1:0])	HAPI Port Width
11	24 Bits: P3[7:0], P1[7:0], P0[7:0]
10	16 Bits: P1[7:0], P0[7:0]
01	8 Bits: P0[7:0]
00	No HAPI Interface

Table 22. I²C Port Configuration

I ² C Position (Bit[7])	Port Width (Bit[1])	I ² C Position
X	1	I ² C on P2[1:0], 0:SCL, 1:SDA
0	0	I ² C on P1[1:0], 0:SCL, 1:SDA
1	0	I ² C on P2[1:0], 0:SCL, 1:SDA

I²C-compatible Controller

The I²C-compatible block provides a versatile two-wire communication with external devices, supporting master, slave, and multi-master modes of operation. The I²C-compatible block functions by handling the low-level signaling in hardware, and issuing interrupts as needed to allow firmware to take appropriate action during transactions. While waiting for firmware response, the hardware keeps the I²C-compatible bus idle if necessarv.

The I²C-compatible block generates an interrupt to the microcontroller at the end of each received or transmitted byte, when a stop bit is detected by the slave when in receive mode, or when arbitration is lost. Details of the interrupt responses are given in I²C Interrupt on page 30.

The I^2 C-compatible interface consists of two registers, an I^2 C Data Register (Table 23) and an I²C Status and Control Register (Table 24). The Data Register is implemented as separate read and write registers. Generally, the I²C Status and Control Register should only be monitored after the I²C interrupt, as all bits are valid at that time. Polling this register at other times could read misleading bit status if a transaction is underway.

The I²C SCL clock is connected to bit 0 of GPIO port 1 or GPIO port 2, and the I²C SDA data is connected to bit 1 of GPIO port 1 or GPIO port 2. Refer to I²C and HAPI Configuration Register on page 21 for the bit definitions and functionality of the HAPI/I²C Configuration Register, which is used to set the locations of the configurable I²C-compatible pins. Once the I²C-compatible functionality is enabled by setting bit 0 of the I²C Status & Control Register, the two LSB bits ([1:0]) of the corresponding GPIO port are placed in Open Drain mode, regardless of the settings of the GPIO Configuration Register The electrical characteristics of the I²C-compatible interface is the same as that of GPIO ports 1 and 2. Note that the I_{OL} (max) is 2 mA @ V_{OL} = 2.0 V for ports 1 and 2. All control of the I²C clock and data lines is performed by the

I²C-compatible block.

Table 23. I²C Data Register

C Data								ADDRESS 0x29
Bit #	7	6	5	4	3	2	1	0
Bit Name	I ² C Data 7	l ² C Data 6	I ² C Data 5	l ² C Data 4	I ² C Data 3	I ² C Data 2	I ² C Data 1	I ² C Data 0
Read/Write	R/W							
Reset	Х	Х	Х	Х	Х	Х	Х	х

Bits [7..0] : I²C Data

Contains the 8 bit data on the I²C Bus

Table 24. I²C Status and Control Register

I²C Status and Control

Bit #	7	6	5	4	3	2	1	0
Bit Name	MSTR Mode	Continue/Busy	Xmit Mode	ACK	Addr	ARB Lost/Restart	Received Stop	I ² C Enable
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

The I²C Status and Control register bits are defined in Table 26 on page 24, with a more detailed description following.

Table 25. I²C Status and Control Register Bit Definitions

Bit	Name	Description
0	I ² C Enable	When set to '1', the I^2C -compatible function is enabled. When cleared, I^2C GPIO pins operate normally.
1	Received Stop	Reads 1 only in slave receive mode, when I^2C Stop bit detected (unless firmware did not ACK the last transaction).
2	ARB Lost/Restart	Reads 1 to indicate master has lost arbitration. Reads 0 otherwise. Write to 1 in master mode to perform a restart sequence (also set Continue bit).
3	Addr	Reads 1 during first byte after start/restart in slave mode, or if master loses arbitration. Reads 0 otherwise. This bit should always be written as 0.
4	ACK	In receive mode, write 1 to generate ACK, 0 for no ACK. In transmit mode, reads 1 if ACK was received, 0 if no ACK received.
5	Xmit Mode	Write to 1 for transmit mode, 0 for receive mode.
6	Continue/Busy	Write 1 to indicate ready for next transaction. Reads 1 when I ² C-compatible block is busy with a transaction, 0 when transaction is complete.
7	MSTR Mode	Write to 1 for master mode, 0 for slave mode. This bit is cleared if master loses arbitration. Clearing from 1 to 0 generates Stop bit.

Bit 7 : MSTR Mode

Setting this bit to 1 causes the I^2C -compatible block to initiate a master mode transaction by sending a start bit and transmitting the first data byte from the data register (this typically holds the target address and R/W bit). Subsequent bytes are initiated by setting the Continue bit, as described below.

Clearing this bit (set to 0) causes the GPIO pins to operate normally

In master mode, the l^2 C-compatible block generates the clock (SCK), and drives the data line as required depending on transmit or receive state. The l^2 C-compatible block performs any required arbitration and clock synchronization. IN the event of a loss of arbitration, this MSTR bit is cleared, the ARB Lost bit is set, and an interrupt is generated by the microcontroller. If the chip is the target of an external master that wins arbitration, then the interrupt is held off until the transaction from the external master is completed.

When MSTR Mode is cleared from 1 to 0 by a firmware write, an I^2C Stop bit is generated.

Bit 6 : Continue / Busy

This bit is written by the firmware to indicate that the firmware is ready for the next byte transaction to begin. In other words, the bit has responded to an interrupt request and has completed the required update or read of the data register. During a read this bit indicates if the hardware is busy and is locking out additional writes to the I^2C Status and Control register. This locking allows the hardware to complete certain operations that may require an extended period of time. Following an I^2C interrupt, the I^2C -compatible block does not return to the Busy state until firmware sets the Continue bit. This allows the firmware to make one control register write without the need to check the Busy bit.

Bit 5 : Xmit Mode

This bit is set by firmware to enter transmit mode and perform a data transmit in master or slave mode. Clearing this bit sets the part in receive mode. Firmware generally determines the value of this bit from the R/W bit associated with the I^2C address packet. The Xmit Mode bit state is ignored when initially writing the MSTR Mode or the Restart bits, as these cases always cause transmit mode for the first byte.

Bit 4 : ACK

This bit is set or cleared by firmware during receive operation to indicate if the hardware should generate an ACK signal on the I^2 C-compatible bus. Writing a 1 to this bit generates an ACK (SDA LOW) on the I^2 C-compatible bus at the ACK bit time. During transmits (Xmit Mode = 1), this bit should be cleared.

Bit 3 : Addr

This bit is set by the I^2C -compatible block during the first byte of a slave receive transaction, after an I^2C start or restart. The Addr bit is cleared when the firmware sets the Continue bit. This bit allows the firmware to recognize when the master has lost arbitration, and in slave mode it allows the firmware to recognize that a start or restart has occurred.

Bit 2 : ARB Lost/Restart

This bit is valid as a status bit (ARB Lost) after master mode transactions. In master mode, set this bit (along with the Continue and MSTR Mode bits) to perform an I^2C restart sequence. The I^2C target address for the restart must be written to the data register before setting the Continue bit. To prevent false ARB Lost signals, the Restart bit is cleared by hardware during the restart sequence.

Bit 1 : Receive Stop

This bit is set when the slave is in receive mode and detects a stop bit on the bus. The Receive Stop bit is not set if the firmware terminates the I^2C transaction by not acknowledging the previous byte transmitted on the I^2C -compatible bus, e.g. in receive mode if firmware sets the Continue bit and clears the ACK bit.

Bit 0 : I²C Enable

Set this bit to override GPIO definition with I^2C -compatible function on the two I^2C -compatible pins. When this bit is cleared, these pins are free to function as GPIOs. In I^2C -compatible mode, the two pins operate in open drain mode, independent of the GPIO configuration setting.

Hardware Assisted Parallel Interface (HAPI)

The CY7C64x13C processor provides a hardware assisted parallel interface for bus widths of 8, 16, or 24 bits, to accommodate data transfer with an external microcontroller or similar device. Control bits for selecting the byte width are in the HAPI/ 2 C Configuration Register (Table 20 on page 21), bits 1 and 0.

Signals are provided on Port 2 to control the HAPI interface. Table 26 describes these signals and the HAPI control bits in the HAPI/I²C Configuration Register. Enabling HAPI causes the GPIO setting in the GPIO Configuration Register (0x08) to be overridden. The Port 2 output pins are in CMOS output mode and Port 2 input pins are in input mode (open drain mode with Q3 OFF in Figure 3 on page 15).

Pin	Name	Direction	Description (Port 2 Pin)
P2[2]	LatEmptyPin	Out	Ready for more input data from external interface.
P2[3]	DReadyPin	Out	Output data ready for external interface.
P2[4]	STB	In	Strobe signal for latching incoming data.
P2[5]	OE	In	Output Enable, causes chip to output data.
P2[6]	CS	In	Chip Select (Gates STB and OE).
Bit	Name	R/W	Description (HAPI/I ² C Configuration Register)
2	Data Ready	R	Asserted after firmware writes data to Port 0, until OE driven LOW.
3	Latch Empty	R	Asserted after firmware reads data from Port 0, until STB driven LOW.
4	DRDY Polarity	R/W	Determines polarity of Data Ready bit and DReadyPin: If 0, Data Ready is active LOW, DReadyPin is active HIGH. If 1, Data Ready is active HIGH, DReadyPin is active LOW.
5	LEMPTY Polarity	R/W	Determines polarity of Latch Empty bit and LatEmptyPin: If 0, Latch Empty is active LOW, LatEmptyPin is active HIGH. If 1, Latch Empty is active HIGH, LatEmptyPin is active LOW.

Table 26. Port 2 Pin and HAPI Configuration Bit Definitions

HAPI Read by External Device from CY7C64x13C:

In this case (see Figure 12), firmware writes data to the GPIO ports. If 16-bit or 24-bit transfers are being made, Port 0 should be written last, since writes to Port 0 asserts the Data Ready bit and the DReady Pin to signal the external device that data is available.

The external device then drives the \overline{OE} and \overline{CS} pins active (LOW), which causes the HAPI data to be output on the port pins. When \overline{OE} is returned HIGH (inactive), the HAPI/GPIO interrupt is generated. At that point, firmware can reload the HAPI latches for the next output, again writing Port 0 last.

The Data Ready bit reads the opposite state from the external DReadyPin on pin P2[3]. If the DRDY Polarity bit is 0, DReadyPin is active HIGH, and the Data Ready bit is active LOW.

HAPI Write by External Device to CY7C64x13C:

In this case (see Figure 13 on page 48), the external device drives the STB and CS pins active (LOW) when it drives new data onto the port pins. When this happens, the internal latches become full, which causes the Latch Empty bit to be deasserted. When STB is returned HIGH (inactive), the HAPI/GPIO interrupt is generated. Firmware then reads the parallel ports to empty the HAPI latches. If 16-bit or 24-bit transfers are being made, Port 0 should be read last because reads from Port 0 assert the Latch Empty bit and the LatEmptyPin to signal the external device for more data.

The Latch Empty bit reads the opposite state from the external LatEmptyPin on pin P2[2]. If the LEMPTY Polarity bit is 0, LatEmptyPin is active HIGH, and the Latch Empty bit is active LOW.

Processor Status and Control Register

Table 27. Processor Status and Control Register

Processor
110003301
Status and
0
Control

ADDRESS 0xFF

Bit #	7	6	5	4	3	2	1	0
Bit Name	IRQ Pending	Watchdog Reset	USB Bus Reset Interrupt	Power-On Reset	Suspend	Interrupt Enable Sense	Reserved	Run
Read/Write	R	R/W	R/W	R/W	R/W	R	R/W	R/W
Reset	0	0	0	1	0	0	0	1

Bit 0: Run

This bit is manipulated by the HALT instruction. When Halt is executed, all the bits of the Processor Status and Control Register are cleared to 0. Since the run bit is cleared, the processor stops at the end of the current instruction. The processor remains halted until an appropriate reset occurs (power-on or Watchdog). This bit should normally be written as a '1.'

Bit 1: Reserved

Bit 1 is reserved and must be written as a zero.

Bit 2: Interrupt Enable Sense

This bit indicates whether interrupts are enabled or disabled. Firmware has no direct control over this bit as writing a zero or one to this bit position has no effect on interrupts. A '0' indicates that interrupts are masked off and a '1' indicates that the interrupts are enabled. This bit is further gated with the bit settings of the Global Interrupt Enable Register (Table 28 on page 26) and USB End Point Interrupt Enable Register (Table 29 on page 27). Instructions DI, EI, and RETI manipulate the state of this bit.

Bit 3: Suspend

Writing a '1' to the Suspend bit halts the processor and cause the microcontroller to enter the suspend mode that significantly reduces power consumption. A pending, enabled interrupt or USB bus activity causes the device to come out of suspend. After coming out of suspend, the device resumes firmware execution at the instruction following the IOWR which put the part into suspend. An IOWR attempting to put the part into suspend is ignored if USB bus activity is present. See Suspend Mode on page 14 for more details on suspend mode operation.

Bit 4: Power-On Reset

The Power-On Reset is set to '1' during a power-on reset. The firmware can check bits 4 and 6 in the reset handler to determine whether a reset was caused by a power-on condition or a Watchdog timeout. A POR event may be followed by a Watchdog reset before firmware begins executing, as explained below.

Bit 5: USB Bus Reset Interrupt

The USB Bus Reset Interrupt bit is set when the USB Bus Reset is detected on receiving a USB Bus Reset signal on the upstream port. The USB Bus Reset signal is a single-ended zero (SE0) that lasts from 12 to 16 μ s. An SE0 is defined as the condition in which both the D+ line and the D– line are LOW at the same time.

Bit 6: Watchdog Reset

The Watchdog Reset is set during a reset initiated by the Watchdog Timer. This indicates the Watchdog Timer went for more than t_{WATCH} (8 ms minimum) between Watchdog clears. This can occur with a POR event, as noted below.

Bit 7: IRQ Pending

The IRQ pending, when set, indicates that one or more of the interrupts has been recognized as active. An interrupt remains pending until its interrupt enable bit is set (Table 28 on page 26, Table 29 on page 27) and interrupts are globally enabled. At that point, the internal interrupt handling sequence clears this bit until another interrupt is detected as pending.

During power-up, the Processor Status and Control Register is set to 00010001, which indicates a POR (bit 4 set) has occurred and no interrupts are pending (bit 7 clear). During the 96 ms suspend at start-up (explained in Power-On Reset (POR) on page 14), a Watchdog Reset also occurs unless this suspend is aborted by an upstream SE0 before 8 ms. If a WDR occurs during the power-up suspend interval, firmware reads 01010001 from the Status and Control Register after power-up. Normally, the POR bit should be cleared so a subsequent WDR can be clearly identified. If an upstream bus reset is received before firmware examines this register, the Bus Reset bit may also be set.

During a Watchdog Reset, the Processor Status and Control Register(Table 27 on page 25) is set to 01XX0001b, which indicates a Watchdog Reset (bit 6 set) has occurred and no interrupts are pending (bit 7 clear). The Watchdog Reset does not effect the state of the POR and the Bus Reset Interrupt bits.