# mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



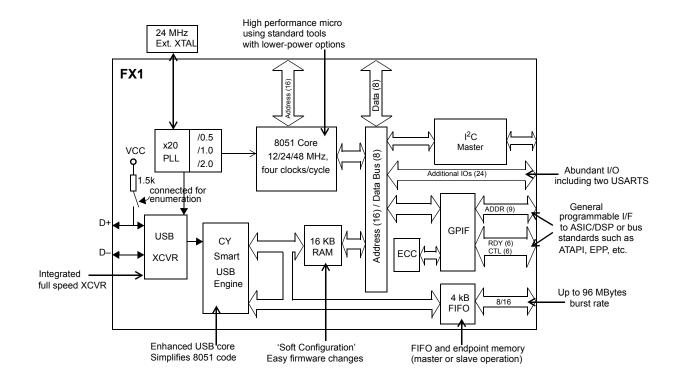


## CY7C64713

## EZ-USB FX1<sup>™</sup> USB Microcontroller Full Speed USB Peripheral Controller

## Features

- Single Chip Integrated USB Transceiver, SIE, and Enhanced 8051 Microprocessor
- Fit, Form, and Function Upgradable to the FX2LP (CY7C68013A)


Pin compatible

- □ Object code compatible
- Functionally compatible (FX1 functionality is a Subset of the FX2LP)
- Draws No More than 65 mA in Any Mode, Making the FX1 Suitable for Bus Powered Applications
- Software: 8051 Runs from Internal RAM, which is:
  - Downloaded using USB
  - Loaded from EEPROM
  - External memory device (128 pin configuration only)
- 16 KBytes of On-Chip Code/Data RAM
- Four Programmable BULK/INTERRUPT/ISOCHRONOUS Endpoints
  - D Buffering options: double, triple, and quad
- Additional Programmable (BULK/INTERRUPT) 64-byte Endpoint
- 8- or 16-bit External Data Interface
- Smart Media Standard ECC Generation
- GPIF
  - Allows direct connection to most parallel interfaces; 8- and 16-bit
  - Programmable waveform descriptors and configuration registers to define waveforms
  - Supports multiple Ready (RDY) inputs and Control (CTL) outputs

- Integrated, Industry Standard 8051 with Enhanced Features:
  - Up to 48 MHz clock rate
  - Four clocks for each instruction cycle
  - Two USARTS
  - Three counters or timers
  - Expanded interrupt system
  - Two data pointers
- 3.3V Operation with 5V Tolerant Inputs
- Smart SIE
- Vectored USB Interrupts
- Separate Data Buffers for the Setup and DATA Portions of a CONTROL Transfer
- Integrated I<sup>2</sup>C Controller, Running at 100 or 400 KHz
- 48 MHz, 24 MHz, or 12 MHz 8051 Operation
- Four Integrated FIFOs
  - Brings glue and FIFOs inside for lower system cost
  - Automatic conversion to and from 16-bit buses
  - Master or slave operation
  - FIFOs can use externally supplied clock or asynchronous strobes
  - Easy interface to ASIC and DSP ICs
- Vectored for FIFO and GPIF Interrupts
- Up to 40 General Purpose IOs (GPIO)
- Four Package Options:
  - □ 128 pin TQFP
  - □ 100 pin TQFP
  - □ 56 pin SSOP
  - 56 pin QFN Pb-free



## Logic Block Diagram





## **Functional Description**

EZ-USB FX1<sup>™</sup> (CY7C64713) is a full speed, highly integrated, USB microcontroller. By integrating the USB transceiver, Serial Interface Engine (SIE), enhanced 8051 microcontroller, and a programmable peripheral interface in a single chip, Cypress has created a very cost effective solution that provides superior time-to-market advantages.

The EZ-USB FX1 is more economical, because it incorporates the USB transceiver and provides a smaller footprint solution than the USB SIE or external transceiver implementations. With EZ-USB FX1, the Cypress Smart SIE handles most of the USB protocol in hardware, freeing the embedded microcontroller for application specific functions and decreasing the development time to ensure USB compatibility.

The General Programmable Interface (GPIF) and Master/Slave Endpoint FIFO (8 or 16-bit data bus) provide an easy and glueless interface to popular interfaces such as ATA, UTOPIA, EPP, PCMCIA, and most DSP/processors.

Four Pb-free packages are defined for the family: 56 SSOP, 56 QFN, 100 TQFP, and 128 TQFP.

#### Applications

- DSL modems
- ATA interface
- Memory card readers
- Legacy conversion devices
- Home PNA
- Wireless LAN
- MP3 players
- Networking

The Reference Designs section of the cypress website provides additional tools for typical USB applications. Each reference design comes complete with firmware source and object code, schematics, and documentation. Please visit http://www.cypress.com for more information.

## **Functional Overview**

#### USB Signaling Speed

FX1 operates at one of the three rates defined in the USB Specification Revision 2.0, dated April 27, 2000:

Full speed, with a signaling bit rate of 12 Mbps.

FX1 does not support the low speed signaling mode of 1.5 Mbps or the high speed mode of 480 Mbps.

#### 8051 Microprocessor

The 8051 microprocessor embedded in the FX1 family has 256 bytes of register RAM, an expanded interrupt system, three timer/counters, and two USARTs.

#### 8051 Clock Frequency

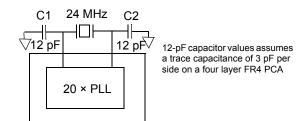
FX1 has an on-chip oscillator circuit that uses an external 24 MHz (±100 ppm) crystal with the following characteristics:

- Parallel resonant
- Fundamental mode
- 500 µW drive level
- 12 pF (5% tolerance) load capacitors.

An on-chip PLL multiplies the 24 MHz oscillator up to 480 MHz, as required by the transceiver/PHY, and the internal counters divide it down for use as the 8051 clock. The default 8051 clock frequency is 12 MHz. The clock frequency of the 8051 is dynamically changed by the 8051 through the CPUCS register.

The CLKOUT pin, which is three-stated and inverted using the internal control bits, outputs the 50% duty cycle 8051 clock at the selected 8051 clock frequency which is 48, 24, or 12 MHz.

#### USARTS


FX1 contains two standard 8051 USARTs, addressed by Special Function Register (SFR) bits. The USART interface pins are available on separate I/O pins, and are not multiplexed with port pins.

UART0 and UART1 can operate using an internal clock at 230 KBaud with no more than 1% baud rate error. 230 KBaud operation is achieved by an internally derived clock source that generates overflow pulses at the appropriate time. The internal clock adjusts for the 8051 clock rate (48, 24, 12 MHz) such that it always presents the correct frequency for 230-KBaud operation.<sup>[1]</sup>

#### Special Function Registers

Certain 8051 SFR addresses are populated to provide fast access to critical FX1 functions. These SFR additions are shown in Table 1 on page 4. Bold type indicates non-standard, enhanced 8051 registers. The two SFR rows that end with '0' and '8' contain bit addressable registers. The four I/O ports A–D use the SFR addresses used in the standard 8051 for ports 0–3, which are not implemented in the FX1. Because of the faster and more efficient SFR addressing, the FX1 I/O ports are not addressable in the external RAM space (using the MOVX instruction).

#### Figure 1. Crystal Configuration



#### Note

1. 115-KBaud operation is also possible by programming the 8051 SMOD0 or SMOD1 bits to a '1' for UART0 and UART1, respectively.

Fx B

EIP



|   | •     | 0         |              |              |        |       |     |
|---|-------|-----------|--------------|--------------|--------|-------|-----|
| X | 8x    | 9x        | Ax           | Bx           | Сх     | Dx    | Ex  |
| 0 | IOA   | IOB       | IOC          | IOD          | SCON1  | PSW   | ACC |
| 1 | SP    | EXIF      | INT2CLR      | IOE          | SBUF1  |       |     |
| 2 | DPL0  | MPAGE     | INT4CLR      | OEA          |        |       |     |
| 3 | DPH0  |           |              | OEB          |        |       |     |
| 4 | DPL1  |           |              | OEC          |        |       |     |
| 5 | DPH1  |           |              | OED          |        |       |     |
| 6 | DPS   |           |              | OEE          |        |       |     |
| 7 | PCON  |           |              |              |        |       |     |
| 8 | TCON  | SCON0     | IE           | IP           | T2CON  | EICON | EIE |
| 9 | TMOD  | SBUF0     |              |              |        |       |     |
| А | TL0   | AUTOPTRH1 | EP2468STAT   | EP01STAT     | RCAP2L |       |     |
| В | TL1   | AUTOPTRL1 | EP24FIFOFLGS | GPIFTRIG     | RCAP2H |       |     |
| С | TH0   | reserved  | EP68FIFOFLGS |              | TL2    |       |     |
| D | TH1   | AUTOPTRH2 |              | GPIFSGLDATH  | TH2    |       |     |
| E | CKCON | AUTOPTRL2 |              | GPIFSGLDATLX |        |       |     |
|   |       |           |              |              |        |       |     |

AUTOPTRSETUP

#### Table 1. Special Function Registers

#### I<sup>2</sup>C Bus

F

FX1 supports the  $I^2$ C bus as a master only at 100/400 KHz. SCL and SDA pins have open drain outputs and hysteresis inputs. These signals must be pulled up to 3.3V, even if no  $I^2$ C device is connected.

reserved

#### Buses

All packages: 8 or 16-bit 'FIFO' bidirectional data bus, multiplexed on I/O ports B and D. 128 pin package: adds 16-bit output only 8051 address bus, 8-bit bidirectional data bus.

#### **USB Boot Methods**

During the power up sequence, internal logic checks the  $I^2C$  port for the connection of an EEPROM whose first byte is either 0xC0 or 0xC2. If found, it uses the VID/PID/DID values in the EEPROM in place of the internally stored values (0xC0). Alternatively, it boot-loads the EEPROM contents into an internal RAM (0xC2). If no EEPROM is detected, FX1 enumerates using internally stored descriptors. The default ID values for FX1 are VID/PID/DID (0x04B4, 0x6473, 0xAxxx where xxx=Chip revision).<sup>[2]</sup>

#### Table 2. Default ID Values for FX1

| Default VID/PID/DID                    |        |                                                                             |  |  |  |  |  |
|----------------------------------------|--------|-----------------------------------------------------------------------------|--|--|--|--|--|
| Vendor ID 0x04B4 Cypress Semiconductor |        |                                                                             |  |  |  |  |  |
| Product ID                             | 0x6473 | EZ-USB FX1                                                                  |  |  |  |  |  |
| Device<br>release                      | 0xAnnn | Depends on chip revision (nnn = chip<br>revision where first silicon = 001) |  |  |  |  |  |

#### **ReNumeration**<sup>™</sup>

GPIFSGLDATLNOX

Because the FX1's configuration is soft, one chip can take on the identities of multiple distinct USB devices.

When first plugged into the USB, the FX1 enumerates automatically and downloads firmware and the USB descriptor tables over the USB cable. Next, the FX1 enumerates again, this time as a device defined by the downloaded information. This patented two step process, called ReNumeration, happens instantly when the device is plugged in, with no indication that the initial download step has occurred.

Two control bits in the USBCS (USB Control and Status) register control the ReNumeration process: DISCON and RENUM. To simulate a USB disconnect, the firmware sets DISCON to 1. To reconnect, the firmware clears DISCON to 0.

Before reconnecting, the firmware sets or clears the RENUM bit to indicate if the firmware or the Default USB Device handles device requests over endpoint zero:

- RENUM = 0, the Default USB Device handles device requests
- RENUM = 1, the firmware handles device requests

#### **Bus-powered Applications**

The FX1 fully supports bus powered designs by enumerating with less than 100 mA as required by the USB specification.

#### **Interrupt System**

#### INT2 Interrupt Request and Enable Registers

FX1 implements an autovector feature for INT2 and INT4. There are 27 INT2 (USB) vectors, and 14 INT4 (FIFO/GPIF) vectors. See EZ-USB Technical Reference Manual (TRM) for more details.

Note

2. The I<sup>2</sup>C bus SCL and SDA pins must be pulled up, even if an EEPROM is not connected. Otherwise this detection method does not work properly.



#### USB-Interrupt Autovectors

The main USB interrupt is shared by 27 interrupt sources. The FX1 provides a second level of interrupt vectoring, called Autovectoring, to save code and processing time that is normally required to identify the individual USB interrupt source. When a USB interrupt is asserted, the FX1 pushes the program counter on to its stack and then jumps to address 0x0043, where it expects to find a "jump" instruction to the USB Interrupt service routine.

The FX1 jump instruction is encoded as shown in Table 3.

If Autovectoring is enabled (AV2EN = 1 in the INTSETUP register), the FX1 substitutes its INT2VEC byte. Therefore, if the

high byte ("page") of a jump table address is preloaded at location 0x0044, the automatically inserted INT2VEC byte at 0x0045 directs the jump to the correct address out of the 27 addresses within the page.

#### FIFO/GPIF Interrupt (INT4)

Just as the USB Interrupt is shared among 27 individual USB-interrupt sources, the FIFO/GPIF interrupt is shared among 14 individual FIFO/GPIF sources. The FIFO/GPIF Interrupt, such as the USB Interrupt, can employ autovectoring. Table 4 on page 6 shows the priority and INT4VEC values for the 14 FIFO/GPIF interrupt sources.

#### Table 3. INT2 USB Interrupts

| USB INTERRUPT TABLE FOR INT2 |               |           |                                            |  |  |  |
|------------------------------|---------------|-----------|--------------------------------------------|--|--|--|
| Priority                     | INT2VEC Value | Source    | Notes                                      |  |  |  |
| 1                            | 00            | SUDAV     | Setup Data Available                       |  |  |  |
| 2                            | 04            | SOF       | Start of Frame                             |  |  |  |
| 3                            | 08            | SUTOK     | Setup Token Received                       |  |  |  |
| 4                            | 0C            | SUSPEND   | USB Suspend request                        |  |  |  |
| 5                            | 10            | USB RESET | Bus reset                                  |  |  |  |
| 6                            | 14            |           | Reserved                                   |  |  |  |
| 7                            | 18            | EP0ACK    | FX1 ACK'd the CONTROL Handshake            |  |  |  |
| 8                            | 1C            |           | Reserved                                   |  |  |  |
| 9                            | 20            | EP0-IN    | EP0-IN ready to be loaded with data        |  |  |  |
| 10                           | 24            | EP0-OUT   | EP0-OUT has USB data                       |  |  |  |
| 11                           | 28            | EP1-IN    | EP1-IN ready to be loaded with data        |  |  |  |
| 12                           | 2C            | EP1-OUT   | EP1-OUT has USB data                       |  |  |  |
| 13                           | 30            | EP2       | IN: buffer available. OUT: buffer has data |  |  |  |
| 14                           | 34            | EP4       | IN: buffer available. OUT: buffer has data |  |  |  |
| 15                           | 38            | EP6       | IN: buffer available. OUT: buffer has data |  |  |  |
| 16                           | 3C            | EP8       | IN: buffer available. OUT: buffer has data |  |  |  |
| 17                           | 40            | IBN       | IN-Bulk-NAK (any IN endpoint)              |  |  |  |
| 18                           | 44            |           | Reserved                                   |  |  |  |
| 19                           | 48            | EP0PING   | EP0 OUT was Pinged and it NAK'd            |  |  |  |
| 20                           | 4C            | EP1PING   | EP1 OUT was Pinged and it NAK'd            |  |  |  |
| 21                           | 50            | EP2PING   | EP2 OUT was Pinged and it NAK'd            |  |  |  |
| 22                           | 54            | EP4PING   | EP4 OUT was Pinged and it NAK'd            |  |  |  |
| 23                           | 58            | EP6PING   | EP6 OUT was Pinged and it NAK'd            |  |  |  |
| 24                           | 5C            | EP8PING   | EP8 OUT was Pinged and it NAK'd            |  |  |  |
| 25                           | 60            | ERRLIMIT  | Bus errors exceeded the programmed limit   |  |  |  |
| 26                           | 64            |           |                                            |  |  |  |
| 27                           | 68            |           | Reserved                                   |  |  |  |
| 28                           | 6C            |           | Reserved                                   |  |  |  |
| 29                           | 70            | EP2ISOERR | ISO EP2 OUT PID sequence error             |  |  |  |
| 30                           | 74            | EP4ISOERR | ISO EP4 OUT PID sequence error             |  |  |  |
| 31                           | 78            | EP6ISOERR | ISO EP6 OUT PID sequence error             |  |  |  |
| 32                           | 7C            | EP8ISOERR | ISO EP8 OUT PID sequence error             |  |  |  |



#### Table 4. Individual FIFO/GPIF Interrupt Sources

| Priority | INT4VEC Value | Source   | Notes                        |
|----------|---------------|----------|------------------------------|
| 1        | 80            | EP2PF    | Endpoint 2 Programmable Flag |
| 2        | 84            | EP4PF    | Endpoint 4 Programmable Flag |
| 3        | 88            | EP6PF    | Endpoint 6 Programmable Flag |
| 4        | 8C            | EP8PF    | Endpoint 8 Programmable Flag |
| 5        | 90            | EP2EF    | Endpoint 2 Empty Flag        |
| 6        | 94            | EP4EF    | Endpoint 4 Empty Flag        |
| 7        | 98            | EP6EF    | Endpoint 6 Empty Flag        |
| 8        | 9C            | EP8EF    | Endpoint 8 Empty Flag        |
| 9        | A0            | EP2FF    | Endpoint 2 Full Flag         |
| 10       | A4            | EP4FF    | Endpoint 4 Full Flag         |
| 11       | A8            | EP6FF    | Endpoint 6 Full Flag         |
| 12       | AC            | EP8FF    | Endpoint 8 Full Flag         |
| 13       | B0            | GPIFDONE | GPIF Operation Complete      |
| 14       | B4            | GPIFWF   | GPIF Waveform                |

If Autovectoring is enabled (AV4EN = 1 in the INTSETUP register), the FX1 substitutes its INT4VEC byte. Therefore, if the high byte ("page") of a jump-table address is preloaded at location 0x0054, the automatically inserted INT4VEC byte at 0x0055 directs the jump to the correct address out of the 14 addresses within the page. When the ISR occurs, the FX1 pushes the program counter onto its stack and then jumps to address 0x0053, where it expects to find a "jump" instruction to the ISR Interrupt service routine.

#### **Reset and Wakeup**

#### Reset Pin

The input pin, RESET#, resets the FX1 when asserted. This pin has hysteresis and is active LOW. When a crystal is used with the CY7C64713, the reset period must allow for the stabilization

of the crystal and the PLL. This reset period must be approximately 5 ms after VCC has reached 3.0 Volts. If the crystal input pin is driven by a clock signal the internal PLL stabilizes in 200  $\mu$ s after VCC has reached 3.0V<sup>[3]</sup>. Figure 2 shows a power on reset condition and a reset applied during operation. A power on reset is defined as the time a reset is asserted when power is being applied to the circuit. A powered reset is defined to be when the FX1 has been previously powered on and operating and the RESET# pin is asserted.

Cypress provides an application note which describes and recommends power on reset implementation and is found on the Cypress web site. While the application note discusses the FX2, the information provided applies also to the FX1. For more information on reset implementation for the FX2 family of products visit http://www.cypress.com.

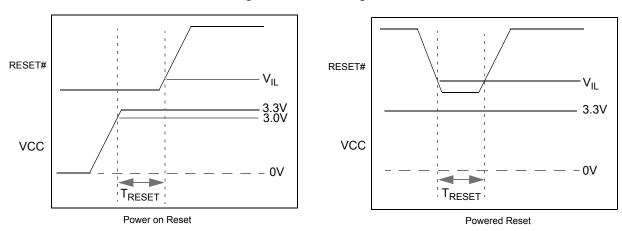



Figure 2. Reset Timing Plots

#### Note

<sup>3.</sup> If the external clock is powered at the same time as the CY7C64713 and has a stabilization wait period. It must be added to the 200 µs.



#### Table 5. Reset Timing Values

| Condition                             | T <sub>RESET</sub>                 |
|---------------------------------------|------------------------------------|
| Power On Reset with crystal           | 5 ms                               |
| Power On Reset with external<br>clock | 200 $\mu$ s + Clock stability time |
| Powered Reset                         | 200 μs                             |

#### Wakeup Pins

The 8051 puts itself and the rest of the chip into a power down mode by setting PCON.0 = 1. This stops the oscillator and PLL. When WAKEUP is asserted by external logic, the oscillator restarts, after the PLL stabilizes, and then the 8051 receives a wakeup interrupt. This applies irrespective of whether the FX1 is connected to the USB or not.

The FX1 exits the power down (USB suspend) state using one of the following methods:

- USB bus activity (if D+/D- lines are left floating, noise on these lines may indicate activity to the FX1 and initiate a wakeup).
- External logic asserts the WAKEUP pin.
- External logic asserts the PA3/WU2 pin.

The second wakeup pin, WU2, can also be configured as a general purpose I/O pin. This allows a simple external R-C network to be used as a periodic wakeup source. Note that WAKEUP is by default active LOW.

#### Program/Data RAM

#### Size

The FX1 has 16 KBytes of internal program/data RAM, where PSEN#/RD# signals are internally ORed to allow the 8051 to access it as both program and data memory. No USB control registers appear in this space.

Two memory maps are shown in the following diagrams:

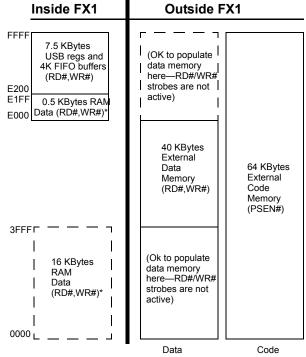
- Figure 3 Internal Code Memory, EA = 0
- Figure 4 External Code Memory, EA = 1.

#### Internal Code Memory, EA = 0

This mode implements the internal 16 KByte block of RAM (starting at 0) as combined code and data memory. When the external RAM or ROM is added, the external read and write strobes are suppressed for memory spaces that exist inside the chip. This allows the user to connect a 64 KByte memory without requiring the address decodes to keep clear of internal memory spaces.

Only the **internal** 16 KBytes and **scratch pad** 0.5 KBytes RAM spaces have the following access:

- USB download
- USB upload


Setup data pointer

I<sup>2</sup>C interface boot load Figure 3. Internal Code Memory, EA = 0. Inside FX1 Outside FX1 FFFF 7.5 KBytes USB regs and 4K FIFO buffers (OK to populate data memory here—RD#/WR# (RD#,WR#) strobes are not E200 active) 0.5 KBytes RAM Data (RD#,WR#) F000 48 KBytes External 40 KBytes Code External Memory Data (PSEN#) Memory (RD#,ŴR#) 3FFF (Ok to populate (OK to populate data memory program 16 KBytes RAM memory herehere-RD#/WR# Code and Data PSEN# strobe strobes are not (PSEN#,RD#,WR# active) is not active) 0000 L Data Code \*SUDPTR, USB upload/download, I<sup>2</sup>C interface boot access



#### External Code Memory, EA = 1

The bottom 16 KBytes of program memory is external, and therefore the bottom 16 KBytes of internal RAM is accessible only as data memory.



#### Figure 4. External Code Memory, EA = 1

\*SUDPTR, USB upload/download, I<sup>2</sup>C interface boot access

| FFFF |                            |
|------|----------------------------|
|      | 4 KBytes EP2-EP8           |
|      | buffers                    |
|      | Sanoro                     |
|      | (8 x 512)                  |
|      | Not all Space is available |
|      | for all transfer types     |
| F000 |                            |
| EFFF |                            |
|      |                            |
|      | 2 KBytes RESERVED          |
| E800 |                            |
| E7FF | 64 Bytes EP1IN             |
| E7C0 | 04 Bytes EF TIN            |
| E7BF | 64 Putes ERIQUE            |
| E780 | 64 Bytes EP1OUT            |
| E77F | 64 Putes EPO INVOLIT       |
| E740 | 64 Bytes EP0 IN/OUT        |
| E73F | 64 Bytes RESERVED          |
| E700 | 04 Bytes RECERVED          |
| E6FF | 8051 Addressable Registers |
|      | (512)                      |
| E500 | (312)                      |
| E4FF | 5                          |
| E480 | Reserved (128)             |
| E47F |                            |
| E400 | 128 bytes GPIF Waveforms   |
| E3FF | 5                          |
| E200 | Reserved (512)             |
| E1FF |                            |
| EIFF |                            |
|      | 512 bytes                  |
|      | 8051 xdata RAM             |
| E000 |                            |

#### Figure 5. Register Addresses



#### **Endpoint RAM**

Size

- **\blacksquare** 3 × 64 bytes (Endpoints 0 and 1)
- 8 × 512 bytes (Endpoints 2, 4, 6, 8)

#### Organization

- EP0—Bidirectional endpoint zero, 64 byte buffer
- EP1IN, EP1OUT—64 byte buffers, bulk or interrupt
- EP2, 4, 6, 8—Eight 512-byte buffers, bulk, interrupt, or isochronous, of which only the transfer size is available. EP4 and EP8 are double buffered, while EP2 and 6 are either double, triple, or quad buffered. Regardless of the physical size of the buffer, each endpoint buffer accommodates only one full speed packet. For bulk endpoints, the maximum number of bytes it can accommodate is 64, even though the physical buffer size is 512 or 1024. For an ISOCHRONOUS endpoint the maximum number of bytes it can accommodate is 1023. For endpoint configuration options, see Figure 6.

#### Setup Data Buffer

A separate 8-byte buffer at 0xE6B8-0xE6BF holds the Setup data from a CONTROL transfer.

#### Default Alternate Settings

In the following table, '0' means "not implemented", and '2×' means "double buffered".

| Table 6. | D | etau | it Alternate | Set | tings |  |
|----------|---|------|--------------|-----|-------|--|
|          |   |      |              |     |       |  |

......

| Alternate<br>Setting | 0  | 1                | 2                | 3                |
|----------------------|----|------------------|------------------|------------------|
| ep0                  | 64 | 64               | 64               | 64               |
| ep1out               | 0  | 64 bulk          | 64 int           | 64 int           |
| ep1in                | 0  | 64 bulk          | 64 int           | 64 int           |
| ep2                  | 0  | 64 bulk out (2×) | 64 int out (2×)  | 64 iso out (2×)  |
| ep4                  | 0  | 64 bulk out (2×) | 64 bulk out (2×) | 64 bulk out (2×) |
| ep6                  | 0  | 64 bulk in (2×)  | 64 int in (2×)   | 64 iso in (2×)   |
| ep8                  | 0  | 64 bulk in (2×)  | 64 bulk in (2×)  | 64 bulk in (2×)  |

#### **External FIFO Interface**

#### Architecture

The FX1 slave FIFO architecture has eight 512-byte blocks in the endpoint RAM that directly serve as FIFO memories, and are controlled by FIFO control signals (such as IFCLK, SLCS#, SLRD, SLWR, SLOE, PKTEND, and flags). The usable size of these buffers depend on the USB transfer mode as described in the section Organization on page 9.

In operation, some of the eight RAM blocks fill or empty from the SIE, while the others are connected to the I/O transfer logic. The transfer logic takes two forms: the GPIF for internally generated control signals or the slave FIFO interface for externally controlled transfers.

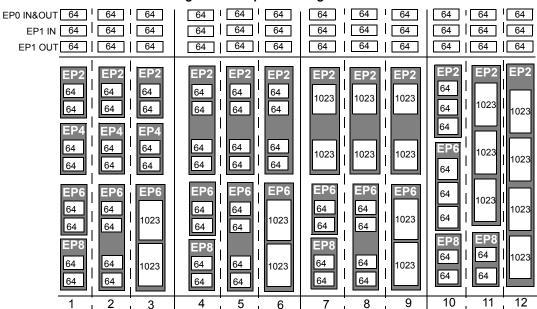



Figure 6. Endpoint Configuration



#### Master/Slave Control Signals

The FX1 endpoint FIFOS are implemented as eight physically distinct 256x16 RAM blocks. The 8051/SIE can switch any of the RAM blocks between two domains: the USB (SIE) domain and the 8051-I/O Unit domain. This switching is done instantaneously, giving essentially zero transfer time between "USB FIFOS" and "Slave FIFOS." While they are physically the same memory, no bytes are actually transferred between buffers.

At any time, some RAM blocks fill or empty with USB data under SIE control, while other RAM blocks are available to the 8051 and the I/O control unit. The RAM blocks operate as a single-port in the USB domain, and dual port in the 8051-I/O domain. The blocks are configured as single, double, triple, or quad buffered.

The I/O control unit implements either an internal master (M for master) or external master (S for Slave) interface.

In Master (M) mode, the GPIF internally controls FIFOADR[1..0] to select a FIFO. The RDY pins (two in the 56 pin package, six in the 100 pin and 128 pin packages) are used as flag inputs from an external FIFO or other logic if desired. The GPIF is run from either an internally derived clock or an externally supplied clock (IFCLK), at a rate that transfers data up to 96 Megabytes/s (48 MHz IFCLK with 16-bit interface).

In Slave (S) mode, the FX1 accepts either an internally derived clock or an externally supplied clock (IFCLK with a maximum frequency of 48 MHz) and SLCS#, SLRD, SLWR, SLOE, PKTEND signals from external logic. When using an external IFCLK, the external clock must be present before switching to the external clock with the IFCLKSRC bit. Each endpoint can individually be selected for byte or word operation by an internal configuration bit, and a Slave FIFO Output Enable signal SLOE enables data of the selected width. External logic must ensure that the output enable signal is inactive when writing data to a slave FIFO. The slave interface can also operate asynchronously, where the SLRD and SLWR signals act directly as strobes, rather than a clock qualifier as in the synchronous mode. The signals SLRD, SLWR, SLOE, and PKTEND are gated by the signal SLCS#.

#### GPIF and FIFO Clock Rates

An 8051 register bit selects one of two frequencies for the internally supplied interface clock: 30 MHz and 48 MHz. Alternatively, an externally supplied clock of 5 to 48 MHz feeding the IFCLK pin is used as the interface clock. IFCLK is configured to function as an output clock when the GPIF and FIFOs are internally clocked. An output enable bit in the IFCONFIG register turns this clock output off, if desired. Another bit within the IFCONFIG register inverts the IFCLK signal whether internally or externally sourced.

#### GPIF

The GPIF is a flexible 8 or 16-bit parallel interface driven by a user programmable finite state machine. It allows the CY7C64713 to perform local bus mastering, and can implement a wide variety of protocols such as ATA interface, printer parallel port, and Utopia.

The GPIF has six programmable control outputs (CTL), nine address outputs (GPIFADRx), and six general purpose Ready inputs (RDY). The data bus width is 8 or 16 bits. Each GPIF vector defines the state of the control outputs, and determines

what state a Ready input (or multiple inputs) must be before proceeding. The GPIF vector is programmed to advance a FIFO to the next data value, advance an address, and so on. A sequence of the GPIF vectors create a single waveform that executes to perform the data move between the FX1 and the external device.

#### Six Control OUT Signals

The 100 and 128 pin packages bring out all six Control Output pins (CTL0-CTL5). The 8051 programs the GPIF unit to define the CTL waveforms. The 56 pin package brings out three of these signals: CTL0 - CTL2. CTLx waveform edges are programmed to make transitions as fast as once per clock (20.8 ns using a 48 MHz clock).

#### Six Ready IN Signals

The 100 and 128 pin packages bring out all six Ready inputs (RDY0–RDY5). The 8051 programs the GPIF unit to test the RDY pins for GPIF branching. The 56 pin package brings out two of these signals, RDY0–1.

#### Nine GPIF Address OUT Signals

Nine GPIF address lines are available in the 100 and 128 pin packages: GPIFADR[8..0]. The GPIF address lines allow indexing through up to a 512 byte block of RAM. If more address lines are needed, I/O port pins are used.

#### Long Transfer Mode

In Master mode, the 8051 appropriately sets the GPIF transaction count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or GPIFTCB0) for unattended transfers of up to  $2^{32}$  transactions. The GPIF automatically throttles data flow to prevent under or overflow until the full number of requested transactions are complete. The GPIF decrements the value in these registers to represent the current status of the transaction.

#### **ECC Generation**

The EZ-USB FX1 can calculate ECCs (Error Correcting Codes) on data that pass across its GPIF or Slave FIFO interfaces. There are two ECC configurations: Two ECCs, each calculated over 256 bytes (SmartMedia<sup>™</sup> Standard); and one ECC calculated over 512 bytes.

The ECC can correct any one-bit error or detect any two-bit error.

**Note** To use the ECC logic, the GPIF or Slave FIFO interface must be configured for byte-wide operation.

#### ECC Implementation

The two ECC configurations are selected by the ECCM bit:

#### 0.0.0.1 ECCM = 0

Two 3-byte ECCs, each calculated over a 256-byte block of data. This configuration conforms to the SmartMedia Standard.

Write any value to ECCRESET, then pass data across the GPIF or Slave FIFO interface. The ECC for the first 256 bytes of data is calculated and stored in ECC1. The ECC for the next 256 bytes is stored in ECC2. After the second ECC is calculated, the values in the ECCX registers do not change until the ECCRESET is written again, even if more data is subsequently passed across the interface.



#### 0.0.0.2 ECCM = 1

One 3-byte ECC calculated over a 512-byte block of data.

Write any value to ECCRESET, then pass data across the GPIF or Slave FIFO interface. The ECC for the first 512 bytes of data is calculated and stored in ECC1; ECC2 is not used. After the ECC is calculated, the value in ECC1 does not change until the ECCRESET is written again, even if more data is subsequently passed across the interface

#### **USB Uploads and Downloads**

The core has the ability to directly edit the data contents of the internal 16 KByte RAM and of the internal 512 byte scratch pad RAM via a vendor specific command. This capability is normally used when 'soft' downloading user code and is available only to and from the internal RAM, only when the 8051 is held in reset. The available RAM spaces are 16 KBytes from 0x0000–0x3FFF (code/data) and 512 bytes from 0xE000–0xE1FF (scratch pad data RAM).<sup>[4]</sup>

#### **Autopointer Access**

FX1 provides two identical autopointers. They are similar to the internal 8051 data pointers, but with an additional feature: they can optionally increment after every memory access. This capability is available to and from both internal and external RAM. The autopointers are available in external FX1 registers, under the control of a mode bit (AUTOPTRSETUP.0). Using the external FX1 autopointer access (at 0xE67B – 0xE67C) allows the autopointer to access all RAM, internal and external, to the part. Also, the autopointers can point to any FX1 register or endpoint buffer space. When autopointer access to external memory is enabled, the location 0xE67B and 0xE67C in XDATA and the code space cannot be used.

#### I<sup>2</sup>C Controller

FX1 has one  $I^2C$  port that is driven by two internal controllers: one that automatically operates at boot time to load VID/PID/DID and configuration information; and another that the 8051, once running, uses to control external  $I^2C$  devices. The  $I^2C$  port operates in master mode only.

#### I<sup>2</sup>C Port Pins

The I<sup>2</sup>C pins SCL and SDA must have external 2.2 k $\Omega$  pull up resistors even if no EEPROM is connected to the FX1. External EEPROM device address pins must be configured properly. See Table 7 for configuring the device address pins.

| Bytes | Example EEPROM        | A2  | A1  | A0  |
|-------|-----------------------|-----|-----|-----|
| 16    | 24LC00 <sup>[5]</sup> | N/A | N/A | N/A |
| 128   | 24LC01                | 0   | 0   | 0   |
| 256   | 24LC02                | 0   | 0   | 0   |
| 4K    | 24LC32                | 0   | 0   | 1   |
| 8K    | 24LC64                | 0   | 0   | 1   |
| 16K   | 24LC128               | 0   | 0   | 1   |

#### I<sup>2</sup>C Interface Boot Load Access

At power on reset the  $l^2C$  interface boot loader loads the VID/PID/DID configuration bytes and up to 16 KBytes of program/data. The available RAM spaces are 16 KBytes from 0x0000–0x3FFF and 512 bytes from 0xE000–0xE1FF. The 8051 is in reset.  $l^2C$  interface boot loads only occur after power on reset.

#### *I*<sup>2</sup>*C* Interface General Purpose Access

The 8051 can control peripherals connected to the  $I^2C$  bus using the I2CTL and I2DAT registers. FX1 provides  $I^2C$  master control only, because it is never an  $I^2C$  slave.

#### **Compatible with Previous Generation EZ-USB FX2**

The EZ-USB FX1 is fit, form, and function upgradable to the EZ-USB FX2LP. This makes for an easy transition for designers wanting to upgrade their systems from full speed to high speed designs. The pinout and package selection are identical, and all firmware developed for the FX1 function in the FX2LP with proper addition of high speed descriptors and speed switching code.

#### **Pin Assignments**

Figure 7 on page 12 identifies all signals for the three package types. The following pages illustrate the individual pin diagrams, plus a combination diagram showing which of the full set of signals are available in the 128, 100, and 56 pin packages.

The signals on the left edge of the 56 pin package in Figure 7 on page 12 are common to all versions in the FX1 family. Three modes are available in all package versions: Port, GPIF master, and Slave FIFO. These modes define the signals on the right edge of the diagram. The 8051 selects the interface mode using the IFCONFIG[1:0] register bits. Port mode is the power on default configuration.

The 100-pin package adds functionality to the 56 pin package by adding these pins:

- PORTC or alternate GPIFADR[7:0] address signals
- PORTE or alternate GPIFADR[8] address signal and seven additional 8051 signals
- Three GPIF Control signals
- Four GPIF Ready signals
- Nine 8051 signals (two USARTs, three timer inputs, INT4, and INT5#)

#### BKPT, RD#, WR#.

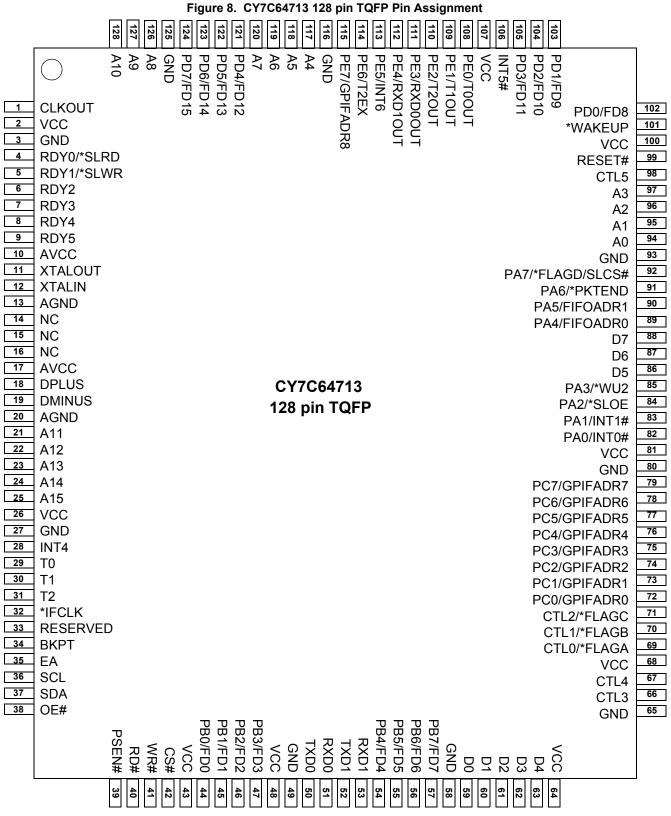
The 128 pin package adds the 8051 address and data buses plus control signals. Note that two of the required signals, RD# and WR#, are present in the 100 pin version. In the 100 pin and 128 pin versions, an 8051 control bit is set to pulse the RD# and WR# pins when the 8051 reads from and writes to the PORTC.

#### Notes

4. After the data is downloaded from the host, a 'loader' executes from the internal RAM to transfer downloaded data to the external memory.

5. This EEPROM has no address pins.

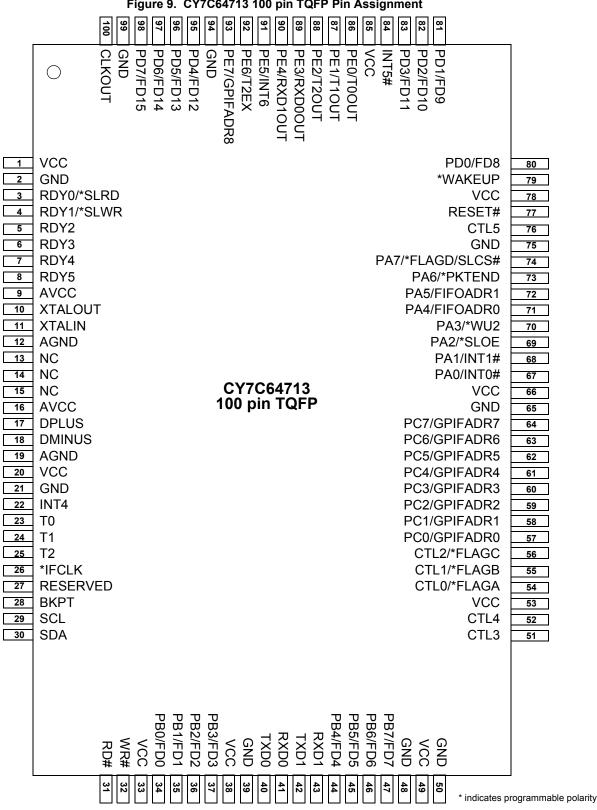



## CY7C64713

#### Figure 7. Signals **GPIF Master** Port Slave FIFO $\begin{array}{l} \leftrightarrow \mathsf{FD}[15] \\ \leftrightarrow \mathsf{FD}[14] \\ \leftrightarrow \mathsf{FD}[13] \\ \leftrightarrow \mathsf{FD}[12] \end{array}$ $\begin{array}{l} \leftrightarrow \mathsf{FD}[15] \\ \leftrightarrow \mathsf{FD}[14] \\ \leftrightarrow \mathsf{FD}[13] \\ \leftrightarrow \mathsf{FD}[12] \end{array}$ PD7 PD6 PD5 PD4 PD3 ↔ FD[11] $\leftrightarrow$ FD[11] $\begin{array}{l} \leftrightarrow \mathsf{FD}[11] \\ \leftrightarrow \mathsf{FD}[10] \\ \leftrightarrow \mathsf{FD}[9] \\ \leftrightarrow \mathsf{FD}[8] \\ \leftrightarrow \mathsf{FD}[7] \end{array}$ PD2 PD1 ↔ FD[10] $\leftrightarrow$ FD[9] $\leftrightarrow$ FD[8] $\leftrightarrow$ FD[7] PD0 PB7 PB6 ↔ FD[6] $\leftrightarrow$ FD[6] PB5 ↔ FD[5] $\leftrightarrow$ FD[5] XTALIN $\begin{array}{l} \leftrightarrow \mathsf{FD}[3] \\ \leftrightarrow \mathsf{FD}[4] \\ \leftrightarrow \mathsf{FD}[3] \\ \leftrightarrow \mathsf{FD}[2] \\ \leftrightarrow \mathsf{FD}[1] \end{array}$ PB4 $\leftrightarrow$ FD[4] XTALOUT RESET# $\begin{array}{l} \leftrightarrow & \mathsf{FD}[3] \\ \leftrightarrow & \mathsf{FD}[2] \\ \leftrightarrow & \mathsf{FD}[1] \end{array}$ PB3 PB2 ٠ WAKEUP# PB1 $\leftrightarrow$ FD[0] PB0 ↔ FD[0] SCL 56 SDA RDY0 ← $\leftarrow \mathsf{SLRD}$ RDY1← $\leftarrow$ SLWR $CTL0 \rightarrow CTL1 \rightarrow$ $\rightarrow$ FLAGA $\rightarrow$ FLAGB $\rightarrow$ FLAGC CTL2 → INT0#/ PA0 INT1#/ PA1 INT0#/PA0 INT0#/PA0 INT1#/PA1 IFCLK INT1#/PA1 ← SLOE CLKOUT PA2 PA2 WU2/PA3 WU2/PA3 WU2/PA3 ← FIFOADR0 DPLUS PA4 PA4 DMINUS PA5 PA5 ← FIFOADR1 PA6 PA6 $\leftarrow$ PKTEND PA7/FLAGD/SLCS# PA7 PA7 → CTL3 $\rightarrow$ CTL4 $\rightarrow$ CTL5 $\leftarrow$ RDY2 $\leftarrow$ RDY3 ← RDY4 100 🔶 RDY5 BKPT PORTC7/GPIFADR7 PORTC6/GPIFADR6 PORTC5/GPIFADR5 PORTC3/GPIFADR4 PORTC2/GPIFADR3 PORTC2/GPIFADR2 PORTC1/GPIFADR2 RxD0 \$ TxD0 RxD1 TxD1 PORTC0/GPIFADR0 INT4 INT5# PE7/GPIFADR8 Т2 PE6/T2EX PE5/INT6 Τ1 Т0 PE4/RxD1OUT PE3/RxD0OUT PE2/T2OUT PE1/T1OUT PE0/T0OUT RD# WR# D7 CS# ÷ D6 D5 D4 D3 D2 D1 D0 T OE# ╏ T PSEN# L \_ \$ A15 A14 ► A13 ┢ A12 ► A11 ► A10 ► 128 A9 ► A8 ► Α7 ┢ A6 ► A5 ► A4 ► ΕA A3 A2 ► ۶ A1 ► A0

Document #: 38-08039 Rev. \*F

Page 12 of 55





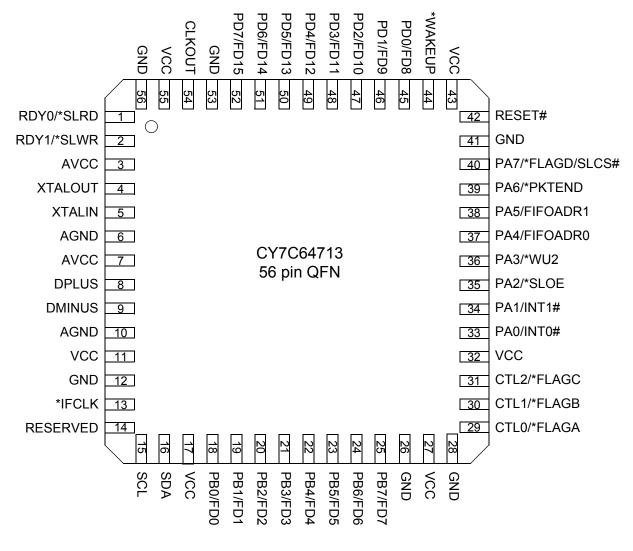

\* indicates programmable polarity










## Figure 10. CY7C64713 56 pin SSOP Pin Assignment CY7C64713 56 pin SSOP

|    | $\bigcirc$ |                  |    |
|----|------------|------------------|----|
| 1  | PD5/FD13   | PD4/FD12         | 56 |
| 2  | PD6/FD14   | PD3/FD11         | 55 |
| 3  | PD7/FD15   | PD2/FD10         | 54 |
| 4  | GND        | PD1/FD9          | 53 |
| 5  | CLKOUT     | PD0/FD8          | 52 |
| 6  | VCC        | *WAKEUP          | 51 |
| 7  | GND        | VCC              | 50 |
| 8  | RDY0/*SLRD | RESET#           | 49 |
| 9  | RDY1/*SLWR | GND              | 48 |
| 10 | AVCC       | PA7/*FLAGD/SLCS# | 47 |
| 11 | XTALOUT    | PA6/PKTEND       | 46 |
| 12 | XTALIN     | PA5/FIFOADR1     | 45 |
| 13 | AGND       | PA4/FIFOADR0     | 44 |
| 14 | AVCC       | PA3/*WU2         | 43 |
| 15 | DPLUS      | PA2/*SLOE        | 42 |
| 16 | DMINUS     | PA1/INT1#        | 41 |
| 17 | AGND       | PA0/INT0#        | 40 |
| 18 | VCC        | VCC              | 39 |
| 19 | GND        | CTL2/*FLAGC      | 38 |
| 20 | *IFCLK     | CTL1/*FLAGB      | 37 |
| 21 | RESERVED   | CTL0/*FLAGA      | 36 |
| 22 | SCL        | GND              | 35 |
| 23 | SDA        | VCC              | 34 |
| 24 | VCC        | GND              | 33 |
| 25 | PB0/FD0    | PB7/FD7          | 32 |
| 26 | PB1/FD1    | PB6/FD6          | 31 |
| 27 | PB2/FD2    | PB5/FD5          | 30 |
| 28 | PB3/FD3    | PB4/FD4          | 29 |
|    |            |                  |    |

\* indicates programmable polarity



Figure 11. CY7C64713 56 pin QFN Pin Assignment



\* indicates programmable polarity



## CY7C64713 Pin Definitions

The FX1 Pin Definitions for CY7C64713 follow.<sup>[6]</sup>

Table 8. FX1 Pin Definitions

| 128<br>TQFP | 100<br>TQFP | 56<br>SSOP | 56<br>QFN | Name   | Туре   | Default | Description                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|-------------|------------|-----------|--------|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10          | 9           | 10         | 3         | AVCC   | Power  | N/A     | <b>Analog VCC</b> . Connect this pin to 3.3V power source. This signal provides power to the analog section of the chip.                                                                                                                                                                                                                                                                                                      |
| 17          | 16          | 14         | 7         | AVCC   | Power  | N/A     | <b>Analog VCC</b> . Connect this pin to 3.3V power source. This signal provides power to the analog section of the chip.                                                                                                                                                                                                                                                                                                      |
| 13          | 12          | 13         | 6         | AGND   | Ground | N/A     | Analog Ground. Connect to ground with as short a path as possible.                                                                                                                                                                                                                                                                                                                                                            |
| 20          | 19          | 17         | 10        | AGND   | Ground | N/A     | Analog Ground. Connect to ground with as short a path as possible.                                                                                                                                                                                                                                                                                                                                                            |
| 19          | 18          | 16         | 9         | DMINUS | I/O/Z  | Z       | USB D- Signal. Connect to the USB D- signal.                                                                                                                                                                                                                                                                                                                                                                                  |
| 18          | 17          | 15         | 8         | DPLUS  | I/O/Z  | Z       | USB D+ Signal. Connect to the USB D+ signal.                                                                                                                                                                                                                                                                                                                                                                                  |
| 94          |             |            |           | A0     | Output | L       | 8051 Address Bus. This bus is driven at all times. When the 8051 is                                                                                                                                                                                                                                                                                                                                                           |
| 95          |             |            |           | A1     | Output | L       | addressing the internal RAM it reflects the internal address.                                                                                                                                                                                                                                                                                                                                                                 |
| 96          |             |            |           | A2     | Output | L       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 97          |             |            |           | A3     | Output | L       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 117         |             |            |           | A4     | Output | L       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 118         |             |            |           | A5     | Output | L       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 119         |             |            |           | A6     | Output | L       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 120         |             |            |           | A7     | Output | L       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 126         |             |            |           | A8     | Output | L       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 127         |             |            |           | A9     | Output | L       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 128         |             |            |           | A10    | Output | L       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 21          |             |            |           | A11    | Output | L       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 22          |             |            |           | A12    | Output | L       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 23          |             |            |           | A13    | Output | L       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 24          |             |            |           | A14    | Output | L       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 25          |             |            |           | A15    | Output | L       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 59          |             |            |           | D0     | I/O/Z  | Z       | 8051 Data Bus. This bidirectional bus is high impedance when                                                                                                                                                                                                                                                                                                                                                                  |
| 60          |             |            |           | D1     | I/O/Z  | Z       | inactive, input for bus reads, and output for bus writes. The data bus is used for external 8051 program and data memory. The data bus is                                                                                                                                                                                                                                                                                     |
| 61          |             |            |           | D2     | I/O/Z  | Z       | active only for external bus accesses, and is driven LOW in suspend.                                                                                                                                                                                                                                                                                                                                                          |
| 62          |             |            |           | D3     | I/O/Z  | Z       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 63          |             |            |           | D4     | I/O/Z  | Z       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 86          |             |            |           | D5     | I/O/Z  | Z       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 87          |             |            |           | D6     | I/O/Z  | Z       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 88          |             |            |           | D7     | I/O/Z  | Z       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 39          |             |            |           | PSEN#  | Output | Н       | <b>Program Store Enable</b> . This active LOW signal indicates an 8051 code fetch from external memory. It is active for program memory fetches from 0x4000–0xFFFF when the EA pin is LOW, or from 0x0000–0xFFFF when the EA pin is HIGH.                                                                                                                                                                                     |
| 34<br>Note  | 28          |            |           | ВКРТ   | Output | L       | <b>Breakpoint</b> . This pin goes active (HIGH) when the 8051 address bus matches the BPADDRH/L registers and breakpoints are enabled in the BREAKPT register (BPEN = 1). If the BPPULSE bit in the BREAKPT register is HIGH, this signal pulses HIGH for eight 12-/24-/48 MHz clocks. If the BPPULSE bit is LOW, the signal remains HIGH until the 8051 clears the BREAK bit (by writing '1' to it) in the BREAKPT register. |

Note
6. Do not leave unused inputs floating. Tie either HIGH or LOW as appropriate. Pull outputs up or down to ensure signals at power up and in standby. Note that no pins must be driven when the device is powered down.



Table 8. FX1 Pin Definitions (continued)

| 128<br>TQFP | 100<br>TQFP | 56<br>SSOP | 56<br>QFN | Name               | Туре   | Default    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|-------------|-------------|------------|-----------|--------------------|--------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 99          | 77          | 49         | 42        | RESET#             | Input  | N/A        | Active LOW Reset. Resets the entire chip. See the section "Reset and Wakeup" on page 6 for more details.                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 35          |             |            |           | EA                 | Input  | N/A        | <b>External Access</b> . This pin determines where the 8051 fetches code between addresses 0x0000 and 0x3FFF. If EA = 0 the 8051 fetches this code from its internal RAM. IF EA = 1 the 8051 fetches this code from external memory.                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| 12          | 11          | 12         | 5         | XTALIN             | Input  | N/A        | <b>Crystal Input</b> . Connect this signal to a 24 MHz parallel-resonant, fundamental mode crystal and load capacitor to GND.<br>It is also correct to drive the XTALIN with an external 24 MHz square wave derived from another clock source. When driving from an external source, the driving signal must be a 3.3V square wave.                                                                                                                                                                |  |  |  |  |  |  |
| 11          | 10          | 11         | 4         | XTALOUT            | Output | N/A        | <b>Crystal Output</b> . Connect this signal to a 24 MHz parallel-resonant, fundamental mode crystal and load capacitor to GND. If an external clock is used to drive XTALIN, leave this pin open.                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| 1           | 100         | 5          | 54        | CLKOUT             | O/Z    | 12<br>MHz  | <b>CLKOUT:</b> 12, 24 or 48 MHz clock, phase locked to the 24 MHz input clock. The 8051 defaults to 12 MHz operation. The 8051 may three-state this output by setting CPUCS.1 = 1.                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| Port        | Α           |            |           |                    |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| 82          | 67          | 40         | 33        | PA0 or<br>INT0#    | I/O/Z  | I<br>(PA0) | Multiplexed pin whose function is selected by PORTACFG.0<br><b>PA0</b> is a bidirectional I/O port pin.<br><b>INT0#</b> is the active-LOW 8051 INT0 interrupt input signal, which is<br>either edge triggered (IT0 = 1) or level triggered (IT0 = 0).                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| 83          | 68          | 41         | 34        | PA1 or<br>INT1#    | I/O/Z  | I<br>(PA1) | Multiplexed pin whose function is selected by:<br>PORTACFG.1<br><b>PA1</b> is a bidirectional I/O port pin.<br><b>INT1#</b> is the active-LOW 8051 INT1 interrupt input signal, which is<br>either edge triggered (IT1 = 1) or level triggered (IT1 = 0).                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| 84          | 69          | 42         | 35        | PA2 or<br>SLOE     | I/O/Z  | l<br>(PA2) | Multiplexed pin whose function is selected by two bits:<br>IFCONFIG[1:0].<br><b>PA2</b> is a bidirectional I/O port pin.<br><b>SLOE</b> is an input-only output enable with programmable polarity<br>(FIFOPINPOLAR.4) for the slave FIFOs connected to FD[70] or<br>FD[150].                                                                                                                                                                                                                       |  |  |  |  |  |  |
| 85          | 70          | 43         | 36        | PA3 or<br>WU2      | 1/O/Z  | I<br>(PA3) | Multiplexed pin whose function is selected by:<br>WAKEUP.7 and OEA.3<br><b>PA3</b> is a bidirectional I/O port pin.<br><b>WU2</b> is an alternate source for <b>USB Wakeup</b> , enabled by WU2EN bit<br>(WAKEUP.1) and polarity set by WU2POL (WAKEUP.4). If the 8051 is<br>in suspend and WU2EN = 1, a transition on this pin starts up the oscil-<br>lator and interrupts the 8051 to allow it to exit the suspend mode.<br>Asserting this pin inhibits the chip from suspending, if WU2EN = 1. |  |  |  |  |  |  |
| 89          | 71          | 44         | 37        | PA4 or<br>FIFOADR0 | I/O/Z  | l<br>(PA4) | Multiplexed pin whose function is selected by:<br>IFCONFIG[10].<br><b>PA4</b> is a bidirectional I/O port pin.<br><b>FIFOADR0</b> is an input-only address select for the slave FIFOs<br>connected to FD[70] or FD[150].                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 90          | 72          | 45         | 38        | PA5 or<br>FIFOADR1 | I/O/Z  | l<br>(PA5) | Multiplexed pin whose function is selected by:<br>IFCONFIG[10].<br><b>PA5</b> is a bidirectional I/O port pin.<br><b>FIFOADR1</b> is an input-only address select for the slave FIFOs<br>connected to FD[70] or FD[150].                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |



Table 8. FX1 Pin Definitions (continued)

| 128<br>TQFP | 100<br>TQFP | 56<br>SSOP | 56<br>QFN | Name                        | Туре  | Default    | It Description                                                                                                                                                                                                                                                           |  |  |  |  |  |
|-------------|-------------|------------|-----------|-----------------------------|-------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 91          | 73          | 46         | 39        | PA6 or<br>PKTEND            | I/O/Z | l<br>(PA6) | Multiplexed pin whose function is selected by the IFCONFIG[1:0] bits.<br><b>PA6</b> is a bidirectional I/O port pin.<br><b>PKTEND</b> is an input used to commit the FIFO packet data to the<br>endpoint and whose polarity is programmable via FIFOPINPOLAR.5.          |  |  |  |  |  |
| 92          | 74          | 47         | 40        | PA7 or<br>FLAGD or<br>SLCS# | I/O/Z | і<br>(РА7) | Multiplexed pin whose function is selected by the IFCONFIG[1:0] and<br>PORTACFG.7 bits.<br><b>PA7</b> is a bidirectional I/O port pin.<br><b>FLAGD</b> is a programmable slave-FIFO output status flag signal.<br><b>SLCS#</b> gates all other slave FIFO enable/strobes |  |  |  |  |  |
| Port        | В           |            |           |                             |       |            |                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| 44          | 34          | 25         | 18        | PB0 or<br>FD[0]             | I/O/Z | I<br>(PB0) | Multiplexed pin whose function is selected by the following bits:<br>IFCONFIG[10].<br><b>PB0</b> is a bidirectional I/O port pin.<br><b>FD[0]</b> is the bidirectional FIFO/GPIF data bus.                                                                               |  |  |  |  |  |
| 45          | 35          | 26         | 19        | PB1 or<br>FD[1]             | I/O/Z | I<br>(PB1) | Multiplexed pin whose function is selected by the following bits:<br>IFCONFIG[10].<br><b>PB1</b> is a bidirectional I/O port pin.<br><b>FD[1]</b> is the bidirectional FIFO/GPIF data bus.                                                                               |  |  |  |  |  |
| 46          | 36          | 27         | 20        | PB2 or<br>FD[2]             | I/O/Z | l<br>(PB2) | Multiplexed pin whose function is selected by the following bits:<br>IFCONFIG[10].<br><b>PB2</b> is a bidirectional I/O port pin.<br><b>FD[2]</b> is the bidirectional FIFO/GPIF data bus.                                                                               |  |  |  |  |  |
| 47          | 37          | 28         | 21        | PB3 or<br>FD[3]             | I/O/Z | I<br>(PB3) | Multiplexed pin whose function is selected by the following bits:<br>IFCONFIG[10].<br>PB3 is a bidirectional I/O port pin.<br>FD[3] is the bidirectional FIFO/GPIF data bus.                                                                                             |  |  |  |  |  |
| 54          | 44          | 29         | 22        | PB4 or<br>FD[4]             | I/O/Z | I<br>(PB4) | Multiplexed pin whose function is selected by the following bits:<br>IFCONFIG[10].<br><b>PB4</b> is a bidirectional I/O port pin.<br><b>FD[4]</b> is the bidirectional FIFO/GPIF data bus.                                                                               |  |  |  |  |  |
| 55          | 45          | 30         | 23        | PB5 or<br>FD[5]             | I/O/Z | l<br>(PB5) | Multiplexed pin whose function is selected by the following bits:<br>IFCONFIG[10].<br><b>PB5</b> is a bidirectional I/O port pin.<br><b>FD[5]</b> is the bidirectional FIFO/GPIF data bus.                                                                               |  |  |  |  |  |
| 56          | 46          | 31         | 24        | PB6 or<br>FD[6]             | I/O/Z | І<br>(РВ6) | Multiplexed pin whose function is selected by the following bits:<br>IFCONFIG[10].<br><b>PB6</b> is a bidirectional I/O port pin.<br><b>FD[6]</b> is the bidirectional FIFO/GPIF data bus.                                                                               |  |  |  |  |  |
| 57          | 47          | 32         | 25        | PB7 or<br>FD[7]             | I/O/Z | l<br>(PB7) | Multiplexed pin whose function is selected by the following bits:<br>IFCONFIG[10].<br><b>PB7</b> is a bidirectional I/O port pin.<br><b>FD[7]</b> is the bidirectional FIFO/GPIF data bus.                                                                               |  |  |  |  |  |
| POR         | ГС          |            |           | •                           | •     |            |                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| 72          | 57          |            |           | PC0 or<br>GPIFADR0          | I/O/Z | I<br>(PC0) | Multiplexed pin whose function is selected by PORTCCFG.0<br><b>PC0</b> is a bidirectional I/O port pin.<br><b>GPIFADR0</b> is a GPIF address output pin.                                                                                                                 |  |  |  |  |  |
| 73          | 58          |            |           | PC1 or<br>GPIFADR1          | I/O/Z | I<br>(PC1) | Multiplexed pin whose function is selected by PORTCCFG.1<br>PC1 is a bidirectional I/O port pin.<br>GPIFADR1 is a GPIF address output pin.                                                                                                                               |  |  |  |  |  |
| 74          | 59          |            |           | PC2 or<br>GPIFADR2          | I/O/Z | I<br>(PC2) | Multiplexed pin whose function is selected by PORTCCFG.2<br><b>PC2</b> is a bidirectional I/O port pin.<br><b>GPIFADR2</b> is a GPIF address output pin.                                                                                                                 |  |  |  |  |  |



Table 8. FX1 Pin Definitions (continued)

| 128<br>TQFP | 100<br>TQFP | 56<br>SSOP | 56<br>QFN | Name               | Туре  | Default    | Description                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|-------------|-------------|------------|-----------|--------------------|-------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 75          | 60          |            |           | PC3 or<br>GPIFADR3 | I/O/Z | I<br>(PC3) | Multiplexed pin whose function is selected by PORTCCFG.3<br>PC3 is a bidirectional I/O port pin.<br>GPIFADR3 is a GPIF address output pin.                                                                                                                                                                                                                                                             |  |  |  |  |
| 76          | 61          |            |           | PC4 or<br>GPIFADR4 | I/O/Z | l<br>(PC4) | Multiplexed pin whose function is selected by PORTCCFG.4<br><b>PC4</b> is a bidirectional I/O port pin.<br><b>GPIFADR4</b> is a GPIF address output pin.                                                                                                                                                                                                                                               |  |  |  |  |
| 77          | 62          |            |           | PC5 or<br>GPIFADR5 | I/O/Z | l<br>(PC5) | Multiplexed pin whose function is selected by PORTCCFG.5<br>PC5 is a bidirectional I/O port pin.<br>GPIFADR5 is a GPIF address output pin.                                                                                                                                                                                                                                                             |  |  |  |  |
| 78          | 63          |            |           | PC6 or<br>GPIFADR6 | I/O/Z | l<br>(PC6) | Multiplexed pin whose function is selected by PORTCCFG.6<br><b>PC6</b> is a bidirectional I/O port pin.<br><b>GPIFADR6</b> is a GPIF address output pin.                                                                                                                                                                                                                                               |  |  |  |  |
| 79          | 64          |            |           | PC7 or<br>GPIFADR7 | I/O/Z | I<br>(PC7) | Multiplexed pin whose function is selected by PORTCCFG.7<br>PC7 is a bidirectional I/O port pin.<br>GPIFADR7 is a GPIF address output pin.                                                                                                                                                                                                                                                             |  |  |  |  |
| POR         | ΓD          |            |           | •                  | •     | •          |                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 102         | 80          | 52         | 45        | PD0 or<br>FD[8]    | I/O/Z | l<br>(PD0) | Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits. <b>FD[8]</b> is the bidirectional FIFO/GPIF data bus.                                                                                                                                                                                                                                                 |  |  |  |  |
| 103         | 81          | 53         | 46        | PD1 or<br>FD[9]    | I/O/Z | l<br>(PD1) | Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits.<br><b>FD[9]</b> is the bidirectional FIFO/GPIF data bus.                                                                                                                                                                                                                                              |  |  |  |  |
| 104         | 82          | 54         | 47        | PD2 or<br>FD[10]   | I/O/Z | l<br>(PD2) | Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits.<br><b>FD[10]</b> is the bidirectional FIFO/GPIF data bus.                                                                                                                                                                                                                                             |  |  |  |  |
| 105         | 83          | 55         | 48        | PD3 or<br>FD[11]   | I/O/Z | l<br>(PD3) | Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits.<br><b>FD[11]</b> is the bidirectional FIFO/GPIF data bus.                                                                                                                                                                                                                                             |  |  |  |  |
| 121         | 95          | 56         | 49        | PD4 or<br>FD[12]   | I/O/Z | l<br>(PD4) | Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits.<br><b>FD[12]</b> is the bidirectional FIFO/GPIF data bus.                                                                                                                                                                                                                                             |  |  |  |  |
| 122         | 96          | 1          | 50        | PD5 or<br>FD[13]   | I/O/Z | l<br>(PD5) | Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits.<br><b>FD[13]</b> is the bidirectional FIFO/GPIF data bus.                                                                                                                                                                                                                                             |  |  |  |  |
| 123         | 97          | 2          | 51        | PD6 or<br>FD[14]   | I/O/Z | l<br>(PD6) | Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits.<br><b>FD[14]</b> is the bidirectional FIFO/GPIF data bus.                                                                                                                                                                                                                                             |  |  |  |  |
| 124         | 98          | 3          | 52        | PD7 or<br>FD[15]   | I/O/Z | l<br>(PD7) | Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits.<br><b>FD[15]</b> is the bidirectional FIFO/GPIF data bus.                                                                                                                                                                                                                                             |  |  |  |  |
| Port        | E           | 1          |           | 1                  |       |            |                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 108         | 86          |            |           | PE0 or<br>TOOUT    | I/O/Z | I<br>(PE0) | Multiplexed pin whose function is selected by the PORTECFG.0 bit.<br><b>PE0</b> is a bidirectional I/O port pin.<br><b>T0OUT</b> is an active HIGH signal from 8051 Timer-counter0. T0OUT<br>outputs a high level for one CLKOUT clock cycle when Timer0<br>overflows. If Timer0 is operated in Mode 3 (two separate<br>timer/counters), T0OUT is active when the low byte timer/counter<br>overflows. |  |  |  |  |



Table 8. FX1 Pin Definitions (continued)

| 128<br>TQFP | 100<br>TQFP | 56<br>SSOP | 56<br>QFN | Name               | Туре  | Default    | Description                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|-------------|------------|-----------|--------------------|-------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 109         | 87          |            |           | PE1 or<br>T1OUT    | I/O/Z | l<br>(PE1) | Multiplexed pin whose function is selected by the PORTECFG.1 bit.<br><b>PE1</b> is a bidirectional I/O port pin.<br><b>T1OUT</b> is an active HIGH signal from 8051 Timer-counter1. T1OUT<br>outputs a high level for one CLKOUT clock cycle when Timer1<br>overflows. If Timer1 is operated in Mode 3 (two separate<br>timer/counters), T1OUT is active when the low byte timer/counter<br>overflows. |
| 110         | 88          |            |           | PE2 or<br>T2OUT    | I/O/Z | l<br>(PE2) | Multiplexed pin whose function is selected by the PORTECFG.2 bit.<br><b>PE2</b> is a bidirectional I/O port pin.<br><b>T2OUT</b> is the active HIGH output signal from 8051 Timer2. T2OUT is<br>active (HIGH) for one clock cycle when Timer/Counter 2 overflows.                                                                                                                                      |
| 111         | 89          |            |           | PE3 or<br>RXD0OUT  | I/O/Z | l<br>(PE3) | Multiplexed pin whose function is selected by the PORTECFG.3 bit.<br><b>PE3</b> is a bidirectional I/O port pin.<br><b>RXD0OUT</b> is an active HIGH signal from 8051 UART0. If RXD0OUT<br>is selected and UART0 is in Mode 0, this pin provides the output data<br>for UART0 only when it is in sync mode. Otherwise it is a 1.                                                                       |
| 112         | 90          |            |           | PE4 or<br>RXD1OUT  | I/O/Z | l<br>(PE4) | Multiplexed pin whose function is selected by the PORTECFG.4 bit.<br><b>PE4</b> is a bidirectional I/O port pin.<br><b>RXD1OUT</b> is an active HIGH output from 8051 UART1. When the<br>RXD1OUT is selected and UART1 is in Mode 0, this pin provides the<br>output data for UART1 only when it is in sync mode. In Modes 1, 2, and<br>3, this pin is HIGH.                                           |
| 113         | 91          |            |           | PE5 or<br>INT6     | I/O/Z | l<br>(PE5) | Multiplexed pin whose function is selected by the PORTECFG.5 bit.<br><b>PE5</b> is a bidirectional I/O port pin.<br><b>INT6</b> is the 8051 INT6 interrupt request input signal. The INT6 pin is edge-sensitive, active HIGH.                                                                                                                                                                          |
| 114         | 92          |            |           | PE6 or<br>T2EX     | I/O/Z | l<br>(PE6) | Multiplexed pin whose function is selected by the PORTECFG.6 bit.<br><b>PE6</b> is a bidirectional I/O port pin.<br><b>T2EX</b> is an active HIGH input signal to the 8051 Timer2. T2EX reloads<br>timer 2 on its falling edge. T2EX is active only if the EXEN2 bit is set in<br>T2CON.                                                                                                               |
| 115         | 93          |            |           | PE7 or<br>GPIFADR8 | I/O/Z | l<br>(PE7) | Multiplexed pin whose function is selected by the PORTECFG.7 bit.<br><b>PE7</b> is a bidirectional I/O port pin.<br><b>GPIFADR8</b> is a GPIF address output pin.                                                                                                                                                                                                                                      |
| 4           | 3           | 8          | 1         | RDY0 or<br>SLRD    | Input | N/A        | Multiplexed pin whose function is selected by the following bits:<br>IFCONFIG[10].<br><b>RDY0</b> is a GPIF input signal.<br><b>SLRD</b> is the input-only read strobe with programmable polarity<br>(FIFOPINPOLAR.3) for the slave FIFOs connected to FD[70] or<br>FD[150].                                                                                                                           |
| 5           | 4           | 9          | 2         | RDY1 or<br>SLWR    | Input | N/A        | Multiplexed pin whose function is selected by the following bits:<br>IFCONFIG[10].<br><b>RDY1</b> is a GPIF input signal.<br><b>SLWR</b> is the input-only write strobe with programmable polarity<br>(FIFOPINPOLAR.2) for the slave FIFOs connected to FD[70] or<br>FD[150].                                                                                                                          |
| 6           | 5           |            |           | RDY2               | Input | N/A        | RDY2 is a GPIF input signal.                                                                                                                                                                                                                                                                                                                                                                           |
| 7           | 6           |            |           | RDY3               | Input | N/A        | RDY3 is a GPIF input signal.                                                                                                                                                                                                                                                                                                                                                                           |
| 8           | 7           |            |           | RDY4               | Input | N/A        | RDY4 is a GPIF input signal.                                                                                                                                                                                                                                                                                                                                                                           |
| 9           | 8           |            |           | RDY5               | Input | N/A        | RDY5 is a GPIF input signal.                                                                                                                                                                                                                                                                                                                                                                           |



Table 8. FX1 Pin Definitions (continued)

| 128<br>TQFP | 100<br>TQFP | 56<br>SSOP | 56<br>QFN | Name             | Туре   | Default | Description                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------|-------------|------------|-----------|------------------|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 69          | 54          | 36         | 29        | CTL0 or<br>FLAGA | O/Z    | H       | Multiplexed pin whose function is selected by the following bits:<br>IFCONFIG[10].<br><b>CTL0</b> is a GPIF control output.<br><b>FLAGA</b> is a programmable slave-FIFO output status flag signal.<br>Defaults to programmable for the FIFO selected by the FIFOADR[1:0]<br>pins.                                                                                                                                |
| 70          | 55          | 37         | 30        | CTL1 or<br>FLAGB | O/Z    | Н       | Multiplexed pin whose function is selected by the following bits:<br>IFCONFIG[10].<br>CTL1 is a GPIF control output.<br>FLAGB is a programmable slave-FIFO output status flag signal.<br>Defaults to FULL for the FIFO selected by the FIFOADR[1:0] pins.                                                                                                                                                         |
| 71          | 56          | 38         | 31        | CTL2 or<br>FLAGC | O/Z    | H       | Multiplexed pin whose function is selected by the following bits:<br>IFCONFIG[10].<br>CTL2 is a GPIF control output.<br>FLAGC is a programmable slave-FIFO output status flag signal.<br>Defaults to EMPTY for the FIFO selected by the FIFOADR[1:0] pins.                                                                                                                                                        |
| 66          | 51          |            |           | CTL3             | O/Z    | Н       | CTL3 is a GPIF control output.                                                                                                                                                                                                                                                                                                                                                                                    |
| 67          | 52          |            |           | CTL4             | Output | Н       | CTL4 is a GPIF control output.                                                                                                                                                                                                                                                                                                                                                                                    |
| 98          | 76          |            |           | CTL5             | Output | Н       | CTL5 is a GPIF control output.                                                                                                                                                                                                                                                                                                                                                                                    |
| 32          | 26          | 20         | 13        | IFCLK            | I/O/Z  | Z       | Interface Clock, used for synchronously clocking data into or out of the slave FIFOs. IFCLK also serves as a timing reference for all slave FIFO control signals and GPIF. When internal clocking is used (IFCONFIG.7 = 1) the IFCLK pin is configured to output 30/48 MHz by bits IFCONFIG.5 and IFCONFIG.6. IFCLK may be inverted, whether internally or externally sourced, by setting the bit IFCONFIG.4 = 1. |
| 28          | 22          |            |           | INT4             | Input  | N/A     | <b>INT4</b> is the 8051 INT4 interrupt request input signal. The INT4 pin is edge-sensitive, active HIGH.                                                                                                                                                                                                                                                                                                         |
| 106         | 84          |            |           | INT5#            | Input  | N/A     | <b>INT5#</b> is the 8051 INT5 interrupt request input signal. The INT5 pin is edge-sensitive, active LOW.                                                                                                                                                                                                                                                                                                         |
| 31          | 25          |            |           | T2               | Input  | N/A     | <b>T2</b> is the active-HIGH T2 input signal to 8051 Timer2, which provides the input to Timer2 when $C/T2 = 1$ . When $C/T2 = 0$ , Timer2 does not use this pin.                                                                                                                                                                                                                                                 |
| 30          | 24          |            |           | T1               | Input  | N/A     | <b>T1</b> is the active-HIGH T1 signal for 8051 Timer1, which provides the input to Timer1 when C/T1 is 1. When C/T1 is 0, Timer1 does not use this bit.                                                                                                                                                                                                                                                          |
| 29          | 23          |            |           | ТО               | Input  | N/A     | <b>T0</b> is the active-HIGH T0 signal for 8051 Timer0, which provides the input to Timer0 when C/T0 is 1. When C/T0 is 0, Timer0 does not use this bit.                                                                                                                                                                                                                                                          |
| 53          | 43          |            |           | RXD1             | Input  | N/A     | <b>RXD1</b> is an active-HIGH input signal for 8051 UART1, which provides data to the UART in all modes.                                                                                                                                                                                                                                                                                                          |
| 52          | 42          |            |           | TXD1             | Output | Н       | <b>TXD1</b> is an active-HIGH output pin from 8051 UART1, which provides the output clock in sync mode, and the output data in async mode.                                                                                                                                                                                                                                                                        |
| 51          | 41          |            |           | RXD0             | Input  | N/A     | <b>RXD0</b> is the active-HIGH RXD0 input to 8051 UART0, which provides data to the UART in all modes.                                                                                                                                                                                                                                                                                                            |
| 50          | 40          |            |           | TXD0             | Output | Н       | <b>TXD0</b> is the active-HIGH TXD0 output from 8051 UART0, which provides the output clock in sync mode, and the output data in async mode.                                                                                                                                                                                                                                                                      |
| 42          |             |            |           | CS#              | Output | Н       | <b>CS#</b> is the active-LOW chip select for external memory.                                                                                                                                                                                                                                                                                                                                                     |
| 41          | 32          |            |           | WR#              | Output | Н       | <b>WR#</b> is the active-LOW write strobe output for external memory.                                                                                                                                                                                                                                                                                                                                             |
| 40          | 31          |            |           | RD#              | Output | Н       | <b>RD#</b> is the active-LOW read strobe output for external memory.                                                                                                                                                                                                                                                                                                                                              |
| 38          |             |            |           | OE#              | Output | Н       | <b>OE#</b> is the active LOW output enable for external memory.                                                                                                                                                                                                                                                                                                                                                   |



#### Table 8. FX1 Pin Definitions (continued)

| 128<br>TQFP | 100<br>TQFP | 56<br>SSOP | 56<br>QFN | Name     | Туре   | Default | Description                                                                                                                                                                                                                                                                   |
|-------------|-------------|------------|-----------|----------|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 33          | 27          | 21         | 14        | Reserved | Input  | N/A     | Reserved. Connect to ground.                                                                                                                                                                                                                                                  |
|             |             |            |           |          |        |         |                                                                                                                                                                                                                                                                               |
| 101         | 79          | 51         | 44        | WAKEUP   | Input  | N/A     | <b>USB Wakeup</b> . If the 8051 is in suspend, asserting this pin starts up the oscillator and interrupts the 8051 to allow it to exit the suspend mode. Holding WAKEUP asserted inhibits the EZ-USB FX1 chip from suspending. This pin has programmable polarity (WAKEUP.4). |
| 36          | 29          | 22         | 15        | SCL      | OD     | Z       | <b>Clock</b> for the I <sup>2</sup> C interface. Connect to VCC with a 2.2K resistor, even if no I <sup>2</sup> C peripheral is attached.                                                                                                                                     |
| 37          | 30          | 23         | 16        | SDA      | OD     | Z       | <b>Data</b> for <b>I<sup>2</sup>C interface</b> . Connect to VCC with a 2.2K resistor, <b>even if no I<sup>2</sup>C peripheral is attached</b> .                                                                                                                              |
|             |             |            |           |          |        |         |                                                                                                                                                                                                                                                                               |
| 2           | 1           | 6          | 55        | VCC      | Power  | N/A     | VCC. Connect to 3.3V power source.                                                                                                                                                                                                                                            |
| 26          | 20          | 18         | 11        | VCC      | Power  | N/A     | VCC. Connect to 3.3V power source.                                                                                                                                                                                                                                            |
| 43          | 33          | 24         | 17        | VCC      | Power  | N/A     | VCC. Connect to 3.3V power source.                                                                                                                                                                                                                                            |
| 48          | 38          |            |           | VCC      | Power  | N/A     | VCC. Connect to 3.3V power source.                                                                                                                                                                                                                                            |
| 64          | 49          | 34         | 27        | VCC      | Power  | N/A     | VCC. Connect to 3.3V power source.                                                                                                                                                                                                                                            |
| 68          | 53          |            |           | VCC      | Power  | N/A     | VCC. Connect to 3.3V power source.                                                                                                                                                                                                                                            |
| 81          | 66          | 39         | 32        | VCC      | Power  | N/A     | VCC. Connect to 3.3V power source.                                                                                                                                                                                                                                            |
| 100         | 78          | 50         | 43        | VCC      | Power  | N/A     | VCC. Connect to 3.3V power source.                                                                                                                                                                                                                                            |
| 107         | 85          |            |           | VCC      | Power  | N/A     | VCC. Connect to 3.3V power source.                                                                                                                                                                                                                                            |
|             |             |            |           | T        | 1      |         |                                                                                                                                                                                                                                                                               |
| 3           | 2           | 7          | 56        | GND      | Ground | N/A     | Ground.                                                                                                                                                                                                                                                                       |
| 27          | 21          | 19         | 12        | GND      | Ground | N/A     | Ground.                                                                                                                                                                                                                                                                       |
| 49          | 39          |            |           | GND      | Ground | N/A     | Ground.                                                                                                                                                                                                                                                                       |
| 58          | 48          | 33         | 26        | GND      | Ground | N/A     | Ground.                                                                                                                                                                                                                                                                       |
| 65          | 50          | 35         | 28        | GND      | Ground | N/A     | Ground.                                                                                                                                                                                                                                                                       |
| 80          | 65          |            |           | GND      | Ground | N/A     | Ground.                                                                                                                                                                                                                                                                       |
| 93          | 75          | 48         | 41        | GND      | Ground | N/A     | Ground.                                                                                                                                                                                                                                                                       |
| 116         | 94          |            |           | GND      | Ground | N/A     | Ground.                                                                                                                                                                                                                                                                       |
| 125         | 99          | 4          | 53        | GND      | Ground | N/A     | Ground.                                                                                                                                                                                                                                                                       |
|             |             |            |           |          |        |         |                                                                                                                                                                                                                                                                               |
| 14          | 13          |            |           | NC       | N/A    |         | No Connect. This pin must be left open.                                                                                                                                                                                                                                       |
| 15          | 14          |            |           | NC       | N/A    | N/A     | No Connect. This pin must be left open.                                                                                                                                                                                                                                       |
| 16          | 15          |            |           | NC       | N/A    | N/A     | No Connect. This pin must be left open.                                                                                                                                                                                                                                       |



## **Register Summary**

FX1 register bit definitions are described in the EZ-USB TRM in greater detail.

#### Table 9. FX1 Register Summary

| Hex          | Size | Name                         | Description                                         | b7          | b6               | b5          | b4              | b3          | b2          | b1               | b0               | Default          | Access    |
|--------------|------|------------------------------|-----------------------------------------------------|-------------|------------------|-------------|-----------------|-------------|-------------|------------------|------------------|------------------|-----------|
|              |      | GPIF Waveform Men            | nories                                              |             |                  |             |                 |             |             |                  |                  |                  |           |
| E400         | 128  | WAVEDATA                     | GPIF Waveform<br>Descriptor 0, 1, 2, 3 data         | D7          | D6               | D5          | D4              | D3          | D2          | D1               | D0               | xxxxxxxx         | RW        |
| E480         | 128  | reserved                     |                                                     |             |                  |             |                 |             |             |                  |                  |                  |           |
|              |      | GENERAL CONFIGU              | JRATION                                             |             |                  |             |                 |             |             |                  |                  |                  |           |
| E600         | 1    | CPUCS                        | CPU Control & Status                                | 0           | 0                | PORTCSTB    | CLKSPD1         | CLKSPD0     | CLKINV      | CLKOE            | 8051RES          | 00000010         | rrbbbbbr  |
| E601         | 1    | IFCONFIG                     | Interface Configuration                             | IFCLKSRC    | 3048MHZ          | IFCLKOE     | IFCLKPOL        | ASYNC       | GSTATE      | IFCFG1           | IFCFG0           | 10000000         | RW        |
| E602         | 1    | PINFLAGSAB <sup>[7]</sup>    | (Ports, GPIF, slave FIFOs)<br>Slave FIFO FLAGA and  | FLAGB3      | FLAGB2           | FLAGB1      | FLAGB0          | FLAGA3      | FLAGA2      | FLAGA1           | FLAGA0           | 00000000         | RW        |
| E603         | 1    | PINFLAGSCD <sup>[7]</sup>    | FLAGB Pin Configuration<br>Slave FIFO FLAGC and     | FLAGD3      | FLAGD2           | FLAGD1      | FLAGD0          | FLAGC3      | FLAGC2      | FLAGC1           | FLAGC0           | 00000000         | RW        |
| E604         | 1    | FIFORESET <sup>[7]</sup>     | FLAGD Pin Configuration<br>Restore FIFOS to default | NAKALL      | 0                | 0           | 0               | EP3         | EP2         | EP1              | EP0              | xxxxxxx          | W         |
|              |      |                              | state                                               |             | -                | -           | -               | -           |             |                  |                  |                  |           |
| E605         | 1    | BREAKPT                      | Breakpoint Control                                  | 0           | 0                | 0           | 0               | BREAK       | BPPULSE     | BPEN             | 0                | 00000000         |           |
| E606         | 1    | BPADDRH                      | Breakpoint Address H                                | A15         | A14              | A13         | A12             | A11         | A10         | A9               | A8               | XXXXXXXX         | RW        |
| E607         | 1    | BPADDRL                      | Breakpoint Address L                                | A7          | A6               | A5          | A4              | A3          | A2          | A1               | A0               | XXXXXXXX         | RW        |
| E608         | 1    | UART230                      | 230 Kbaud internally<br>generated ref. clock        | 0           | 0                | 0           | 0               | 0           | 0           | 230UART1         | 230UART0         | 00000000         | rrrrrbb   |
| E609         | 1    | FIFOPINPOLAR <sup>[7]</sup>  | Slave FIFO Interface pins<br>polarity               | 0           | 0                | PKTEND      | SLOE            | SLRD        | SLWR        | EF               | FF               | 00000000         | rrbbbbbb  |
| E60A         | 1    | REVID                        | Chip Revision                                       | rv7         | rv6              | rv5         | rv4             | rv3         | rv2         | rv1              | rv0              | RevA<br>00000001 | R         |
| E60B         | 1    | REVCTL <sup>[7]</sup>        | Chip Revision Control                               | 0           | 0                | 0           | 0               | 0           | 0           | dyn_out          | enh_pkt          | 00000000         | rrrrrbb   |
|              |      | UDMA                         |                                                     | -           | -                | -           |                 | -           | -           |                  |                  |                  |           |
| E60C         | 1    | GPIFHOLDAMOUNT               | MSTB Hold Time<br>(for UDMA)                        | 0           | 0                | 0           | 0               | 0           | 0           | HOLDTIME1        | HOLDTIME0        | 00000000         | rrrrrbb   |
|              | 3    | reserved                     | (                                                   |             |                  |             |                 |             |             |                  |                  |                  |           |
|              |      | ENDPOINT CONFIG              |                                                     |             |                  |             |                 |             |             |                  |                  |                  |           |
| E610         | 1    | EP1OUTCFG                    | Endpoint 1-OUT                                      | VALID       | 0                | TYPE1       | TYPE0           | 0           | 0           | 0                | 0                | 10100000         | brbbrrrr  |
| E611         | 1    | EP1INCFG                     | Configuration<br>Endpoint 1-IN                      | VALID       | 0                | TYPE1       | TYPE0           | 0           | 0           | 0                | 0                | 10100000         | brbbrrrr  |
| E612         | 1    | EP2CFG                       | Configuration<br>Endpoint 2 Configuration           | VALID       | DIR              | TYPE1       | TYPE0           | SIZE        | 0           | BUF1             | BUF0             | 10100010         | bbbbbrbb  |
| E613         | 1    | EP4CFG                       | Endpoint 2 Configuration                            | VALID       | DIR              | TYPE1       | TYPE0           | 0           | 0           | 0                | 0                | 10100000         |           |
| E614         | 1    | EP6CFG                       | Endpoint 4 Configuration                            | VALID       | DIR              | TYPE1       | TYPE0           | SIZE        | 0           | BUF1             | BUF0             | 11100010         | bbbbbrbb  |
| E615         | 1    | EP8CFG                       | Endpoint 8 Configuration                            | VALID       | DIR              | TYPE1       | TYPE0           | 0           | 0           | 0                | 0                | 11100000         | bbbbbrrrr |
| LUIJ         | 2    | reserved                     | Endpoint o Configuration                            | VALID       |                  |             |                 | 0           | 0           | 0                | 0                | 11100000         |           |
| E618         | 1    | EP2FIFOCFG <sup>[7]</sup>    | Endpoint 2 / slave FIFO<br>configuration            | 0           | INFM1            | OEP1        | AUTOOUT         | AUTOIN      | ZEROLENIN   | 0                | WORDWIDE         | 00000101         | rbbbbbrb  |
| E619         | 1    | EP4FIFOCFG <sup>[7]</sup>    | 0                                                   | 0           | INFM1            | OEP1        | AUTOOUT         | AUTOIN      | ZEROLENIN   | 0                | WORDWIDE         | 00000101         | rbbbbbrb  |
| E61A         | 1    | EP6FIFOCFG <sup>[7]</sup>    | Endpoint 6 / slave FIFO<br>configuration            | 0           | INFM1            | OEP1        | AUTOOUT         | AUTOIN      | ZEROLENIN   | 0                | WORDWIDE         | 00000101         | rbbbbbrb  |
| E61B         | 1    | EP8FIFOCFG <sup>[7]</sup>    | Endpoint 8 / slave FIFO<br>configuration            | 0           | INFM1            | OEP1        | AUTOOUT         | AUTOIN      | ZEROLENIN   | 0                | WORDWIDE         | 00000101         | rbbbbbrb  |
| E61C         | 4    | reserved                     | comgaration                                         |             |                  |             |                 |             |             |                  |                  |                  |           |
| E620         | 1    | EP2AUTOINLENH <sup>[7]</sup> | Endpoint 2 AUTOIN<br>Packet Length H                | 0           | 0                | 0           | 0               | 0           | PL10        | PL9              | PL8              | 00000010         | rrrrbbb   |
| E621         | 1    | EP2AUTOINLENL <sup>[7]</sup> | Endpoint 2 AUTOIN<br>Packet Length L                | PL7         | PL6              | PL5         | PL4             | PL3         | PL2         | PL1              | PL0              | 00000000         | RW        |
| E622         | 1    | EP4AUTOINLENH <sup>[7]</sup> | 5                                                   | 0           | 0                | 0           | 0               | 0           | 0           | PL9              | PL8              | 00000010         | rrrrrbb   |
| E623         | 1    | EP4AUTOINLENL <sup>[7]</sup> |                                                     | PL7         | PL6              | PL5         | PL4             | PL3         | PL2         | PL1              | PL0              | 00000000         | RW        |
| E624         | 1    | EP6AUTOINLENH <sup>[7]</sup> | Endpoint 6 AUTOIN<br>Packet Length H                | 0           | 0                | 0           | 0               | 0           | PL10        | PL9              | PL8              | 00000010         | rrrrbbb   |
| E625         | 1    | EP6AUTOINLENL <sup>[7]</sup> | Endpoint 6 AUTOIN<br>Packet Length L                | PL7         | PL6              | PL5         | PL4             | PL3         | PL2         | PL1              | PL0              | 00000000         | RW        |
| E626         | 1    | EP8AUTOINLENH <sup>[7]</sup> | Endpoint 8 AUTOIN                                   | 0           | 0                | 0           | 0               | 0           | 0           | PL9              | PL8              | 00000010         | rrrrrbb   |
| E627         | 1    | EP8AUTOINLENL <sup>[7]</sup> | Packet Length H<br>Endpoint 8 AUTOIN                | PL7         | PL6              | PL5         | PL4             | PL3         | PL2         | PL1              | PL0              | 00000000         | RW        |
| E628         | 1    | ECCCFG                       | Packet Length L<br>ECC Configuration                | 0           | 0                | 0           | 0               | 0           | 0           | 0                | ECCM             | 00000000         | mmmb      |
| E629         | 1    | ECCCFG                       | ECC Conliguration                                   | u<br>x      | u<br>x           | u<br>x      | u<br>x          | U<br>X      | v           | u<br>x           |                  | 00000000         |           |
| E629<br>E62A | 1    | ECCRESET<br>ECC1B0           | ECC1 Byte 0 Address                                 | x<br>LINE15 | x<br>LINE14      | x<br>LINE13 | x<br>LINE12     | x<br>LINE11 | x<br>LINE10 | x<br>LINE9       | x<br>LINE8       | 11111111         | R         |
| E62B         | 1    | ECC1B1                       | ECC1 Byte 1 Address                                 | LINE 15     | LINE 14<br>LINE6 | LINE 13     | LINE12<br>LINE4 | LINE11      | LINE10      | LINE9            | LINE0            | 11111111         | R         |
| E62C         | 1    | ECC1B1<br>ECC1B2             | ECC1 Byte 2 Address                                 | COL5        | COL4             | COL3        | COL2            | COL1        | COL0        | LINE I<br>LINE17 | LINE0<br>LINE16  | 11111111         | R<br>R    |
| E62C         | 1    | ECC1B2<br>ECC2B0             | ECC1 Byte 2 Address<br>ECC2 Byte 0 Address          | LINE15      | LINE14           | LINE13      | LINE12          | LINE11      | LINE10      | LINE17<br>LINE9  | LINE 16<br>LINE8 | 11111111         | R<br>R    |
| E62E         | 1    | ECC2B0<br>ECC2B1             | ECC2 Byte 1 Address                                 | LINE 15     | LINE 14<br>LINE6 | LINE 13     | LINE12<br>LINE4 | LINE 1      | LINE10      | LINE9<br>LINE1   | LINE0            | 11111111         | R         |
|              | 11   |                              | LOOL DIG I AUUICSS                                  |             |                  |             |                 |             |             |                  |                  |                  | · `       |

7. Read and writes to these register may require synchronization delay, see the section "Synchronization Delay" in the EZ-USB TRM.



#### Table 9. FX1 Register Summary (continued)

| Hex          | Size | Name                                      | Description                                                    | b7                      | b6                      | b5                       | b4                       |                          | b2   | b1   | b0                     | Default  | Access   |
|--------------|------|-------------------------------------------|----------------------------------------------------------------|-------------------------|-------------------------|--------------------------|--------------------------|--------------------------|------|------|------------------------|----------|----------|
| E62F         | 1    | ECC2B2                                    | ECC2 Byte 2 Address                                            | COL5                    | COL4                    | COL3                     | COL2                     | COL1                     | COL0 | 0    | 0                      | 11111111 | R        |
|              |      |                                           |                                                                |                         |                         |                          |                          |                          |      |      |                        |          |          |
| E630         | 4    |                                           | Endnaist 2 / alava EIEO                                        | DECIO                   | DIZTOTAT                |                          |                          |                          | 0    | PFC9 | PFC8                   | 10001000 | bbbbbrb  |
| E630         | 1    | EP2FIFOPFH <sup>[7]</sup>                 | Endpoint 2 / slave FIFO<br>Programmable Flag H ISO<br>Mode     | DECIS                   | PKTSTAT                 | IN: PKTS[2]<br>OUT:PFC12 | IN: PKTS[1]<br>OUT:PFC11 | OUT:PFC10                | 0    | PFC9 | PEC8                   | 10001000 | ומזממממ  |
| E630         | 1    | EP2FIFOPFH <sup>[7]</sup>                 | Endpoint 2 / slave FIFO<br>Programmable Flag H<br>Non-ISO Mode | DECIS                   | PKTSTAT                 | OUT:PFC12                | OUT:PFC11                | OUT:PFC10                | 0    | PFC9 | IN:PKTS[2]<br>OUT:PFC8 | 10001000 | bbbbbrbl |
|              |      |                                           |                                                                |                         |                         |                          |                          |                          |      |      |                        |          |          |
| E631         | 1    | EP2FIFOPFL <sup>[7]</sup>                 | Endpoint 2 / slave FIFO                                        | IN:PKTS[1]              | IN:PKTS[0]              | PFC5                     | PFC4                     | PFC3                     | PFC2 | PFC1 | PFC0                   | 00000000 | RW       |
|              |      |                                           | Programmable Flag L                                            | OUT:PFĊ7                | OUT:PFC6                |                          |                          |                          |      |      |                        |          |          |
| 5000         |      |                                           |                                                                | 05010                   | DUTOTAT                 |                          | IN DISTOR                |                          |      |      | 5500                   | 40004000 |          |
| E632         | 1    | EP4FIFOPFH <sup>[7]</sup>                 | Endpoint 4 / slave FIFO<br>Programmable Flag H ISO<br>Mode     | DECIS                   | PKTSTAT                 | 0                        | OUT:PFC10                | IN: PKTS[0]<br>OUT:PFC9  | 0    | 0    | PFC8                   | 10001000 | DDrDDrrD |
| E632         | 1    | EP4FIFOPFH <sup>[7]</sup>                 | Endpoint 4 / slave FIFO<br>Programmable Flag H<br>Non-ISO Mode | DECIS                   | PKTSTAT                 | 0                        | OUT:PFC10                | OUT:PFC9                 | 0    | 0    | PFC8                   | 10001000 | bbrbbrrb |
|              |      |                                           |                                                                |                         |                         |                          |                          |                          |      |      |                        |          |          |
| E633         | 1    | EP4FIFOPFL <sup>[7]</sup>                 | Endpoint 4 / slave FIFO<br>Programmable Flag L                 | IN: PKTS[1]<br>OUT:PFC7 | IN: PKTS[0]<br>OUT:PFC6 | PFC5                     | PFC4                     | PFC3                     | PFC2 | PFC1 | PFC0                   | 0000000  | RW       |
|              |      |                                           |                                                                |                         |                         |                          |                          |                          |      |      |                        |          |          |
| E634         | 1    | EP6FIFOPFH <sup>[7]</sup>                 | Endpoint 6 / slave FIFO<br>Programmable Flag H ISO<br>Mode     | DECIS                   | PKTSTAT                 | INPKTS[2]<br>OUT:PFC12   | IN: PKTS[1]<br>OUT:PFC11 | IN: PKTS[0]<br>OUT:PFC10 | 0    | PFC9 | PFC8                   | 00001000 | bbbbbrbl |
| E634         | 1    | EP6FIFOPFH <sup>[7]</sup>                 | Endpoint 6 / slave FIFO<br>Programmable Flag H<br>Non-ISO Mode | DECIS                   | PKTSTAT                 | OUT:PFC12                | OUT:PFC11                | OUT:PFC10                | 0    | PFC9 | IN:PKTS[2]<br>OUT:PFC8 | 00001000 | bbbbbrbl |
|              |      |                                           |                                                                |                         |                         |                          |                          |                          |      |      |                        |          |          |
| E635         | 1    | EP6FIFOPFL <sup>[7]</sup>                 | Endpoint 6 / slave FIFO<br>Programmable Flag L                 | IN:PKTS[1]<br>OUT:PFC7  | IN:PKTS[0]<br>OUT:PFC6  | PFC5                     | PFC4                     | PFC3                     | PFC2 | PFC1 | PFC0                   | 00000000 | RW       |
|              |      |                                           |                                                                |                         |                         |                          |                          |                          |      |      |                        |          |          |
| E636         | 1    | EP8FIFOPFH <sup>[7]</sup>                 | Endpoint 8 / slave FIFO<br>Programmable Flag H ISO<br>Mode     | DECIS                   | PKTSTAT                 | 0                        | IN: PKTS[1]<br>OUT:PFC10 | IN: PKTS[0]<br>OUT:PFC9  | 0    | 0    | PFC8                   | 00001000 | bbrbbrrb |
| E636         | 1    | EP8FIFOPFH <sup>[7]</sup>                 | Endpoint 8 / slave FIFO<br>Programmable Flag H<br>Non-ISO Mode | DECIS                   | PKTSTAT                 | 0                        | OUT:PFC10                | OUT:PFC9                 | 0    | 0    | PFC8                   | 00001000 | bbrbbrrb |
|              |      | 171                                       |                                                                |                         |                         |                          |                          |                          |      |      |                        |          |          |
| E637         | 1    | EP8FIFOPFL <sup>[7]</sup><br>ISO Mode     | Endpoint 8 / slave FIFO<br>Programmable Flag L                 | PFC7                    | PFC6                    | PFC5                     | PFC4                     | PFC3                     | PFC2 | PFC1 | PFC0                   | 00000000 | RW       |
| E637         | 1    | EP8FIFOPFL <sup>[7]</sup><br>Non-ISO Mode | Endpoint 8 / slave FIFO<br>Programmable Flag L                 | IN: PKTS[1]<br>OUT:PFC7 | IN: PKTS[0]<br>OUT:PFC6 | PFC5                     | PFC4                     | PFC3                     | PFC2 | PFC1 | PFC0                   | 00000000 | RW       |
|              | 8    | reserved                                  |                                                                |                         |                         |                          |                          |                          |      |      |                        |          |          |
| E640         | 1    | reserved                                  |                                                                |                         |                         |                          |                          |                          |      |      |                        |          |          |
| E641         | 1    | reserved                                  |                                                                |                         |                         |                          |                          |                          |      |      |                        |          |          |
| E642<br>E643 | 1    | reserved<br>reserved                      |                                                                |                         |                         |                          |                          |                          |      |      |                        |          |          |
| E644         | 4    | reserved                                  |                                                                |                         |                         |                          |                          |                          |      |      | -                      |          |          |
| E648         | 1    | INPKTEND <sup>[7]</sup>                   | Force IN Packet End                                            | Skip                    | 0                       | 0                        | 0                        | EP3                      | EP2  | EP1  | EP0                    | xxxxxxx  | w        |
| E649         | 7    | OUTPKTEND <sup>[7]</sup>                  | Force OUT Packet End                                           | Skip                    | 0                       | 0                        | 0                        | EP3                      | EP2  | EP1  | EP0                    | XXXXXXXX | W        |
|              |      | INTERRUPTS                                |                                                                |                         |                         |                          |                          |                          |      |      |                        |          |          |
| E650         | 1    | EP2FIFOIE <sup>[7]</sup>                  | Endpoint 2 slave FIFO<br>Flag Interrupt Enable                 | 0                       | 0                       | 0                        | 0                        | EDGEPF                   | PF   | EF   | FF                     | 00000000 | RW       |
| E651         | 1    | EP2FIFOIRQ <sup>[7,8]</sup>               | Endpoint 2 slave FIFO<br>Flag Interrupt Request                | 0                       | 0                       | 0                        | 0                        | 0                        | PF   | EF   | FF                     | 00000111 | rrrrbbb  |
| E652         | 1    | EP4FIFOIE <sup>[7]</sup>                  | Endpoint 4 slave FIFO<br>Flag Interrupt Enable                 | 0                       | 0                       | 0                        | 0                        | EDGEPF                   | PF   | EF   | FF                     | 00000000 | RW       |
| E653         | 1    | EP4FIFOIRQ <sup>[7,8]</sup>               | Endpoint 4 slave FIFO<br>Flag Interrupt Request                | 0                       | 0                       | 0                        | 0                        | 0                        | PF   | EF   | FF                     | 00000111 | rrrrbbb  |
| E654         | 1    | EP6FIFOIE <sup>[7]</sup>                  | Endpoint 6 slave FIFO<br>Flag Interrupt Enable                 | 0                       | 0                       | 0                        | 0                        | EDGEPF                   | PF   | EF   | FF                     | 00000000 | RW       |
| E655         | 1    | EP6FIFOIRQ <sup>[7,8]</sup>               | Endpoint 6 slave FIFO<br>Flag Interrupt Request                | 0                       | 0                       | 0                        | 0                        |                          | PF   | EF   | FF                     | 00000110 |          |
|              | 1    | EP8FIFOIE <sup>[7]</sup>                  | Endpoint 8 slave FIFO<br>Flag Interrupt Enable                 | 0                       | 0                       | 0                        | 0                        | EDGEPF                   | PF   | EF   | FF                     | 00000000 | RW       |
| E656         |      |                                           |                                                                |                         |                         |                          |                          |                          |      |      |                        |          | ÷        |
| E656<br>E657 | 1    | EP8FIFOIRQ <sup>[7,8]</sup>               | Endpoint 8 slave FIFO<br>Flag Interrupt Request                | 0                       | 0                       | 0                        | 0                        | 0                        | PF   | EF   | FF                     | 00000110 | rrrrrbbb |

SFRs not part of the standard 8051 architecture.
 The register can only be reset. It cannot be set.