
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

CY7C65113C

USB Hub with Microcontroller

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Document #: 38-08002 Rev. *G Revised March 21, 2014

Features

■ Full Speed USB hub with an integrated microcontroller

■ 8-bit USB optimized microcontroller

❐ Harvard architecture

❐ 6-MHz external clock source

❐ 12-MHz internal CPU clock

❐ 48-MHz internal hub clock

■ Internal memory

❐ 256 bytes of RAM

❐ 8 KB of PROM

■ Integrated Master/Slave I2C-compatible Controller (100 kHz)
enabled through General-purpose I/O (GPIO) pins

■ I/O ports

❐ Two GPIO ports (Port 0 to 2) capable of sinking 7 mA per
pin (typical)

❐ Higher current drive achievable by connecting multiple
GPIO pins together to drive a common output

❐ Each GPIO port can be configured as inputs with internal
pull-ups or open drain outputs or traditional CMOS outputs

❐ Maskable interrupts on all I/O pins

■ 12-bit free-running timer with one microsecond clock ticks

■ Watchdog timer (WDT)

■ Internal Power-on Reset (POR)

■ USB Specification compliance

❐ Conforms to USB Specification, Version 1.1

❐ Conforms to USB HID Specification, Version 1.1

❐ Supports one or two device addresses with up to 5 us-
er-configured endpoints

• Up to two 8-byte control endpoints

• Up to four 8-byte data endpoints

• Up to two 32-byte data endpoints

❐ Integrated USB transceivers

❐ Supports four downstream USB ports

❐ GPIO pins can provide individual power control outputs for
each downstream USB port

❐ GPIO pins can provide individual port over current inputs
for each downstream USB port

■ Improved output drivers to reduce electromagnetic inter-
ference (EMI)

■ Operating voltage from 4.0V to 5.5V DC

■ Operating temperature from 0° to 70° C

■ Available in 28-pin SOIC (-SXC) package

■ Industry-standard programmer support

 CY7C65113C

Document #: 38-08002 Rev. *G Page 2 of 48

Functional Overview

The CY7C65113C device is a one-time programmable 8-bit
microcontroller with a built-in 12-Mbps USB hub that supports up
to four downstream ports. The microcontroller instruction set has
been optimized specifically for USB operations, although the
microcontrollers can be used for a variety of non-USB embedded
applications.

GPIO

The CY7C65113C has 11 GPIO pins (P0[7:0], P1[2:0]), both
rated at 7 mA per pin (typical) sink current. Multiple GPIO pins
can be connected together to drive a single output for more drive
current capacity.

Clock

The microcontroller uses an external 6-MHz crystal and an
internal oscillator to provide a reference to an internal
phase-locked loop (PLL)-based clock generator. This technology
allows the customer application to use an inexpensive 6-MHz
fundamental crystal that reduces the clock-related noise
emissions (EMI). A PLL clock generator provides the 6-, 12-, and
48-MHz clock signals for distribution within the microcontroller.

Memory

The CY7C65113C is offered with 8 KB of PROM.

Power-on Reset, Watchdog, and Free-running Timer

These parts include power-on reset logic, a Watchdog timer, and
a 12-bit free-running timer. The POR logic detects when power
is applied to the device, resets the logic to a known state, and
begins executing instructions at PROM address 0x0000. The
Watchdog timer is used to ensure the microcontroller recovers
after a period of inactivity. The firmware may become inactive for
a variety of reasons, including errors in the code or a hardware
failure such as waiting for an interrupt that never occurs.

I2C

The microcontroller can communicate with external electronics
through the GPIO pins. An I2C-compatible interface accommo-
dates a 100-kHz serial link with an external device.

Timer

The free-running 12-bit timer clocked at 1 MHz provides two
interrupt sources, 128-μs and 1.024-ms. The timer can be used

to measure the duration of an event under firmware control by
reading the timer at the start of the event and after the event is
complete. The difference between the two readings indicates the
duration of the event in microseconds. The upper four bits of the
timer are latched into an internal register when the firmware
reads the lower eight bits. A read from the upper four bits actually
reads data from the internal register, instead of the timer. This
feature eliminates the need for firmware to try to compensate if
the upper four bits increment immediately after the lower eight
bits are read.

Interrupts

The microcontroller supports ten maskable interrupts in the
vectored interrupt controller. Interrupt sources include the USB
Bus Reset interrupt, the 128-μs (bit 6) and 1.024-ms (bit 9)
outputs from the free-running timer, five USB endpoints, the USB
hub, the GPIO ports, and the I2C-compatible master mode
interface. The timer bits cause an interrupt (if enabled) when the
bit toggles from LOW ‘0’ to HIGH ‘1’. The USB endpoints interrupt
after the USB host has written data to the endpoint FIFO or after
the USB controller sends a packet to the USB host. The GPIO
ports also have a level of masking to select which GPIO inputs
can cause a GPIO interrupt. Input transition polarity can be
programmed for each GPIO port as part of the port configuration.
The interrupt polarity can be rising edge (‘0’ to ‘1’) or falling edge
(‘1’ to ‘0’).

USB

The CY7C65113C includes an integrated USB Serial Interface
Engine (SIE) that supports the integrated peripherals and the
hub controller function. The hardware supports up to two USB
device addresses with one device address for the hub (two
endpoints) and a device address for a compound device (three
endpoints). The SIE allows the USB host to communicate with
the hub and functions integrated into the microcontroller. The
CY7C65113C part includes a 1:4 hub repeater with one
upstream port and four downstream ports. The USB Hub allows
power management control of the downstream ports by using
GPIO pins assigned by the user firmware. The user has the
option of ganging the downstream ports together with a single
pair of power management pins, or providing power
management for each port with four pairs of power management
pins.

 CY7C65113C

Document #: 38-08002 Rev. *G Page 3 of 48

Logic Block Diagram

Interrupt
Controller

PROM

12-bit
Timer

Reset

Watchdog
Timer

Repeater

Power-on

SCLKI2C comp.

USB

Transceiver

USB

Transceiver

USB

Transceiver

GPIO
PORT 1

GPIO
PORT 0

P0[0]

P0[7]

P1[0]

P1[2]

SDATA

D+[3]
D–[3]

D+[2]
D–[2]

8
-b

it
 B

u
s

6-MHz crystal

RAM

USB
SIE

USB

Transceiver
D+[4]
D–[4]

USB

Transceiver
D+[0]

D–[0]

D+[1]
D–[1]

Upstream
USB Port

256 byte

8 KB

Clock

6 MHz

12-MHz
8-bit
CPU

Power management under firmware

control using GPIO pins

Interface

PLL

12 MHz

48 MHz

Divider

Downstream USB Ports

*I2C-compatible interface enabled by firmware through

P1[1:0]

 CY7C65113C

Document #: 38-08002 Rev. *G Page 4 of 48

Contents

Pin Configurations ... 5

Product Summary Tables .. 5

Programming Model ...8

Clocking .. 11

Reset .. 12

Suspend Mode .. 13

General-purpose I/O Ports ... 14

12-bit Free-Running Timer ... 17

I2C Configuration Register .. 18

I2C-compatible Controller .. 18

Processor Status and Control Register 20

Interrupts ... 21

USB Overview ... 26

USB Hub .. 26

USB Mode Tables ... 35

Register Summary .. 39

Sample Schematic .. 41

Absolute Maximum Ratings .. 41

Electrical Characteristics ... 42

Switching Characteristics .. 43

Ordering Information .. 44

Ordering Code Definitions ... 44

Package Diagram .. 45

Acronyms .. 46

Document Conventions ... 46

Units of Measure ... 46

Document History Page ... 47

Sales, Solutions, and Legal Information 48

Worldwide Sales and Design Support 48

Products .. 48

PSoC Solutions ... 48

 CY7C65113C

Document #: 38-08002 Rev. *G Page 5 of 48

Product Summary Tables

Pin Assignments

Pin Configurations

Figure 1. CY7C65113C 28-Pin SOIC

1

2

3

4

5

6

7

9

11

12

13

14

XTALIN

10

8

15

17

16

19

18

21

20

23

22

25

24

26

28

27

VCC

P1[1]

P1[0]

P1[2]

D–[3]

D+[3]

D–[4]

D+[4]

VREF

GND

D+[0]

D–[0]

D+[1]

D–[1]

D+[2]

D–[2]

P0[7]

P0[5]

P0[3]

P0[1]

XTALOUT

GND

VPP

P0[0]

P0[2]

P0[4]

P0[6]

Top View

Table 1. Pin Assignments

Name I/O 28-pin Description

D+[0], D–[0] I/O 5, 6 Upstream port, USB differential data.

D+[1], D–[1] I/O 7, 8 Downstream Port 1, USB differential data.

D+[2], D–[2] I/O 9, 10 Downstream Port 2, USB differential data.

D+[3], D–[3] I/O 23, 24 Downstream Port 3, USB differential data.

D+[4], D–[4] I/O 21, 22 Downstream Port 4, USB differential data.

P0 I/O P1[7:0]
11, 15, 12, 16, 13, 17, 14, 18

GPIO Port 0 capable of sinking 7 mA (typical).

P1 I/O P1[2:0]
25, 27, 26

GPIO Port 1 capable of sinking 7 mA (typical).

XTALIN IN 2 6-MHz crystal or external clock input.

XTALOUT OUT 1 6-MHz crystal out.

VPP 19 Programming voltage supply, tie to ground during normal operation.

VCC 28 Voltage supply.

GND 4, 20 Ground.

VREF IN 3 External 3.3V supply voltage for the downstream differential data output
buffers and the D+ pull-up.

 CY7C65113C

Document #: 38-08002 Rev. *G Page 6 of 48

I/O Register Summary

I/O registers are accessed via the I/O Read (IORD) and I/O Write
(IOWR, IOWX) instructions. IORD reads data from the selected
port into the accumulator. IOWR performs the reverse; it writes
data from the accumulator to the selected port. Indexed I/O Write
(IOWX) adds the contents of X to the address in the instruction
to form the port address and writes data from the accumulator to

the specified port. Specifying address 0 (e.g., IOWX 0h) means
the I/O register is selected solely by the contents of X.

All undefined registers are reserved. Do not write to reserved
registers as this may cause an undefined operation or increased
current consumption during operation. When writing to registers
with reserved bits, the reserved bits must be written with ‘0.’

Table 2. I/O Register Summary

Register Name I/O Address Read/Write Function Page

Port 0 Data 0x00 R/W GPIO Port 0 Data 14

Port 1 Data 0x01 R/W GPIO Port 1 Data 17

Port 0 Interrupt Enable 0x04 W Interrupt Enable for Pins in Port 0 19

Port 1 Interrupt Enable 0x05 W Interrupt Enable for Pins in Port 1 19

GPIO Configuration 0x08 R/W GPIO Port Configurations 18

I2C Configuration 0x09 R/W I2C Position Configuration 20

USB Device Address A 0x10 R/W USB Device Address A 31

EP A0 Counter Register 0x11 R/W USB Address A, Endpoint 0 Counter 33

EP A0 Mode Register 0x12 R/W USB Address A, Endpoint 0 Configuration 32

EP A1 Counter Register 0x13 R/W USB Address A, Endpoint 1 Counter 33

EP A1 Mode Register 0x14 R/W USB Address A, Endpoint 1 Configuration 33

EP A2 Counter Register 0x15 R/W USB Address A, Endpoint 2 Counter 33

EP A2 Mode Register 0x16 R/W USB Address A, Endpoint 2 Configuration 33

USB Status & Control 0x1F R/W USB Upstream Port Traffic Status and Control 31

Global Interrupt Enable 0x20 R/W Global Interrupt Enable 21

Endpoint Interrupt Enable 0x21 R/W USB Endpoint Interrupt Enables 21

Interrupt Vector 0x23 R Pending Interrupt Vector Read/Clear 23

Timer (LSB) 0x24 R Lower Eight Bits of Free-running Timer (1 MHz) 20

Timer (MSB) 0x25 R Upper Four Bits of Free-running Timer 20

WDR Clear 0x26 W Watchdog Reset Clear 13

I2C Control & Status 0x28 R/W I2C Status and Control 21

I2C Data 0x29 R/W I2C Data 18

Reserved 0x30 Reserved

Reserved 0x31 Reserved

Reserved 0x32 Reserved

Reserved 0x38-0x3F Reserved

USB Device Address B 0x40 R/W USB Device Address B (not used in 5-endpoint mode) 31

EP B0 Counter Register 0x41 R/W USB Address B, Endpoint 0 Counter 33

EP B0 Mode Register 0x42 R/W USB Address B, Endpoint 0 Configuration, or
USB Address A, Endpoint 3 in 5-endpoint mode

32

EP B1 Counter Register 0x43 R/W USB Address B, Endpoint 1 Counter 33

EP B1 Mode Register 0x44 R/W USB Address B, Endpoint 1 Configuration, or
USB Address A, Endpoint 4 in 5-endpoint mode

33

Hub Port Connect Status 0x48 R/W Hub Downstream Port Connect Status 27

Hub Port Enable 0x49 R/W Hub Downstream Ports Enable 27

 CY7C65113C

Document #: 38-08002 Rev. *G Page 7 of 48

Instruction Set Summary

Refer to the CYASM Assembler User’s Guide for more details. Note that conditional jump instructions (i.e., JC, JNC, JZ, JNZ) take
five cycles if jump is taken, four cycles if no jump.

Hub Port Speed 0x4A R/W Hub Downstream Ports Speed 27

Hub Port Control (Ports [4:1]) 0x4B R/W Hub Downstream Ports Control (Ports [4:1]) 28

Hub Port Suspend 0x4D R/W Hub Downstream Port Suspend Control 30

Hub Port Resume Status 0x4E R Hub Downstream Ports Resume Status 30

Hub Ports SE0 Status 0x4F R Hub Downstream Ports SE0 Status 29

Hub Ports Data 0x50 R Hub Downstream Ports Differential Data 29

Hub Downstream Force Low 0x51 R/W Hub Downstream Ports Force LOW (Ports [1:4]) 28

Processor Status & Control 0xFF R/W Microprocessor Status and Control Register 20

Table 3. Instruction Set Summary

MNEMONIC operand opcode cycles MNEMONIC operand opcode cycles

HALT 00 7 NOP 20 4

ADD A,expr data 01 4 INC A acc 21 4

ADD A,[expr] direct 02 6 INC X x 22 4

ADD A,[X+expr] index 03 7 INC [expr] direct 23 7

ADC A,expr data 04 4 INC [X+expr] index 24 8

ADC A,[expr] direct 05 6 DEC A acc 25 4

ADC A,[X+expr] index 06 7 DEC X x 26 4

SUB A,expr data 07 4 DEC [expr] direct 27 7

SUB A,[expr] direct 08 6 DEC [X+expr] index 28 8

SUB A,[X+expr] index 09 7 IORD expr address 29 5

SBB A,expr data 0A 4 IOWR expr address 2A 5

SBB A,[expr] direct 0B 6 POP A 2B 4

SBB A,[X+expr] index 0C 7 POP X 2C 4

OR A,expr data 0D 4 PUSH A 2D 5

OR A,[expr] direct 0E 6 PUSH X 2E 5

OR A,[X+expr] index 0F 7 SWAP A,X 2F 5

AND A,expr data 10 4 SWAP A,DSP 30 5

AND A,[expr] direct 11 6 MOV [expr],A direct 31 5

AND A,[X+expr] index 12 7 MOV [X+expr],A index 32 6

XOR A,expr data 13 4 OR [expr],A direct 33 7

XOR A,[expr] direct 14 6 OR [X+expr],A index 34 8

XOR A,[X+expr] index 15 7 AND [expr],A direct 35 7

CMP A,expr data 16 5 AND [X+expr],A index 36 8

CMP A,[expr] direct 17 7 XOR [expr],A direct 37 7

CMP A,[X+expr] index 18 8 XOR [X+expr],A index 38 8

MOV A,expr data 19 4 IOWX [X+expr] index 39 6

MOV A,[expr] direct 1A 5 CPL 3A 4

MOV A,[X+expr] index 1B 6 ASL 3B 4

Table 2. I/O Register Summary (continued)

Register Name I/O Address Read/Write Function Page

 CY7C65113C

Document #: 38-08002 Rev. *G Page 8 of 48

Programming Model

14-bit Program Counter

The 14-bit Program Counter (PC) allows access to up to 8 KB of
PROM available with the CY7C65113C architecture. The top
32 bytes of the ROM in the 8K part are reserved for testing
purposes. The program counter is cleared during reset, such that
the first instruction executed after a reset is at address 0x0000h.
Typically, this is a jump instruction to a reset handler that
initializes the application (see Interrupt Vectors on page 23).

The lower eight bits of the program counter are incremented as
instructions are loaded and executed. The upper six bits of the
program counter are incremented by executing an XPAGE
instruction. As a result, the last instruction executed within a
256-byte “page” of sequential code should be an XPAGE

instruction. The assembler directive “XPAGEON” causes the
assembler to insert XPAGE instructions automatically. Because
instructions can be either one or two bytes long, the assembler
may occasionally need to insert a NOP followed by an XPAGE
to execute correctly.

The address of the next instruction to be executed, the carry flag,
and the zero flag are saved as two bytes on the program stack
during an interrupt acknowledge or a CALL instruction. The
program counter, carry flag, and zero flag are restored from the
program stack during a RETI instruction. Only the program
counter is restored during a RET instruction.

The program counter cannot be accessed directly by the
firmware. The program stack can be examined by reading SRAM
from location 0x00 and up.

MOV X,expr data 1C 4 ASR 3C 4

MOV X,[expr] direct 1D 5 RLC 3D 4

reserved 1E RRC 3E 4

XPAGE 1F 4 RET 3F 8

MOV A,X 40 4 DI 70 4

MOV X,A 41 4 EI 72 4

MOV PSP,A 60 4 RETI 73 8

CALL addr 50-5F 10 JC addr C0-CF 5 (or 4)

JMP addr 80-8F 5 JNC addr D0-DF 5 (or 4)

CALL addr 90-9F 10 JACC addr E0-EF 7

JZ addr A0-AF 5 (or 4) INDEX addr F0-FF 14

JNZ addr B0-BF 5 (or 4)

Table 3. Instruction Set Summary (continued)

MNEMONIC operand opcode cycles MNEMONIC operand opcode cycles

 CY7C65113C

Document #: 38-08002 Rev. *G Page 9 of 48

Program Memory Organization

Figure 2. Program Memory Space with Interrupt Vector Table

Note that the upper 32 bytes of the 8K PROM are reserved. Therefore, user’s program must not overwrite this space.

after reset Address

 14-bit PC 0x0000 Program execution begins here after a reset

0x0002 USB Bus Reset interrupt vector

0x0004 128-μs timer interrupt vector

0x0006 1.024-ms timer interrupt vector

0x0008 USB address A endpoint 0 interrupt vector

0x000A USB address A endpoint 1 interrupt vector

0x000C USB address A endpoint 2 interrupt vector

0x000E USB address B endpoint 0 interrupt vector

0x0010 USB address B endpoint 1 interrupt vector

0x0012 Hub interrupt vector

0x0014 Reserved

0x0016 GPIO interrupt vector

0x0018 I2C interrupt vector

0x001A Program Memory begins here

0x1FDF (8 KB -32) PROM ends here (CY7C65113C)

 CY7C65113C

Document #: 38-08002 Rev. *G Page 10 of 48

8-bit Accumulator (A)

The accumulator is the general-purpose register for the micro-
controller.

8-bit Temporary Register (X)

The “X” register is available to the firmware for temporary storage
of intermediate results. The microcontroller can perform indexed
operations based on the value in X. Refer to Section for
additional information.

8-bit Program Stack Pointer (PSP)

During a reset, the Program Stack Pointer (PSP) is set to 0x00
and “grows” upward from this address. The PSP may be set by
firmware, using the MOV PSP,A instruction. The PSP supports
interrupt service under hardware control and CALL, RET, and
RETI instructions under firmware control. The PSP is not
readable by the firmware.

During an interrupt acknowledge, interrupts are disabled and the
14-bit program counter, carry flag, and zero flag are written as
two bytes of data memory. The first byte is stored in the memory
addressed by the PSP, then the PSP is incremented. The second
byte is stored in memory addressed by the PSP, and the PSP is
incremented again. The overall effect is to store the program

counter and flags on the program “stack” and increment the PSP
by two.

The Return From Interrupt (RETI) instruction decrements the
PSP, then restores the second byte from memory addressed by
the PSP. The PSP is decremented again and the first byte is
restored from memory addressed by the PSP. After the program
counter and flags have been restored from stack, the interrupts
are enabled. The overall effect is to restore the program counter
and flags from the program stack, decrement the PSP by two,
and re-enable interrupts.

The Call Subroutine (CALL) instruction stores the program
counter and flags on the program stack and increments the PSP
by two.

The Return From Subroutine (RET) instruction restores the
program counter but not the flags from the program stack and
decrements the PSP by two.

Data Memory Organization

The CY7C65113C microcontrollers provide 256 bytes of data
RAM. Normally, the SRAM is partitioned into four areas: program
stack, user variables, data stack, and USB endpoint FIFOs. The
following is one example of where the program stack, data stack,
and user variables areas could be located.

Notes
1. Refer to Section for a description of DSP.
2. Endpoint sizes are fixed by the Endpoint Size Bit (I/O register 0x1F, Bit 7). See Table 10.

After reset Address

8-bit DSP 8-bit PSP 0x00 Program Stack Growth

(Move DSP[1])

8-bit DSP user selected Data Stack Growth

User variables

USB FIFO space for up to two Addresses and five endpoints[2]

0xFF

 CY7C65113C

Document #: 38-08002 Rev. *G Page 11 of 48

8-bit Data Stack Pointer (DSP)

The Data Stack Pointer (DSP) supports PUSH and POP instruc-
tions that use the data stack for temporary storage. A PUSH
instruction pre-decrements the DSP, then writes data to the
memory location addressed by the DSP. A POP instruction reads
data from the memory location addressed by the DSP, then
post-increments the DSP.

During a reset, the DSP is reset to 0x00. A PUSH instruction
when DSP equals 0x00 writes data at the top of the data RAM
(address 0xFF). This writes data to the memory area reserved
for USB endpoint FIFOs. Therefore, the DSP should be indexed
at an appropriate memory location that does not compromise the
Program Stack, user-defined memory (variables), or the USB
endpoint FIFOs.

For USB applications, the firmware should set the DSP to an
appropriate location to avoid a memory conflict with RAM
dedicated to USB FIFOs. The memory requirements for the USB
endpoints are described in Section 17.2. Example assembly
instructions to do this with two device addresses (FIFOs begin at
0xD8) are shown below:

MOV A,20h ; Move 20 hex into Accumulator (must be D8h
or less)

SWAP A,DSP ; swap accumulator value into DSP register.

Address Modes

The CY7C65113 microcontrollers support three addressing
modes for instructions that require data operands: data, direct,
and indexed.

Data (Immediate)

“Data” address mode refers to a data operand that is actually a
constant encoded in the instruction. As an example, consider the
instruction that loads A with the constant 0xD8:

• MOV A, 0D8h.

This instruction requires two bytes of code where the first byte
identifies the “MOV A” instruction with a data operand as the

second byte. The second byte of the instruction is the constant
“0xD8.” A constant may be referred to by name if a prior “EQU”
statement assigns the constant value to the name. For example,
the following code is equivalent to the example shown above:

• DSPINIT: EQU 0D8h

• MOV A, DSPINIT.

Direct

“Direct” address mode is used when the data operand is a
variable stored in SRAM. In that case, the one byte address of
the variable is encoded in the instruction. As an example,
consider an instruction that loads A with the contents of memory
address location 0x10:

• MOV A, [10h].

Normally, variable names are assigned to variable addresses
using “EQU” statements to improve the readability of the
assembler source code. As an example, the following code is
equivalent to the example shown above:

• buttons: EQU 10h

• MOV A, [buttons].

Indexed

“Indexed” address mode allows the firmware to manipulate
arrays of data stored in SRAM. The address of the data operand
is the sum of a constant encoded in the instruction and the
contents of the “X” register. Normally, the constant is the “base”
address of an array of data and the X register contains an index
that indicates which element of the array is actually addressed:

• array: EQU 10h

• MOV X, 3

• MOV A, [X+array].

This would have the effect of loading A with the fourth element
of the SRAM “array” that begins at address 0x10. The fourth
element would be at address 0x13.

Clocking

XTALOUT

XTALIN
To Internal PLL

30 pF 30 pF

(pin 1)

(pin 2)

Figure 3. Clock Oscillator On-Chip Circuit

 CY7C65113C

Document #: 38-08002 Rev. *G Page 12 of 48

The XTALIN and XTALOUT are the clock pins to the microcon-
troller. The user can connect an external oscillator or a crystal to
these pins. When using an external crystal, keep PCB traces
between the chip leads and crystal as short as possible (less
than 2 cm). A 6-MHz fundamental frequency parallel resonant
crystal can be connected to these pins to provide a reference
frequency for the internal PLL. The two internal 30-pF load caps
appear in series to the external crystal and would be equivalent
to a 15-pF load. Therefore, the crystal must have a required load
capacitance of about 15–18 pF. A ceramic resonator does not
allow the microcontroller to meet the timing specifications of full
speed USB and therefore a ceramic resonator is not recom-
mended with these parts.

An external 6-MHz clock can be applied to the XTALIN pin if the
XTALOUT pin is left open. Grounding the XTALOUT pin when
driving XTALIN with an oscillator does not work because the
internal clock is effectively shorted to ground.

Reset

The CY7C65113C supports two resets: POR and WDR. Each of
these resets causes:

• all registers to be restored to their default states

• the USB device addresses to be set to 0

• all interrupts to be disabled

• the PSP and DSP to be set to memory address 0x00.

The occurrence of a reset is recorded in the Processor Status
and Control Register, as described in Section. Bits 4 and 6 are
used to record the occurrence of POR and WDR respectively.
Firmware can interrogate these bits to determine the cause of a
reset.

Program execution starts at ROM address 0x0000 after a reset.
Although this looks like interrupt vector 0, there is an important
difference. Reset processing does NOT push the program
counter, carry flag, and zero flag onto program stack. The
firmware reset handler should configure the hardware before the
“main” loop of code. Attempting to execute a RET or RETI in the
firmware reset handler causes unpredictable execution results.

Power-on Reset

When VCC is first applied to the chip, the POR signal is asserted
and the CY7C65113C enters a “semi-suspend” state. During the
semi-suspend state, which is different from the suspend state
defined in the USB specification, the oscillator and all other
blocks of the part are functional, except for the CPU. This
semi-suspend time ensures that both a valid VCC level is reached
and that the internal PLL has time to stabilize before full
operation begins. When the VCC has risen above approximately
2.5V, and the oscillator is stable, the POR is deasserted and the
on-chip timer starts counting. The first 1 ms of suspend time is
not interruptible, and the semi-suspend state continues for an
additional 95 ms unless the count is bypassed by a USB Bus
Reset on the upstream port. The 95 ms provides time for VCC to
stabilize at a valid operating voltage before the chip executes
code.

If a USB Bus Reset occurs on the upstream port during the 95
ms semi-suspend time, the semi-suspend state is aborted and
program execution begins immediately from address 0x0000. In
this case, the Bus Reset interrupt is pending but not serviced
until firmware sets the USB Bus Reset Interrupt Enable bit (Bit 0,
Figure 18) and enables interrupts with the EI command.

The POR signal is asserted whenever VCC drops below approx-
imately 2.5V, and remains asserted until VCC rises above this
level again. Behavior is the same as described above.

 CY7C65113C

Document #: 38-08002 Rev. *G Page 13 of 48

Watchdog Reset

The WDR occurs when the internal Watchdog Timer rolls over.
Writing any value to the write-only Watchdog Reset Clear
Register (Figure) clears the timer. The timer rolls over and WDR
occurs if it is not cleared within tWATCH of the last clear (see
Section for the value of tWATCH). Bit 6 of the Processor Status
and Control Register (Figure 17) is set to record this event (the
register contents are set to 010X0001 by the WDR). A Watchdog
Timer Reset lasts for 2 ms, after which the microcontroller begins
execution at ROM address 0x0000.

Figure 4. Watchdog Reset (Address 0x26)

The USB transmitter is disabled by a Watchdog Reset because
the USB Device Address Registers are cleared (see Section).
Otherwise, the USB Controller would respond to all address 0
transactions.

It is possible for the WDR bit of the Processor Status and Control
Register (Figure 17) to be set following a POR event. If a
firmware interrogates the Processor Status and Control Register
for a set condition on the WDR bit, the WDR bit should be ignored
if the POR bit is set (Bit 3 of the Processor Status and Control
Register).

Suspend Mode

The CY7C65113C can be placed into a low-power state by
setting the Suspend bit of the Processor Status and Control
register. All logic blocks in the device are turned off except the
GPIO interrupt logic and the USB receiver. The clock oscillator
and PLL, as well as the free-running and Watchdog timers, are
shut down. Only the occurrence of an enabled GPIO interrupt or
non-idle bus activity at a USB upstream or downstream port
wakes the part out of suspend. The Run bit in the Processor
Status and Control Register must be set to resume a part out of
suspend.

The clock oscillator restarts immediately after exiting suspend
mode. The microcontroller returns to a fully functional state 1 ms
after the oscillator is stable. The microcontroller executes the
instruction following the I/O write that placed the device into
suspend mode before servicing any interrupt requests.

The GPIO interrupt allows the controller to wake-up periodically
and poll system components while maintaining a very low
average power consumption. To achieve the lowest possible
current during suspend mode, all I/O should be held at VCC or
Gnd. Note: This also applies to internal port pins that may not be
bonded in a particular package.

Typical code for entering suspend is shown below:

... ; All GPIO set to low-power state (no floating
pins)
... ; Enable GPIO interrupts if desired for
wake-up
mov a, 09h ; Set suspend and run bits
iowr FFh ; Write to Status and Control Register – Enter
suspend, wait for USB activity (or GPIO Interrupt)
nop ; This executes before any ISR
... ; Remaining code for exiting suspend routine.

write to
chdog Timer
ster

No write to WDT
register, so WDR
goes HIGH

Execution begin
Reset Vector 0x

tWATCH
2 ms

 CY7C65113C

Document #: 38-08002 Rev. *G Page 14 of 48

General-purpose I/O Ports

Figure 5. Block Diagram of a GPIO Pin

There are 11 GPIO pins (P0[7:0] and P1[2:0]) for the hardware interface. Each port can be configured as inputs with internal pull-ups,
open drain outputs, or traditional CMOS outputs. The data for each GPIO port is accessible through the data registers. Port data
registers are shown in Figure 6 through Figure , and are set to 1 on reset.

Figure 6. Port 0 Data.

Special care should be taken with any unused GPIO data bits.
An unused GPIO data bit, either a pin on the chip or a port bit
that is not bonded on a particular package, must not be left
floating when the device enters the suspend state. If a GPIO data
bit is left floating, the leakage current caused by the floating bit
may violate the suspend current limitation specified by the USB

Specifications. If a ‘1’ is written to the unused data bit and the
port is configured with open drain outputs, the unused data bit
remains in an indeterminate state. Therefore, if an unused port
bit is programmed in open-drain mode, it must be written with a
‘0.’

Port 0 Data Address 0x00

Bit # 7 6 5 4 3 2 1 0

Bit Name P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Reset 1 1 1 1 1 1 1 1

Figure 7. Port1 Data

Port 1 Data Address 0x01

Bit # - - - - - 2 1 0

Bit Name - - - - - P1.2 P1.1 P1.0

Read/Write - - - - - R/W R/W R/W

Reset - - - - - 1 1 1

GPIO

VCC

14 kΩ

GPIO
CFG mode

2-bits

Data
Out
Latch

Internal
Data Bus

Port Read

Port Write

Interrupt
Enable

C
o

n
tr

o
l

C
o

n
tr

o
l

Interrupt
Controller

Q1

Q3*

Q2

*Port 0,1: Low Isink

Data
Interrupt
Latch

OE

Reg_Bit

STRB

Data

In

Latch

(Latch is Transparent)

PIN

 CY7C65113C

Document #: 38-08002 Rev. *G Page 15 of 48

A read from a GPIO port always returns the present state of the
voltage at the pin, independent of the settings in the Port Data
Registers. During reset, all of the GPIO pins are set to a
high-impedance input state. Writing a ‘0’ to a GPIO pin drives the
pin LOW. In this state, a ‘0’ is always read on that GPIO pin
unless an external source overdrives the internal pull-down
device.

GPIO Configuration Port

Every GPIO port can be programmed as inputs with internal
pull-ups, outputs LOW or HIGH, or Hi-Z (floating, the pin is not
driven internally). In addition, the interrupt polarity for each port
can be programmed. The Port Configuration bits (Figure) and
the Interrupt Enable bit (Figure 10 through Figure 10) determine
the interrupt polarity of the port pins

Figure 8. GPIO Configuration Register.

As shown in Table 4 below, a positive polarity on an input pin
represents a rising edge interrupt (LOW to HIGH), and a negative
polarity on an input pin represents a falling edge interrupt (HIGH
to LOW).

The GPIO interrupt is generated when all of the following condi-
tions are met: the Interrupt Enable bit of the associated Port
Interrupt Enable Register is enabled, the GPIO Interrupt Enable
bit of the Global Interrupt Enable Register (Figure 18) is enabled,
the Interrupt Enable Sense (bit 2, Figure 17) is set, and the GPIO
pin of the port sees an event matching the interrupt polarity.

The driving state of each GPIO pin is determined by the value
written to the pin’s Data Register (Figure 6 through Figure) and
by its associated Port Configuration bits as shown in the GPIO
Configuration Register (Figure). These ports are configured on
a per-port basis, so all pins in a given port are configured
together. The possible port configurations are detailed in Table 4.
As shown in this table below, when a GPIO port is configured with
CMOS outputs, interrupts from that port are disabled.

During reset, all of the bits in the GPIO Configuration Register
are written with ‘0’ to select Hi-Z mode for all GPIO ports as the
default configuration.

GPIO Configuration Address 0x08

Bit # 7 6 5 4 3 2 1 0

Bit Name Reserved Reserved Reserved Reserved Port 1
Config Bit 1

Port 1
Config Bit 0

Port 0
Config Bit 1

Port 0
Config Bit 0

Read/Write - - - - R/W R/W R/W R/W

Reset - - - - 0 0 0 0

 CY7C65113C

Document #: 38-08002 Rev. *G Page 16 of 48

Q1, Q2, and Q3 discussed below are the transistors referenced
in Figure . The available GPIO drive strength are:

■ Output LOW Mode: The pin’s Data Register is set to ‘0.’

Writing ‘0’ to the pin’s Data Register puts the pin in output
LOW mode, regardless of the contents of the Port Configura-
tion Bits[1:0]. In this mode, Q1 and Q2 are OFF. Q3 is ON.
The GPIO pin is driven LOW through Q3.

■ Output HIGH Mode: The pin’s Data Register is set to 1 and
the Port Configuration Bits[1:0] is set to ‘10.’

In this mode, Q1 and Q3 are OFF. Q2 is ON. The GPIO is
pulled up through Q2. The GPIO pin is capable of sourcing...
of current.

■ Resistive Mode: The pin’s Data Register is set to 1 and the
Port Configuration Bits[1:0] is set to ‘11.’

Q2 and Q3 are OFF. Q1 is ON. The GPIO pin is pulled up with
an internal 14kΩ resistor. In resistive mode, the pin may serve

as an input. Reading the pin’s Data Register returns a logic
HIGH if the pin is not driven LOW by an external source.

■ Hi-Z Mode: The pin’s Data Register is set to1 and Port Config-
uration Bits[1:0] is set either ‘00’ or ‘01.’

Q1, Q2, and Q3 are all OFF. The GPIO pin is not driven inter-
nally. In this mode, the pin may serve as an input. Reading
the Port Data Register returns the actual logic value on the
port pins.

GPIO Interrupt Enable Ports

Each GPIO pin can be individually enabled or disabled as an
interrupt source. The Port 0–1 Interrupt Enable Registers
provide this feature with an Interrupt Enable bit for each GPIO
pin.

During a reset, GPIO interrupts are disabled by clearing all of the
GPIO Interrupt Enable bits. Writing a ‘1’ to a GPIO Interrupt
Enable bit enables GPIO interrupts from the corresponding input
pin. All GPIO pins share a common interrupt, as discussed in
Section .

Figure 9. . Port 0 Interrupt Enable

Table 4. GPIO Port Output Control Truth Table and Interrupt Polarity

Port Config Bit 1 Port Config Bit 0 Data Register Output Drive Strength Interrupt Enable Bit Interrupt Polarity

1 1 0 Output LOW 0 Disabled

1 Resistive 1 – (Falling Edge)

1 0 0 Output LOW 0 Disabled

1 Output HIGH 1 Disabled

0 1 0 Output LOW 0 Disabled

1 Hi-Z 1 – (Falling Edge)

0 0 0 Output LOW 0 Disabled

1 Hi-Z 1 + (Rising Edge)

Port 0 Interrupt Enable Address 0x04

Bit # 7 6 5 4 3 2 1 0

Bit Name P0.7 Intr
Enable

P0.6 Intr
Enable

P0.5 Intr
Enable

P0.4 Intr
Enable

P0.3 Intr
Enable

P0.2 Intr
Enable

P0.1 Intr
Enable

P0.0 Intr
Enable

Read/Write W W W W W W W W

Reset 0 0 0 0 0 0 0 0

Figure 10. Port 1 Interrupt Enable

Port 1 Interrupt Enable Address 0x05

Bit # 7 6 5 4 3 2 1 0

Bit Name Reserved Reserved Reserved Reserved Reserved P0.2 Intr
Enable

P1.1 Intr
Enable

P1.0 Intr
Enable

Read/Write - - - - - W W W

Reset - - - - - 0 0 0

 CY7C65113C

Document #: 38-08002 Rev. *G Page 17 of 48

12-bit Free-Running Timer

The 12-bit timer operates with a 1-μs tick, provides two interrupts (128 μs and 1.024 ms) and allows the firmware to directly time
events that are up to 4 ms in duration. The lower eight bits of the timer can be read directly by the firmware. Reading the lower eight
bits latches the upper four bits into a temporary register. When the firmware reads the upper four bits of the timer, it is actually reading
the count stored in the temporary register. The effect of this is to ensure a stable 12-bit timer value can be read, even when the two
reads are separated in time.

Figure 11. Timer LSB Register

Bit [7:0]: Timer lower eight bits

Figure 12. Timer MSB Register.

Bit [3:0]: Timer higher nibble

Bit [7:4]: Reserved.

Figure 13. Timer Block Diagram

Timer LSB Address 0x24

Bit # 7 6 5 4 3 2 1 0

Bit Name Timer Bit 7 TimerBit 6 Timer Bit 5 Timer Bit 4 Timer Bit 3 Timer Bit 2 Timer Bit 1 Timer Bit 0

Read/Write R R R R R R R R

Reset 0 0 0 0 0 0 0 0

Timer MSB Address 0x25

Bit # 7 6 5 4 3 2 1 0

Bit Name Reserved Reserved Reserved Reserved Timer Bit 11 Timer Bit 10 Timer Bit 9 Timer Bit 8

Read/Write – – – – R R R R

Reset 0 0 0 0 0 0 0 0

10 9 78 56 4 3 2 1 MHz clock

1.024-ms interrupt

128-μs interrupt

To Timer Registers
8

1 011

L1 L0L2L3

D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0

 CY7C65113C

Document #: 38-08002 Rev. *G Page 18 of 48

 I2C Configuration Register

Internal hardware supports communication with external devices through an I2C-compatible interface. I2C-compatible function is
discussed in detail in Section .[3] The I2C Position bit (Bit 7, Figure 14) and I2C Port Width bit (Bit 1, Figure 14) select the locations of
the SCL (clock) and SDA (data) pins on Port 1 as shown in Table 5. These bits are cleared on reset. When the GPIO is configured
for I2C function, the internal pull ups on the pins are disabled. Addition of an external weak pull-up resistors on SCL and SDA is
recommended.

Figure 14. I2C Configuration Register

.

I2C-compatible Controller

The I2C-compatible block provides a versatile two-wire commu-
nication with external devices, supporting master, slave, and
multi-master modes of operation. The I2C-compatible block
functions by handling the low-level signaling in hardware, and
issuing interrupts as needed to allow firmware to take appro-
priate action during transactions. While waiting for firmware
response, the hardware keeps the I2C-compatible bus idle if
necessary.

The I2C-compatible block generates an interrupt to the micro-
controller at the end of each received or transmitted byte, when
a stop bit is detected by the slave when in receive mode, or when
arbitration is lost. Details of the interrupt responses are given in
Section .

The I2C-compatible interface consists of two registers, an I2C
Data Register (Figure 15) and an I2C Status and Control
Register (Figure 16). The I2C Data Register is implemented as
separate read and write registers. Generally, the I2C Status and

Control Register should only be monitored after the I2C interrupt,
as all bits are valid at that time. Polling this register at other times
could read misleading bit status if a transaction is underway.

The I2C clock (SCL) is connected to bit 0 of GPIO port 1, and the
I2C SDA data is connected to bit 1 GPIO port 1. The port
selection is determined by settings in the I2C Port Configuration
Register (Section). Once the I2C-compatible functionality is
enabled by setting the I2C Enable bit of the I2C Status and
Control Register (bit 0, Figure 16), the two LSB ([1:0]) of the
corresponding GPIO port is placed in Open Drain mode,
regardless of the settings of the GPIO Configuration Register. In
Open Drain mode, the GPIO pin outputs LOW if the pin’s Data
Register is ‘0’, and the pin is in Hi-Z mode if the pin’s Data
Register is ‘1’. The electrical characteristics of the
I2C-compatible interface is the same as that of GPIO port 1. Note
that the IOL (max) is 2 mA @ VOL = 2.0V for port 1.

All control of the I2C clock (SCL) and data (SDA) lines is
performed by the I2C-compatible block.

Figure 15. I2C Data Register

Note
3. I2C-compatible function must be separately enabled, as described in Section .

I2C Configuration Address 0x09

Bit # 7 6 5 4 3 2 1 0

Bit Name I2C Position Reserved Reserved Reserved Reserved Reserved I2C Port
Width

Reserved

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Table 5. I2C Port Configuration

I2C Position (Bit7, Figure 14) I2C Port Width (Bit1, Figure 14) I2C Position

0 0 I2C on P1[1:0], 0:SCL, 1:SDA

I2C Data Address 0x29

Bit # 7 6 5 4 3 2 1 0

Bit Name I2C Data 7 I2C Data 6 I2C Data 5 I2C Data 4 I2C Data 3 I2C Data 2 I2C Data 1 I2C Data 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Reset X X X X X X X X

 CY7C65113C

Document #: 38-08002 Rev. *G Page 19 of 48

Bits [7..0]: I2C Data

Contains the 8-bit data on the I2C Bus

Figure 16. I2C Status and Control Register.

The I2C Status and Control register bits are defined in Table 6, with a more detailed description following.

Bit 7: MSTR Mode

Setting this bit to 1 causes the I2C-compatible block to ini-
tiate a master mode transaction by sending a start bit and
transmitting the first data byte from the data register (this
typically holds the target address and R/W bit). Subse-
quent bytes are initiated by setting the Continue bit, as
described below.

Clearing this bit (set to 0) causes the GPIO pins to operate
normally.

In master mode, the I2C-compatible block generates the
clock (SCK), and drives the data line as required depend-
ing on transmit or receive state. The I2C-compatible block
performs any required arbitration and clock synchroniza-
tion. IN the event of a loss of arbitration, this MSTR bit is
cleared, the ARB Lost bit is set, and an interrupt is gener-
ated by the microcontroller. If the chip is the target of an
external master that wins arbitration, then the interrupt is
held off until the transaction from the external master is
completed.

When MSTR Mode is cleared from 1 to 0 by a firmware
write, an I2C Stop bit is generated.

Bit 6: Continue/Busy

This bit is written by the firmware to indicate that the firm-
ware is ready for the next byte transaction to begin. In oth-
er words, the bit has responded to an interrupt request and
has completed the required update or read of the data reg-
ister. During a read this bit indicates if the hardware is busy
and is locking out additional writes to the I2C Status and
Control register. This locking allows the hardware to com-
plete certain operations that may require an extended pe-
riod of time. Following an I2C interrupt, the I2C-compatible
block does not return to the Busy state until firmware sets
the Continue bit. This allows the firmware to make one
control register write without the need to check the Busy
bit.

Bit 5: Xmit Mode

This bit is set by firmware to enter transmit mode and per-
form a data transmit in master or slave mode. Clearing this
bit sets the part in receive mode. Firmware generally de-
termines the value of this bit from the R/W bit associated
with the I2C address packet. The Xmit Mode bit state is
ignored when initially writing the MSTR Mode or the Re-

I2C Status and Control Address 0x28

Bit # 7 6 5 4 3 2 1 0

Bit Name MSTR Mode Continue/Bu
sy

Xmit Mode ACK Addr ARB
Lost/Restart

Received
Stop

I2C Enable

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Table 6. I2C Status and Control Register Bit Definitions

Bit Name Description

0 I2C Enable When set to ‘1’, the I2C-compatible function is enabled. When cleared, I2C GPIO pins operate
normally.

1 Received Stop Reads 1 only in slave receive mode, when I2C Stop bit detected (unless firmware did not ACK the
last transaction).

2 ARB Lost/Restart Reads 1 to indicate master has lost arbitration. Reads 0 otherwise.
Write to 1 in master mode to perform a restart sequence (also set Continue bit).

3 Addr Reads 1 during first byte after start/restart in slave mode, or if master loses arbitration.
Reads 0 otherwise. This bit should always be written as 0.

4 ACK In receive mode, write 1 to generate ACK, 0 for no ACK.
In transmit mode, reads 1 if ACK was received, 0 if no ACK received.

5 Xmit Mode Write to 1 for transmit mode, 0 for receive mode.

6 Continue/Busy Write 1 to indicate ready for next transaction.
Reads 1 when I2C-compatible block is busy with a transaction, 0 when transaction is complete.

7 MSTR Mode Write to 1 for master mode, 0 for slave mode. This bit is cleared if master loses arbitration.
Clearing from 1 to 0 generates Stop bit.

 CY7C65113C

Document #: 38-08002 Rev. *G Page 20 of 48

start bits, as these cases always cause transmit mode for
the first byte.

Bit 4: ACK

This bit is set or cleared by firmware during receive oper-
ation to indicate if the hardware should generate an ACK
signal on the I2C-compatible bus. Writing a 1 to this bit
generates an ACK (SDA LOW) on the I2C-compatible bus
at the ACK bit time. During transmits (Xmit Mode = 1), this
bit should be cleared.

Bit 3: Addr

This bit is set by the I2C-compatible block during the first
byte of a slave receive transaction, after an I2C start or
restart. The Addr bit is cleared when the firmware sets the
Continue bit. This bit allows the firmware to recognize
when the master has lost arbitration, and in slave mode it
allows the firmware to recognize that a start or restart has
occurred.

Bit 2: ARB Lost/Restart

This bit is valid as a status bit (ARB Lost) after master
mode transactions. In master mode, set this bit (along with
the Continue and MSTR Mode bits) to perform an I2C re-
start sequence. The I2C target address for the restart must
be written to the data register before setting the Continue
bit. To prevent false ARB Lost signals, the Restart bit is
cleared by hardware during the restart sequence.

Bit 1: Receive Stop

This bit is set when the slave is in receive mode and de-
tects a stop bit on the bus. The Receive Stop bit is not set
if the firmware terminates the I2C transaction by not ac-
knowledging the previous byte transmitted on the
I2C-compatible bus, e.g., in receive mode if firmware sets
the Continue bit and clears the ACK bit.

Bit 0: I2C Enable

Set this bit to override GPIO definition with I2C-compatible
function on the two I2C-compatible pins. When this bit is
cleared, these pins are free to function as GPIOs. In
I2C-compatible mode, the two pins operate in open drain
mode, independent of the GPIO configuration setting.

Processor Status and Control Register

Figure 17. Processor Status and Control Register

Bit 0: Run

This bit is manipulated by the HALT instruction. When Halt
is executed, all the bits of the Processor Status and Control
Register are cleared to 0. Since the run bit is cleared, the
processor stops at the end of the current instruction. The
processor remains halted until an appropriate reset occurs
(power-on or Watchdog). This bit should normally be writ-
ten as a ‘1.’

Bit 1: Reserved

Bit 1 is reserved and must be written as a zero.

Bit 2: Interrupt Enable Sense

This bit indicates whether interrupts are enabled or dis-
abled. Firmware has no direct control over this bit as writ-
ing a zero or one to this bit position has no effect on inter-
rupts. A ‘0’ indicates that interrupts are masked off and a
‘1’ indicates that the interrupts are enabled. This bit is fur-
ther gated with the bit settings of the Global Interrupt En-
able Register (Figure 18) and USB End Point Interrupt En-
able Register (Figure 19). Instructions DI, EI, and RETI
manipulate the state of this bit.

Bit 3: Suspend

Writing a ‘1’ to the Suspend bit halts the processor and
cause the microcontroller to enter the suspend mode that
significantly reduces power consumption. A pending, en-
abled interrupt or USB bus activity causes the device to
come out of suspend. After coming out of suspend, the
device resumes firmware execution at the instruction fol-
lowing the IOWR which put the part into suspend. An
IOWR attempting to put the part into suspend is ignored if
USB bus activity is present. See Section for more details
on suspend mode operation.

Bit 4: Power-on Reset

The Power-on Reset is set to ‘1’ during a power-on reset.
The firmware can check bits 4 and 6 in the reset handler
to determine whether a reset was caused by a power-on
condition or a Watchdog timeout. A POR event may be
followed by a Watchdog reset before firmware begins ex-
ecuting, as explained below.

Bit 5: USB Bus Reset Interrupt

The USB Bus Reset Interrupt bit is set when the USB Bus
Reset is detected on receiving a USB Bus Reset signal on
the upstream port. The USB Bus Reset signal is a sin-
gle-ended zero (SE0) that lasts from 12 to 16 μs. An SE0

Processor Status and Control Address 0xFF

Bit # 7 6 5 4 3 2 1 0

Bit Name IRQ
Pending

 Watchdog
Reset

USB Bus
Reset

Interrupt

Power-on
Reset

 Suspend Interrupt
Enable
Sense

 Reserved Run

Read/Write R R/W R/W R/W R/W R R/W R/W

Reset 0 0 0 1 0 0 0 1

 CY7C65113C

Document #: 38-08002 Rev. *G Page 21 of 48

is defined as the condition in which both the D+ line and
the D– line are LOW at the same time.

Bit 6: Watchdog Reset

The Watchdog Reset is set during a reset initiated by the
Watchdog Timer. This indicates the Watchdog Timer went
for more than tWATCH (8 ms minimum) between Watchdog
clears. This can occur with a POR event, as noted below.

Bit 7: IRQ Pending

The IRQ pending, when set, indicates that one or more of
the interrupts has been recognized as active. An interrupt
remains pending until its interrupt enable bit is set
(Figure 18, Figure 19) and interrupts are globally enabled.
At that point, the internal interrupt handling sequence
clears this bit until another interrupt is detected as pending.

During power-up, the Processor Status and Control Register is
set to 00010001, which indicates a POR (bit 4 set) has occurred
and no interrupts are pending (bit 7 clear). During the 96-ms
suspend at start-up (explained in Section), a Watchdog Reset
also occurs unless this suspend is aborted by an upstream SE0

before 8 ms. If a WDR occurs during the power-up suspend
interval, firmware reads 01010001 from the Status and Control
Register after power-up. Normally, the POR bit should be cleared
so a subsequent WDR can be clearly identified. If an upstream
bus reset is received before firmware examines this register, the
Bus Reset bit may also be set.

During a Watchdog Reset, the Processor Status and Control
Register is set to 01XX0001, which indicates a Watchdog Reset
(bit 6 set) has occurred and no interrupts are pending (bit 7
clear). The Watchdog Reset does not effect the state of the POR
and the Bus Reset Interrupt bits.

Interrupts

Interrupts are generated by GPIO pins, internal timers,
I2C-compatible operation, internal USB hub and USB traffic
conditions. All interrupts are maskable by the Global Interrupt
Enable Register and the USB End Point Interrupt Enable
Register. Writing a ‘1’ to a bit position enables the interrupt
associated with that bit position.

Figure 18. Global Interrupt Enable Register

Bit 0: USB Bus RST Interrupt Enable

1 = Enable Interrupt on a USB Bus Reset; 0 = Disable
interrupt on a USB Bus Reset (Refer to section).

Bit 1:128-μs Interrupt Enable

1 = Enable Timer interrupt every 128 μs; 0 = Disable Timer
Interrupt for every 128 μs.

Bit 2: 1.024-ms Interrupt Enable

1 = Enable Timer interrupt every 1.024 ms; 0 = Disable
Timer Interrupt every 1.024 ms.

Bit 3: USB Hub Interrupt Enable

1 = Enable Interrupt on a Hub status change; 0 = Disable
interrupt due to hub status change. (Refer to section .)

Bit 4: Reserved.

Bit 5: GPIO Interrupt Enable

1 = Enable Interrupt on falling/rising edge on any GPIO; 0
= Disable Interrupt on falling/rising edge on any GPIO (Re-
fer to section , and .).

Bit 6: I2C Interrupt Enable

1 = Enable Interrupt on I2C related activity; 0 = Disable I2C
related activity interrupt. (Refer to section .)

Bit 7: Reserved

Figure 19. USB Endpoint Interrupt Enable Register.

Global Interrupt Enable Register Address 0X20

Bit # 7 6 5 4 3 2 1 0

Bit Name Reserved I2C Interrupt
Enable

GPIO
Interrupt
Enable

Reserved USB Hub
Interrupt
Enable

1.024-ms
Interrupt
Enable

 128-μs
Interrupt
Enable

USB Bus
RST

Interrupt
Enable

Read/Write – R/W R/W - R/W R/W R/W R/W

Reset – 0 0 X 0 0 0 0

USB Endpoint Interrupt Enable Address 0X21

Bit # 7 6 5 4 3 2 1 0

Bit Name Reserved Reserved Reserved EPB1
Interrupt
Enable

 EPB0
Interrupt
Enable

EPA2
Interrupt
Enable

EPA1
Interrupt
Enable

EPA0
Interrupt
Enable

Read/Write – – – R/W R/W R/W R/W R/W

Reset – – – 0 0 0 0 0

 CY7C65113C

Document #: 38-08002 Rev. *G Page 22 of 48

Bit 0: EPA0 Interrupt Enable

1 = Enable Interrupt on data activity through endpoint A0;
0 = Disable Interrupt on data activity through endpoint A0

Bit 1: EPA1 Interrupt Enable

1 = Enable Interrupt on data activity through endpoint A1;
0 = Disable Interrupt on data activity through endpoint A1

Bit 2: EPA2 Interrupt Enable

1 = Enable Interrupt on data activity through endpoint A2;
0 = Disable Interrupt on data activity through endpoint A2.

Bit 3: EPB0 Interrupt Enable

1 = Enable Interrupt on data activity through endpoint B0;
0 = Disable Interrupt on data activity through endpoint B0

Bit 4: EPB1 Interrupt Enable

1 = Enable Interrupt on data activity through endpoint B1;
0 = Disable Interrupt on data activity through endpoint B1

Bit [7..5]: Reserved

During a reset, the contents of the Global Interrupt Enable
Register and USB End Point Interrupt Enable Register are
cleared, effectively disabling all interrupts,

The interrupt controller contains a separate flip-flop for each
interrupt. See Figure 20 for the logic block diagram of the
interrupt controller. When an interrupt is generated, it is first
registered as a pending interrupt. It stays pending until it is
serviced or a reset occurs. A pending interrupt only generates an
interrupt request if it is enabled by the corresponding bit in the
interrupt enable registers. The highest priority interrupt request
is serviced following the completion of the currently executing
instruction.

When servicing an interrupt, the hardware does the following:

1. Disables all interrupts by clearing the Global Interrupt Enable
bit in the CPU (the state of this bit can be read at Bit 2 of the
Processor Status and Control Register, Figure 17).

2. Clears the flip-flop of the current interrupt.

3. Generates an automatic CALL instruction to the ROM
address associated with the interrupt being serviced (i.e., the
Interrupt Vector, see Section).

The instruction in the interrupt table is typically a JMP instruction
to the address of the Interrupt Service Routine (ISR). The user
can reenable interrupts in the interrupt service routine by
executing an EI instruction. Interrupts can be nested to a level
limited only by the available stack space.

The Program Counter value as well as the Carry and Zero flags
(CF, ZF) are stored onto the Program Stack by the automatic
CALL instruction generated as part of the interrupt acknowledge
process. The user firmware is responsible for ensuring that the
processor state is preserved and restored during an interrupt.
The PUSH A instruction should typically be used as the first
command in the ISR to save the accumulator value and the POP
A instruction should be used to restore the accumulator value
just before the RETI instruction. The program counters CF and
ZF are restored and interrupts are enabled when the RETI
instruction is executed.

The IDI and EI instruction can be used to disable and enable
interrupts, respectively. These instruction affect only the Global
Interrupt Enable bit of the CPU. If desired, EI can be used to
re-enable interrupts while inside an ISR, instead of waiting for the
RETI that exits the ISR. While the global interrupt enable bit is
cleared, the presence of a pending interrupt can be detected by
examining the IRQ Sense bit (Bit 7 in the Processor Status and
Control Register).

 CY7C65113C

Document #: 38-08002 Rev. *G Page 23 of 48

Interrupt Vectors

The Interrupt Vectors supported by the USB Controller are listed in Table 7. The lowest-numbered interrupt (USB Bus Reset interrupt)
has the highest priority, and the highest-numbered interrupt (I2C interrupt) has the lowest priority.

Figure 20. Interrupt Controller Function Diagram

Although Reset is not an interrupt, the first instruction executed after a reset is at PROM address 0x0000h—which corresponds to the
first entry in the Interrupt Vector Table. Because the JMP instruction is two bytes long, the interrupt vectors occupy two bytes.

Table 7. Interrupt Vector Assignments

Interrupt Vector Number ROM Address Function

Not Applicable 0x0000 Execution after Reset begins here

1 0x0002 USB Bus Reset interrupt

2 0x0004 128-μs timer interrupt

3 0x0006 1.024-ms timer interrupt

4 0x0008 USB Address A Endpoint 0 interrupt

5 0x000A USB Address A Endpoint 1 interrupt

6 0x000C USB Address A Endpoint 2 interrupt

7 0x000E USB Address B Endpoint 0 interrupt

8 0x0010 USB Address B Endpoint 1 interrupt

9 0x0012 USB Hub interrupt

10 0x0014 DAC interrupt

11 0x0016 GPIO interrupt

12 0x0018 I2C interrupt

CLR

Global
Interrupt

Interrupt

Acknowledge

IRQout

USB Reset Clear Interrupt

Interrupt Priority Encoder

Enable [0]D Q 1

Enable
Bit

CLR

USB Reset IRQ
128-μs CLR
128-μs IRQ

1-ms CLR
1-ms IRQ

AddrA EP0 IRQ
AddrA EP0 CLR

I2C IRQ

Vector

Enable [6]

CLK

CLR

D
Q

CLK

 1

I2C CLR

I2C Int

USB Reset Int

AddrA EP1 IRQ
AddrA EP1 CLR

IRQ Sense

IRQ

Controlled by DI, EI, and
RETI Instructions

DAC IRQ
DAC CLR

To CPU

CPU

GPIO IRQ
GPIO CLR

Hub IRQ
Hub CLR

AddrA EP2 IRQ
AddrA EP2 CLR

AddrB EP0 IRQ
AddrB EP0 CLR

AddrB EP1 IRQ
AddrB EP1 CLR

(Reg 0x20)

(Reg 0x20)

CLR

Enable [2]
D Q 1

CLKAddrA ENP2 Int (Reg 0x21)

Int Enable
Sense

 CY7C65113C

Document #: 38-08002 Rev. *G Page 24 of 48

Interrupt Latency

Interrupt latency can be calculated from the following equation:

For example, if a 5-clock cycle instruction such as JC is being
executed when an interrupt occurs, the first instruction of the
Interrupt Service Routine executes a minimum of 16 clocks
(1+10+5) or a maximum of 20 clocks (5+10+5) after the interrupt
is issued. For a 12-MHz internal clock (6-MHz crystal), 20 clock
periods is 20/12 MHz = 1.667 μs.

USB Bus Reset Interrupt

The USB Controller recognizes a USB Reset when a Single
Ended Zero (SE0) condition persists on the upstream USB port
for 12–16 μs. SE0 is defined as the condition in which both the
D+ line and the D– line are LOW. A USB Bus Reset may be
recognized for an SE0 as short as 12 μs, but is always recog-
nized for an SE0 longer than 16 μs. When a USB Bus Reset is
detected, bit 5 of the Processor Status and Control Register
(Figure 17) is set to record this event. In addition, the controller
clears the following registers:

SIE Section:.....USB Device Address Registers (0x10, 0x40)

Hub Section:Hub Ports Connect Status (0x48)

.. Hub Ports Enable (0x49)

...Hub Ports Speed (0x4A)

...Hub Ports Suspend (0x4D)

...Hub Ports Resume Status (0x4E)

... Hub Ports SE0 Status (0x4F)

..Hub Ports Data (0x50)

... Hub Downstream Force (0x51).

A USB Bus Reset Interrupt is generated at the end of the USB
Bus Reset condition when the SE0 state is deasserted. If the
USB reset occurs during the start-up delay following a POR, the
delay is aborted as described in Section .

Timer Interrupt

There are two periodic timer interrupts: the 128-μs interrupt and
the 1.024-ms interrupt. The user should disable both timer inter-
rupts before going into the suspend mode to avoid possible
conflicts between servicing the timer interrupts first or the
suspend request first.

USB Endpoint Interrupts

There are five USB endpoint interrupts, one per endpoint. A USB
endpoint interrupt is generated after the USB host writes to a
USB endpoint FIFO or after the USB controller sends a packet
to the USB host. The interrupt is generated on the last packet of
the transaction (e.g., on the host’s ACK on an IN transfer, or on
the device ACK on an OUT transfer). If no ACK is received during
an IN transaction, no interrupt is generated.

USB Hub Interrupt

A USB hub interrupt is generated by the hardware after a
connect/disconnect change, babble, or a resume event is
detected by the USB repeater hardware. The babble and resume
events are additionally gated by the corresponding bits of the
Hub Port Enable Register (Figure 24). The connect/disconnect
event on a port does not generate an interrupt if the SIE does not
drive the port (i.e., the port is being forced).

GPIO Interrupt

Each of the GPIO pins can generate an interrupt, if enabled. The
interrupt polarity can be programmed for each GPIO port as part
of the GPIO configuration. All of the GPIO pins share a single
interrupt vector, which means the firmware needs to read the
GPIO ports with enabled interrupts to determine which pin or pins
caused an interrupt. A block diagram of the GPIO interrupt logic
is shown in Figure .

Interrupt latency = (Number of clock cycles remaining in the current instruction) + (10 clock cycles for the CALL instruction) +
(5 clock cycles for the JMP instruction)

 CY7C65113C

Document #: 38-08002 Rev. *G Page 25 of 48

Figure 21. GPIO Interrupt Structure
.

Refer to Sections and for more information of setting GPIO
interrupt polarity and enabling individual GPIO interrupts. If one
port pin has triggered an interrupt, no other port pins can cause
a GPIO interrupt until that port pin has returned to its inactive
(non-trigger) state or its corresponding port interrupt enable bit is
cleared. The USB Controller does not assign interrupt priority to
different port pins and the Port Interrupt Enable Registers are not
cleared during the interrupt acknowledge process.

I2C Interrupt

The I2C interrupt occurs after various events on the
I2C-compatible bus to signal the need for firmware interaction.
This generally involves reading the I2C Status and Control
Register (Figure 16) to determine the cause of the interrupt,
loading/reading the I2C Data Register as appropriate, and finally
writing the Processor Status and Control Register (Figure 17) to
initiate the subsequent transaction. The interrupt indicates that
status bits are stable and it is safe to read and write the I2C
registers. Refer to Section for details on the I2C registers.

When enabled, the I2C-compatible state machines generate
interrupts on completion of the following conditions. The refer-
enced bits are in the I2C Status and Control Register.

1. In slave receive mode, after the slave receives a byte of data:
The Addr bit is set, if this is the first byte since a start or restart
signal was sent by the external master. Firmware must read
or write the data register as necessary, then set the ACK, Xmit
MODE, and Continue/Busy bits appropriately for the next
byte.

2. In slave receive mode, after a stop bit is detected: The
Received Stop bit is set, if the stop bit follows a slave receive
transaction where the ACK bit was cleared to 0, no stop bit
detection occurs.

3. In slave transmit mode, after the slave transmits a byte of
data: The ACK bit indicates if the master that requested the
byte acknowledged the byte. If more bytes are to be sent,
firmware writes the next byte into the Data Register and then
sets the Xmit MODE and Continue/Busy bits as required.

4. In master transmit mode, after the master sends a byte of
data. Firmware should load the Data Register if necessary,
and set the Xmit MODE, MSTR MODE, and Continue/Busy
bits appropriately. Clearing the MSTR MODE bit issues a stop
signal to the I2C-compatible bus and return to the idle state.

5. In master receive mode, after the master receives a byte of
data: Firmware should read the data and set the ACK and
Continue/Busy bits appropriately for the next byte. Clearing
the MSTR MODE bit at the same time causes the master state
machine to issue a stop signal to the I2C-compatible bus and
leave the I2C-compatible hardware in the idle state.

6. When the master loses arbitration: This condition clears the
MSTR MODE bit and sets the ARB Lost/Restart bit immedi-
ately and then waits for a stop signal on the I2C-compatible
bus to generate the interrupt.

The Continue/Busy bit is cleared by hardware prior to interrupt
conditions 1 to 4. Once the Data Register has been read or
written, firmware should configure the other control bits and set
the Continue/Busy bit for subsequent transactions. Following an
interrupt from master mode, firmware should perform only one
write to the Status and Control Register that sets the
Continue/Busy bit, without checking the value of the
Continue/Busy bit. The Busy bit may otherwise be active and I2C
register contents may be changed by the hardware during the
transaction, until the I2C interrupt occurs.

Port

Register OR Gate
GPIO Interrupt
Flip Flop

CLR
GPIO
Pin

1 = Enable
0 = Disable

Port Interrupt
Enable Register

1 = Enable
0 = Disable

Interrupt
Priority

Encoder

IRQout

Interrupt

Vector

D Q

M
U
X

1

(1 input per
 GPIO pin)

Global
GPIO Interrupt

Enable

(Bit 5, Register 0x20)

IRA

Configuration

	Contact us
	Features
	Functional Overview
	Logic Block Diagram
	Contents
	Pin Configurations
	Product Summary Tables
	Pin Assignments
	I/O Register Summary
	Instruction Set Summary

	Programming Model
	14-bit Program Counter
	Program Memory Organization

	8-bit Accumulator (A)
	8-bit Temporary Register (X)
	8-bit Program Stack Pointer (PSP)
	Data Memory Organization

	8-bit Data Stack Pointer (DSP)
	Address Modes
	Data (Immediate)
	Direct
	Indexed

	Clocking
	Reset
	Power-on Reset
	Watchdog Reset

	Suspend Mode
	General-purpose I/O Ports
	GPIO Configuration Port
	GPIO Interrupt Enable Ports

	12-bit Free-Running Timer
	I2C Configuration Register
	I2C-compatible Controller
	Processor Status and Control Register
	Interrupts
	Interrupt Vectors
	Interrupt Latency
	USB Bus Reset Interrupt
	Timer Interrupt
	USB Endpoint Interrupts
	USB Hub Interrupt
	GPIO Interrupt

