

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CY7C66013C, CY7C66113C

Full Speed USB (12 Mbps) Peripheral Controller with Integrated Hub

Features

- Full speed USB peripheral microcontroller with an integrated USB hub
 - □ Well suited for USB compound devices such as a keyboard hub function
- 8-bit USB optimized microcontroller
 - □ Harvard architecture
 - □ 6 MHz external clock source
 - □ 12 MHz internal CPU clock
 - □ 48 MHz internal Hub clock
- Internal memory
 - □ 256 bytes of RAM
 - 3 8 KB of PROM
- Integrated Master and Slave I²C compatible controller (100 kHz) enabled through General Purpose I/O (GPIO) pins
- Hardware Assisted Parallel Interface (HAPI) for data transfer to external devices
- I/O ports
 - □ Three GPIO ports (Port 0 to 2) capable of sinking 8 mA per pin (typical)
 - □ An additional GPIO port (Port 3) capable of sinking 12 mA per pin (typical) for high current requirements: LEDs
 - ☐ Higher current drive achievable by connecting multiple GPIO pins together to drive a common output
 - □ Each GPIO port is configured as inputs with internal pull ups or open drain outputs or traditional CMOS outputs
 - A Digital to Analog Conversion (DAC) port with programmable current sink outputs is available on the CY7C66113C device
 - Maskable interrupts on all I/O pins
- 12-bit free running timer with one microsecond clock ticks
- Watchdog Timer (WDT)
- Internal Power on Reset (POR)
- USB Specification compliance
 - □ Conforms to USB Specification, Version 1.1
 - □ Conforms to USB HID Specification, Version 1.1
 - □ Supports one or two device addresses with up to five user configured endpoints
 - Up to two 8-byte control endpoints
 - · Up to four 8-byte data endpoints
 - Up to two 32-byte data endpoints
 - □ Integrated USB transceivers
 - □ Supports four downstream USB ports
 - □ GPIO pins provide individual power control outputs for each downstream USB port
 - □ GPIO pins provide individual port over current inputs for each downstream USB port

- Improved output drivers to reduce electromagnetic interference (EMI)
- Operating voltage from 4.0V-5.5V DC
- Operating temperature from 0°C-70°C
- CY7C66013C available in 48-pin SSOP (-PVXC) packages
- CY7C66113C available in 56-pin QFN or 56-pin SSOP (-PVXC) packages
- Industry standard programmer support

Functional Overview

The CY7C66013C and CY7C66113C are compound devices with a full speed USB microcontroller in combination with a USB hub. Each device is suited for combination peripheral functions with hubs such as a keyboard hub function. The 8-bit one time programmable microcontroller with a 12 Mbps USB Hub supports as many as four downstream ports.

GPIO

The CY7C66013C features 29 GPIO pins to support USB and other applications. The I/O pins are grouped into four ports (P0[7:0], P1[7:0], P2[7:0], P3[4:0]) where each port is configured as inputs with internal pull ups, open drain outputs, or traditional CMOS outputs. Ports 0 to 2 are rated at 8 mA per pin (typical) sink current. Port 3 pins are rated at 12 mA per pin (typical) sink current, which allows these pins to drive LEDs. Multiple GPIO pins are connected together to drive a single output for more drive current capacity. Additionally, each I/O pin is used to generate a GPIO interrupt to the microcontroller. All of the GPIO interrupts all share the same "GPIO" interrupt vector.

The CY7C66113C has 31 GPIO pins (P0[7:0], P1[7:0], P2[7:0], P3[6:0]).

DAC

The CY7C66113C has an additional port P4[7:0] that features an additional eight programmable sink current I/O pins (DAC). Every DAC pin includes an integrated 14 k Ω pull up resistor. When a '1' is written to a DAC I/O pin, the output current sink is disabled and the output pin is driven HIGH by the internal pull up resistor. When a '0' is written to a DAC I/O pin, the internal pull up is disabled and the output pin provides the programmed amount of sink current. A DAC I/O pin is used as an input with an internal pull up by writing a '1' to the pin.

The sink current for each DAC I/O pin is individually programmed to one of sixteen values using dedicated Isink registers. DAC bits DAC[1:0] is used as high current outputs with a programmable sink current range of 3.2 to 16 mA (typical). DAC bits DAC[7:2] have a programmable current sink range of 0.2 to 1.0 mA (typical). Multiple DAC pins are connected together to drive a single output that requires more sink current capacity. Each I/O pin is used to generate a DAC interrupt to the microcontroller. Also, the interrupt polarity for each DAC I/O pin is individually programmable.

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Document Number: 38-08024 Rev. *D Revised June 18, 2009

Clock

The microcontroller uses an external 6 MHz crystal and an internal oscillator to provide a reference to an internal PLL based clock generator. This technology allows the customer application to use an inexpensive 6 MHz fundamental crystal that reduces the clock related noise emissions (EMI). A PLL clock generator provides the 6, 12, and 48 MHz clock signals for distribution within the microcontroller.

Memory

The CY7C66013C and CY7C66113C have 8 KB of PROM.

Power on Reset, Watchdog, and Free Running Timer

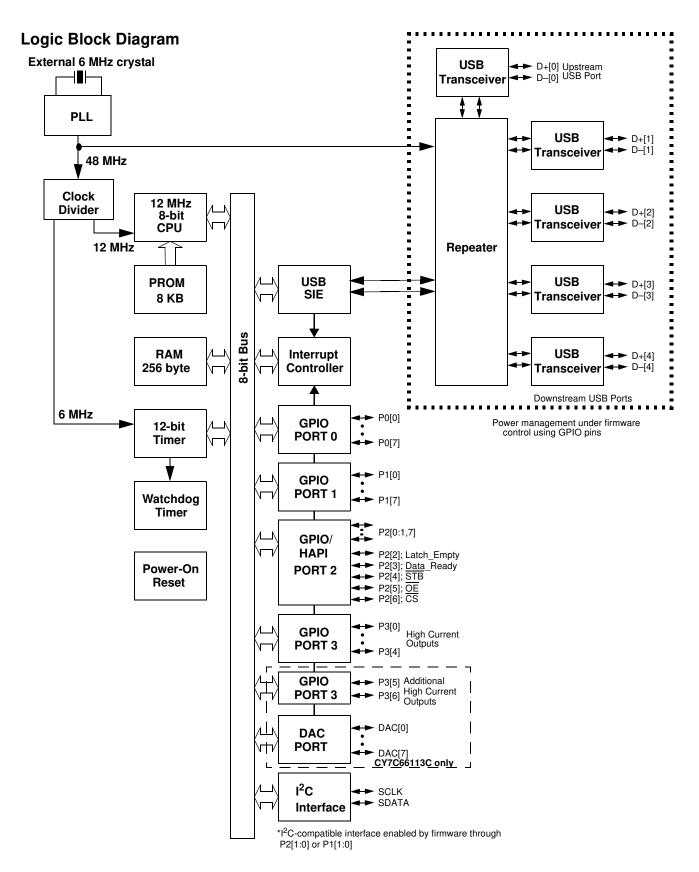
These parts include POR logic, a WDT, and a 12-bit free-running timer. The POR logic detects when power is applied to the device, resets the logic to a known state, and begins executing instructions at PROM address 0x0000. The WDT is used to ensure that the microcontroller recovers after a period of inactivity. The firmware may become inactive for a variety of reasons, including errors in the code or a hardware failure such as waiting for an interrupt that never occurs.

I²C and HAPI Interface

The microcontroller communicates with external electronics through the GPIO pins. An I^2C compatible interface accommodates a 100 kHz serial link with an external device. There is also a HAPI to transfer data to an external device.

Timer

The free-running 12-bit timer clocked at 1 MHz provides two interrupt sources, 128 μs and 1.024 ms. The timer is used to measure the duration of an event under firmware control by reading the timer at the start of the event and after the event is complete. The difference between the two readings indicates the duration of the event in microseconds. The upper four bits of the timer are latched into an internal register when the firmware reads the lower eight bits. A read from the upper four bits actually reads data from the internal register, instead of the timer. This feature eliminates the need for firmware to try to compensate if the upper four bits increment immediately after the lower eight bits are read.


Interrupts

The microcontroller supports eleven maskable interrupts in the vectored interrupt controller. Interrupt sources include the 128 us (bit 6) and 1.024 ms (bit 9) outputs from the free-running timer, five USB endpoints, the USB hub, the DAC port, the GPIO ports, and the I²C compatible master mode interface. The timer bits cause an interrupt (if enabled) when the bit toggles from LOW '0' to HIGH '1.' The USB endpoints interrupt after the USB host has written data to the endpoint FIFO or after the USB controller sends a packet to the USB host. The DAC ports have an additional level of masking that allows the user to select which DAC inputs causes a DAC interrupt. The GPIO ports also have a level of masking to select which GPIO inputs causes a GPIO interrupt. For additional flexibility, the input transition polarity that causes an interrupt is programmable for each pin of the DAC port. Input transition polarity is programmed for each GPIO port as part of the port configuration. The interrupt polarity can be rising edge ('0' to '1') or falling edge ('1' to '0').

USB

The CY7C66013C and CY7C66113C include an integrated USB Serial Interface Engine (SIE) that supports the integrated peripherals and the hub controller function. The hardware supports up to two USB device addresses with one device address for the hub (two endpoints) and a device address for a compound device (three endpoints). The SIE allows the USB host to communicate with the hub and functions integrated into the microcontroller. The part includes a 1:4 hub repeater with one upstream port and four downstream ports. The USB Hub allows power management control of the downstream ports by using GPIO pins assigned by the user firmware. The user has the option of ganging the downstream ports together with a single pair of power management pins, or providing power management for each port with four pairs of power management nins

Pin Configurations

Figure 1. CY7C66013C 48-Pin SSOP and CY7C66113C 56-Pin SSOP

	TOP VIEW									
	CY	7C6601	13C			C	Y7C	661130)	
	_									
XTALOUT	П 1		18	V_{CC}	XTALOUT	Ц	1	56	Ь	V_{CC}
XTALIN	7 2	. 4	17	P1[1]	XTALIN	П	2	55		P1[1]
V_{REF}] 3	, 4	16	P1[0]	V_{REF}	П	3	54		P1[0]
P1[3]	4		1 5	P1[2]	P1[3]	П	4	53		P1[2]
P1[5]		, 4	14	P1[4]	P1[5]	П	5	52		P1[4]
P1[7]	□ 6	, 4	13	P1[6]	P1[7]	П	6	51		P1[6]
P3[1]		, ,	12	P3[0]	P3[1]	П	7	50	П	P3[0]
D+[0]	[E	. 4	11	D-[3]	D+[0]	Ц	8	49		D-[3]
D-[0]) 4	10	D+[3]	D-[0]	П	9	48		D+[3]
P3[3]		0 3	39	P3[2]	P3[3]	Ц	10	47	Ц	P3[2]
GND		1 3	38	GND	GND	Ц	11	46	Ц	P3[4]
D+[1]		2 3	37	P3[4]	P3[5]	Ц	12	45	Ц	D-[4]
D-[1]		3 3	36	D-[4]	D+[1]	Ц	13	44	빝	D+[4]
P2[1]	1	4 3	35	D+[4]	D-[1]	Ц	14	43	Ц	P3[6]
D+[2]	<u> </u>	5 3	34	P2[0]	P2[1]	Ц	15	42	빝	P2[0]
D-[2]	<u> </u>	6 3	33	P2[2]	D+[2]	Ц	16	41	싵	P2[2]
P2[3]	<u> </u>	7 3	32	GND	D-[2]	Ц	17	40	Ľ	GND
P2[5]	<u> </u>	8 3	31	P2[4]	P2[3]	Ц	18	39	Ľ	P2[4]
P2[7]	<u> </u>	9 3	30	P2[6]	P2[5]	Н	19	38	Ľ	P2[6]
GND	2	.0 2	29	V_{PP}	P2[7]	Ц	20	37	Ц	DAC[0]
P0[7]		1 2	28	P0[0]	DAC[7]	Ц	21	36	Ľ	V_{PP}
P0[5]		2 2	27	P0[2]	P0[7]	Ц	22	35	Ľ	P0[0]
P0[3]	L 2	.3 2	26	P0[4]	P0[5]	Н	23	34	Ľ	P0[2]
P0[1]	L 2	4 2	25	P0[6]	P0[3]	Ц	24	33	Ľ	P0[4]
					P0[1]	Ц	25	32	Ľ	P0[6]
					DAC[5]	Ц	26	31	¥	DAC[2]
					DAC[3]	Ц	27	30	Ľ	DAC[4]
					DAC[1]	Ч	28	29	μ	DAC[6]

Page 4 of 59

Figure 2. CY7C66113C 56-Pin QFN

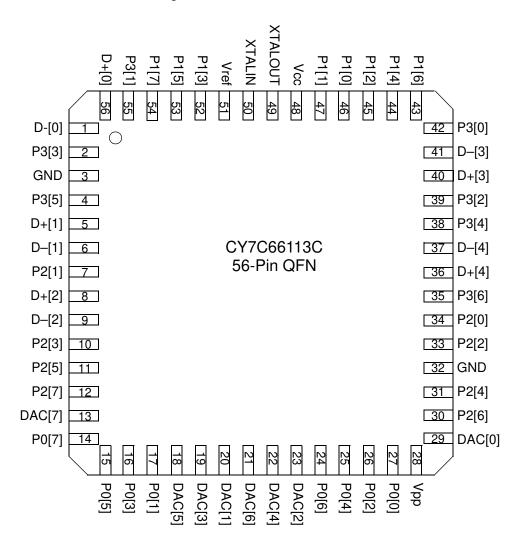
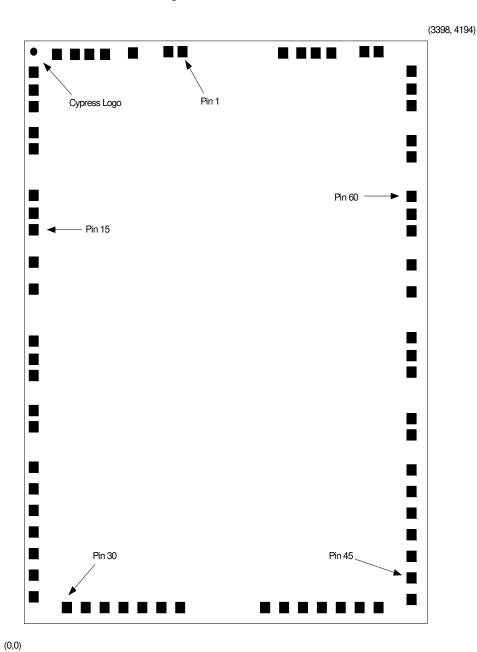



Figure 3. CY7C66113C DIE

DIE STEP: 3398 x 4194 microns Die Size: 3322 x 4129 microns Die Thickness: 14 mils = 355.6 microns Pad Size: 80 x 80 microns

Table 1. Pad Coordinates in Microns (0,0) to Bond Pad Centers

Pad No.	Pin Name	Х	Y	Pad #	Pin Name	Х	Υ
1	XtalOut	1274.2	3588.8	37	DAC6	2000.6	210.6
2	Xtalln	1132.8	3588.8	38	DAC4	2103.6	210.6
3	Vref	889.85	3588.8	39	DAC2	2206.6	210.6
4	Port11b	684.65	3588.8	40	Port06	2308.4	210.6
5	Port13	581.65	3588.8	41	Port04	2411.4	210.6
6	Port15	478.65	3588.8	42	Port02	2514.4	210.6
7	Vss	375.65	3588.8	43	Port00	2617.4	210.6
8	Port17	0	3408.35	44	Vpp	2992.4	25.4
9	Port31	0	3162.05	45	DAC0	2992.4	151.75
10	Du+	0	3060.55	46	Port26	2992.4	306.15
11	Du-	0	2752.4	47	DD+6	2992.4	407.65
12	Port33	0	2650.95	48	DD-6	2992.4	715.75
13	Vss	0	2474.6	49	Port24	2992.4	817.25
14	Port35	0	2368.45	50	Vss	2992.4	923.4
15	DD+1	0	2266.95	51	Port22	2992.4	1086.75
16	DD-1	0	1958.85	52	DD+5	2992.4	1188.25
17	Port37	0	1857.35	53	DD-5	2992.4	1496.35
18	Vref	0	1680.4	54	Port20	2992.4	1597.85
19	Port21	0	1567.4	55	Vref	2992.4	1710.8
20	DD+2	0	1465.95	56	Port36	2992.4	1874.75
21	DD-2	0	1157.85	57	DD+4	2992.4	1976.25
22	Port23	0	1056.35	58	DD-4	2992.4	2284.35
23	Vss	0	880	59	Port34	2992.4	2385.85
24	Port25	0	773.85	60	Vss	2992.4	2492
25	DD+7	0	672.35	61	Port32	2992.4	2655.35
26	DD-7	0	364.25	62	DD+3	2992.4	2756.85
27	Port27	0	262.75	63	DD-3	2992.4	3064.95
28	DAC7	0	100.75	64	Port30	2992.4	3166.45
29	Vss	0	0	65	Port16	2992.4	3412.25
30	Port07	375.2	210.6	66	Port14	2634.2	3588.8
31	Port05	478.2	210.6	67	Port12	2531.2	3588.8
32	Port03	581.2	210.6	68	Port10	2428.2	3588.8
33	Port01	684.2	210.6	69	Port11	2325.2	3588.8
34	DAC5	788.4	210.6	70	VCC	2221.75	3588.8
35	DAC3	891.4	210.6	71	PadOpt	2121.75	3588.8
36	DAC1	994.4	210.6		1		1

Document Number: 38-08024 Rev. *D

Product Summary Tables

Pin Assignments

Table 2. Pin Assignments

Name	I/O	48-Pin	56-Pin QFN	56-Pin SSOP	Description
D+[0], D-[0]	I/O	8, 9	56, 1	8, 9	Upstream port, USB differential data.
D+[1], D-[1]	I/O	12, 13	5, 6	13, 14	Downstream port 1, USB differential data.
D+[2], D-[2]	I/O	15, 16	8, 9	16, 17	Downstream port 2, USB differential data.
D+[3], D-[3]	I/O	40, 41	40, 41	48, 49	Downstream port 3, USB differential data.
D+[4], D-[4]	I/O	35, 36	36, 37	44, 45	Downstream port 4, USB differential data.
P0[7:0]	I/O		14, 15, 16, 17, 24, 25, 26, 27		GPIO Port 0.
P1[7:0]	I/O		52, 53, 54, 43, 44, 45, 46, 47	6, 51, 5, 52, 4, 53, 55, 54	GPIO Port 1.
P2[7:0]	I/O	19, 30, 18, 31, 17, 33, 14, 34	7, 10, 11, 12, 30, 31, 33, 34	20, 38, 19, 39, 18, 41, 15, 42	GPIO Port 2.
P3[6:0]	I/O	37, 10, 39, 7, 42		43, 12, 46, 10, 47, 7, 50	GPIO Port 3, capable of sinking 12 mA (typical).
DAC[7:0]	I/O	n/a	13, 18, 19, 20, 21, 22, 23, 29		Digital to Analog Converter (DAC) Port with programmable current sink outputs. DAC[1:0] offer a programmable range of 3.2 to 16 mA typical. DAC[7:2] have a programmable sink current range of 0.2 to 1.0 mA typical.
XTAL _{IN}	IN	2	50	2	6 MHz crystal or external clock input.
XTAL _{OUT}	OUT	1	49	1	6 MHz crystal out.
V _{PP}		29	28	36	Programming voltage supply, tie to ground during normal operation.
V _{CC}		48	48	56	Voltage supply.
GND		11, 20, 32, 38	3, 32	11, 40	Ground.
V _{REF}	IN	3	51	3	External 3.3V supply voltage for the differential data output buffers and the D+ pull up.

I/O Register Summary

I/O registers are accessed via the I/O Read (IORD) and I/O Write (IOWR, IOWX) instructions. IORD reads data from the selected port into the accumulator. IOWR performs the reverse; it writes data from the accumulator to the selected port. Indexed I/O Write (IOWX) adds the contents of X to the address in the instruction to form the port address and writes data from the accumulator to the specified port. Specifying address 0 such as IOWX 0h indicates the I/O register is selected solely by the contents of X.

All undefined registers are reserved. It is important not to write to reserved registers as this may cause an undefined operation or increased current consumption during operation. When writing to registers with reserved bits, the reserved bits must be written with '0.'

Table 3. I/O Register Summary

Register Name	I/O Address	Read/Write	Function	Page
Port 0 Data	0x00	R/W	GPIO Port 0 Data	16
Port 1 Data	0x01	R/W	GPIO Port 1 Data	16
Port 2 Data	0x02	R/W	GPIO Port 2 Data	16
Port 3 Data	0x03	R/W	GPIO Port 3 Data	16
Port 0 Interrupt Enable	0x04	W	Interrupt Enable for Pins in Port 0	18
Port 1 Interrupt Enable	0x05	W	Interrupt Enable for Pins in Port 1	18
Port 2 Interrupt Enable	0x06	W	Interrupt Enable for Pins in Port 2	18
Port 3 Interrupt Enable	0x07	W	Interrupt Enable for Pins in Port 3	18
GPIO Configuration	0x08	R/W	GPIO Port Configurations	17

Document Number: 38-08024 Rev. *D Page 8 of 59

Table 3. I/O Register Summary (continued)

Register Name	I/O Address	Read/Write	Function	Page
HAPI and I ² C Configuration	0x09	R/W	HAPI Width and I ² C Position Configuration	22
USB Device Address A	0x10	R/W	USB Device Address A	38
EP A0 Counter Register	0x11	R/W	USB Address A, Endpoint 0 Counter	40
EP A0 Mode Register	0x12	R/W	USB Address A, Endpoint 0 Configuration	39
EP A1 Counter Register	0x13	R/W	USB Address A, Endpoint 1 Counter	40
EP A1 Mode Register	0x14	R/W	USB Address A, Endpoint 1 Configuration	40
EP A2 Counter Register	0x15	R/W	USB Address A, Endpoint 2 Counter	40
EP A2 Mode Register	0x16	R/W	USB Address A, Endpoint 2 Configuration	40
USB Status & Control	0x1F	R/W	USB Upstream Port Traffic Status and Control	37
Global Interrupt Enable	0x20	R/W	Global Interrupt Enable	27
Endpoint Interrupt Enable	0x21	R/W	USB Endpoint Interrupt Enables	27
Interrupt Vector	0x23	R	Pending Interrupt Vector Read/Clear	29
Timer (LSB)	0x24	R	Lower 8 Bits of Free-running Timer (1 MHz)	21
Timer (MSB)	0x25	R	Upper 4 Bits of Free-running Timer	21
WDT Clear	0x26	W	Watchdog Timer Clear	14
I ² C Control & Status	0x28	R/W	I ² C Status and Control	23
I ² C Data	0x29	R/W	I ² C Data	23
DAC Data	0x30	R/W	DAC Data	19
DAC Interrupt Enable	0x31	W	Interrupt Enable for each DAC Pin	20
DAC Interrupt Polarity	0x32	W	Interrupt Polarity for each DAC Pin	20
DAC Isink	0x38-0x3F	W	Input Sink Current Control for each DAC Pin	20
USB Device Address B	0x40	R/W	USB Device Address B (not used in 5-endpoint mode)	38
EP B0 Counter Register	0x41	R/W	USB Address B, Endpoint 0 Counter	40
EP B0 Mode Register	0x42	R/W	USB Address B, Endpoint 0 Configuration, or USB Address A, Endpoint 3 in 5-endpoint Mode	39
EP B1 Counter Register	0x43	R/W	USB Address B, Endpoint 1 Counter	40
EP B1 Mode Register	0x44	R/W	USB Address B, Endpoint 1 Configuration, or USB Address A, Endpoint 4 in 5-endpoint Mode	40
Hub Port Connect Status	0x48	R/W	Hub Downstream Port Connect Status	32
Hub Port Enable	0x49	R/W	Hub Downstream Ports Enable	33
Hub Port Speed	0x4A	R/W	Hub Downstream Ports Speed	33
Hub Port Control (Ports [4:1])	0x4B	R/W	Hub Downstream Ports Control	34
Hub Port Suspend	0x4D	R/W	Hub Downstream Port Suspend Control	35
Hub Port Resume Status	0x4E	R	Hub Downstream Ports Resume Status	36
Hub Ports SE0 Status	0x4F	R	Hub Downstream Ports SE0 Status	35
Hub Ports Data	0x50	R	Hub Downstream Ports Differential Data	35
Hub Downstream Force Low	0x51	R/W	Hub Downstream Ports Force LOW	34
Processor Status & Control	0xFF	R/W	Microprocessor Status and Control Register	26

Document Number: 38-08024 Rev. *D

Page 9 of 59

Instruction Set Summary

Refer to the CYASM Assembler User's Guide for more details.

Table 4. Instruction Set Summary

Mnemonic	Operand	Opcode	Cycles
HALT	- Persona	00	7
ADD A,expr	data	01	4
ADD A,[expr]	direct	02	6
ADD A,[X+expr]	index	03	7
ADC A,expr	data	04	4
ADC A,[expr]	direct	05	6
ADC A,[X+expr]	index	06	7
SUB A,expr	data	07	4
SUB A,[expr]	direct	08	6
SUB A,[X+expr]	index	09	7
SBB A,expr	data	0A	4
SBB A,[expr]	direct	0B	6
SBB A,[X+expr]	index	0C	7
OR A,expr	data	0D	4
OR A,[expr]	direct	0E	6
OR A,[X+expr]	index	0F	7
AND A,expr	data	10	4
AND A,[expr]	direct	11	6
AND A,[X+expr]	index	12	7
XOR A,expr	data	13	4
XOR A,[expr]	direct	14	6
XOR A,[X+expr]	index	15	7
CMP A,expr	data	16	5
CMP A,[expr]	direct	17	7
CMP A,[X+expr]	index	18	8
MOV A,expr	data	19	4
MOV A,[expr]	direct	1A	5
MOV A,[X+expr]	index	1B	6
MOV X,expr	data	1C	4
MOV X,[expr]	direct	1D	5
reserved		1E	
XPAGE		1F	4
MOV A,X		40	4
MOV X,A		41	4
MOV PSP,A		60	4
CALL	addr	50-5F	10
JMP	addr	80-8F	5
CALL	addr	90-9F	10
JZ	addr	A0-AF	5
JNZ	addr	B0-BF	5

Mnemonic	Operand	Opcode	Cycles
NOP		20	4
INC A	acc	21	4
INC X	Х	22	4
INC [expr]	direct	23	7
INC [X+expr]	index	24	8
DEC A	acc	25	4
DEC X	Х	26	4
DEC [expr]	direct	27	7
DEC [X+expr]	index	28	8
IORD expr	address	29	5
IOWR expr	address	2A	5
POP A		2B	4
POP X		2C	4
PUSH A		2D	5
PUSH X		2E	5
SWAP A,X		2F	5
SWAP A,DSP		30	5
MOV [expr],A	direct	31	5
MOV [X+expr],A	index	32	6
OR [expr],A	direct	33	7
OR [X+expr],A	index	34	8
AND [expr],A	direct	35	7
AND [X+expr],A	index	36	8
XOR [expr],A	direct	37	7
XOR [X+expr],A	index	38	8
IOWX [X+expr]	index	39	6
CPL		3A	4
ASL		3B	4
ASR		3C	4
RLC		3D	4
RRC		3E	4
RET		3F	8
DI		70	4
El		72	4
RETI		73	8
JC	addr	C0-CF	5
JNC	addr	D0-DF	5
JACC	addr	E0-EF	7
INDEX	addr	F0-FF	14

Document Number: 38-08024 Rev. *D Page 10 of 59

Programming Model

14-Bit Program Counter (PC)

The 14-bit PC allows access to up to 8 KB of PROM available with the CY7C66x13C architecture. The top 32 bytes of the ROM in the 8K part are reserved for testing purposes. The program counter is cleared during reset, such that the first instruction executed after a reset is at address 0x0000h. Typically, this is a jump instruction to a reset handler that initializes the application (see Interrupt Vectors on page 28).

The lower eight bits of the program counter are incremented as instructions are loaded and executed. The upper six bits of the program counter are incremented by executing an XPAGE instruction. The last instruction executed within a 256-byte "page" of sequential code should be an XPAGE instruction. The assembler directive "XPAGEON" causes the assembler to insert XPAGE instructions automatically. Because instructions are either one or two bytes long, the assembler may occasionally need to insert a NOP followed by an XPAGE to execute correctly.

The address of the next instruction to be executed, the carry flag, and the zero flag are saved as two bytes on the program stack during an interrupt acknowledge or a CALL instruction. The program counter, carry flag, and zero flag are restored from the program stack during a RETI instruction. Only the program counter is restored during a RETI instruction.

The program counter is not accessed directly by the firmware. The program stack is examined by reading SRAM from location 0x00 and up.

Program Memory Organization

Figure 4. Program Memory Space with Interrupt Vector Table

•		• •
After Reset	Address	
14-bit PC	0x0000	Program execution begins here after a reset
	0x0002	USB bus reset interrupt vector
	0x0004	128 μs timer interrupt vector
	0x0006	1.024 ms timer interrupt vector
	0x0008	USB address A endpoint 0 interrupt vector
	0x000A	USB address A endpoint 1 interrupt vector
	0x000C	USB address A endpoint 2 interrupt vector
	0x000E	USB address B endpoint 0 interrupt vector
	0x0010	USB address B endpoint 1 interrupt vector
	0x0012	Hub interrupt vector
	0x0014	DAC interrupt vector
	0x0016	GPIO/HAPI interrupt vector
	0x0018	I ² C interrupt vector
	0x001A	Program Memory begins here
	0x1FDF	8 KB (-32) PROM ends here.

8-Bit Accumulator (A)

The accumulator is the general purpose register for the microcontroller.

8-Bit Temporary Register (X)

The "X" register is available to the firmware for temporary storage of intermediate results. The microcontroller performs indexed operations based on the value in X. Refer to the section, Indexed on page 13 for additional information.

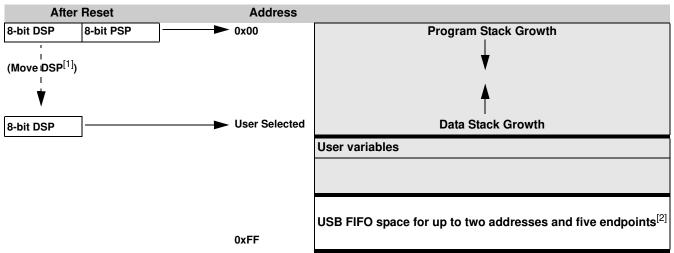
8-Bit Program Stack Pointer (PSP)

During a reset, the Program Stack Pointer (PSP) is set to 0x00 and "grows" upward from this address. The PSP may be set by firmware, using the MOV PSP,A instruction. The PSP supports interrupt service under hardware control and CALL, RET, and RETI instructions under firmware control. The PSP is not readable by the firmware.

During an interrupt acknowledge, interrupts are disabled and the 14-bit program counter, carry flag, and zero flag are written as two bytes of data memory. The first byte is stored in the memory addressed by the PSP, then the PSP is incremented. The second byte is stored in memory addressed by the PSP, and the PSP is incremented again. The overall effect is to store the program

counter and flags on the program "stack" and increment the PSP by two.

The Return From Interrupt (RETI) instruction decrements the PSP, then restores the second byte from memory addressed by the PSP. The PSP is decremented again and the first byte is restored from memory addressed by the PSP. After the program counter and flags are restored from stack, the interrupts are enabled. The overall effect is to restore the program counter and flags from the program stack, decrement the PSP by two, and re-enable interrupts.


The Call Subroutine (CALL) instruction stores the program counter and flags on the program stack and increments the PSP by two.

The Return From Subroutine (RET) instruction restores the program counter but not the flags from the program stack and decrements the PSP by two.

Data Memory Organization

The CY7C66x13C microcontrollers provide 256 bytes of data RAM. Normally, the SRAM is partitioned into four areas: program stack, user variables, data stack, and USB endpoint FIFOs. The following is one example of where the program stack, data stack, and user variables areas are located.

Table 5. SRAM Areas

8-Bit Data Stack Pointer (DSP)

The Data Stack Pointer (DSP) supports PUSH and POP instructions that use the data stack for temporary storage. A PUSH instruction pre-decrements the DSP, then writes data to the memory location addressed by the DSP. A POP instruction reads data from the memory location addressed by the DSP, then post-increments the DSP.

During a reset, the DSP is reset to 0x00. A PUSH instruction when DSP equals 0x00 writes data at the top of the data RAM (address 0xFF). This writes data to the memory area reserved for USB endpoint FIFOs. Therefore, the DSP should be indexed at an appropriate memory location that does not compromise the

Program Stack, user defined memory (variables), or the USB endpoint FIFOs.

For USB applications, the firmware should set the DSP to an appropriate location to avoid a memory conflict with RAM dedicated to USB FIFOs. The memory requirements for the USB endpoints are described in USB Device Endpoints on page 38. Example assembly instructions to do this with two device addresses (FIFOs begin at 0xD8) are shown:

- MOV A,20h; Move 20 hex into Accumulator (must be D8h or less)
- SWAP A,DSP; swap accumulator value into DSP register.

Notes

- 1. Refer to 8-Bit Data Stack Pointer (DSP) for a description of DSP.
- 2. Endpoint sizes are fixed by the Endpoint Size Bit (I/O register 0x1F, Bit 7), see Table 14.

Document Number: 38-08024 Rev. *D

Page 12 of 59

Address Modes

The CY7C66013C and CY7C66113C microcontrollers support three addressing modes for instructions that require data operands: data, direct, and indexed.

Data (Immediate)

"Data" address mode refers to a data operand that is actually a constant encoded in the instruction. As an example, consider the instruction that loads A with the constant 0xD8:

MOV A, OD8h.

This instruction requires two bytes of code where the first byte identifies the "MOV A" instruction with a data operand as the second byte. The second byte of the instruction is the constant "0xD8". A constant may be referred to by name if a prior "EQU" statement assigns the constant value to the name. For example, the following code is equivalent to the example described earlier: DSPINIT: EQU 0D8h

MOV A, DSPINIT.

Direct

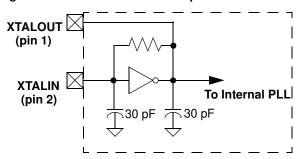
"Direct" address mode is used when the data operand is a variable stored in SRAM. In that case, the one byte address of the variable is encoded in the instruction. As an example, consider an instruction that loads A with the contents of memory address location 0x10:

MOV A, [10h].

Normally, variable names are assigned to variable addresses using "EQU" statements to improve the readability of the assembler source code. As an example, the following code is equivalent to the example described earlier:

buttons: EQU 10h MOV A, [buttons].

Indexed


"Indexed" address mode allows the firmware to manipulate arrays of data stored in SRAM. The address of the data operand is the sum of a constant encoded in the instruction and the contents of the "X" register. Normally, the constant is the "base" address of an array of data and the X register contains an index that indicates which element of the array is actually addressed:

array: EQU 10h MOV X, 3 MOV A, [X+array].

This has the effect of loading A with the fourth element of the SRAM "array" that begins at address 0x10. The fourth element would be at address 0x13.

Clocking

Figure 5. Clock Oscillator On-Chip Circuit

The XTALIN and XTALOUT are the clock pins to the microcontroller. The user connects an external oscillator or a crystal to these pins. When using an external crystal, keep PCB traces between the chip leads and crystal as short as possible (less than 2 cm). A 6 MHz fundamental frequency parallel resonant crystal is connected to these pins to provide a reference frequency for the internal PLL. The two internal 30 pF load caps appear in series to the external crystal and would be equivalent to a 15 pF load. Therefore, the crystal must have a required load capacitance of about 15–18 pF. A ceramic resonator does not allow the microcontroller to meet the timing specifications of full speed USB and so a ceramic resonator is not recommended with these parts.

An external 6 MHz clock is applied to the XTALIN pin if the XTALOUT pin is left open. Grounding the XTALOUT pin when driving XTALIN with an oscillator does not work because the internal clock is effectively shorted to ground.

Reset

The CY7C66x13C supports two resets: POR and a Watchdog Reset (WDR). Each of these resets causes:

- All registers to be restored to their default states.
- The USB device addresses to be set to 0.
- All interrupts to be disabled.
- The PSP and DSP to be set to memory address 0x00.

The occurrence of a reset is recorded in the Processor Status and Control Register, as described in Processor Status and Control Register on page 26. Bits 4 and 6 are used to record the occurrence of POR and WDR, respectively. Firmware interrogates these bits to determine the cause of a reset.

Program execution starts at ROM address 0x0000 after a reset. Although this looks similar to interrupt vector 0, there is an important difference. Reset processing does NOT push the program counter, carry flag, and zero flag onto program stack. The firmware reset handler should configure the hardware before the "main" loop of code. Attempting to execute a RET or RETI in the firmware reset handler causes unpredictable execution results.

Power on Reset

When V_{CC} is first applied to the chip, the POR signal is asserted and the CY7C66x13C enters a "semi-suspend" state. During the semi-suspend state, which is different from the suspend state defined in the USB specification, the oscillator and all other blocks of the part are functional, except for the CPU. This semi-suspend time ensures that both a valid V_{CC} level is reached and that the internal PLL has time to stabilize before full operation begins. When the V_{CC} rises above approximately 2.5V, and the oscillator is stable, the POR is deasserted and the on-chip timer starts counting. The first 1 ms of suspend time is

not interruptible, and the semi-suspend state continues for an additional 95 ms unless the count is bypassed by a USB Bus Reset on the upstream port. The 95 ms provides time for V_{CC} to stabilize at a valid operating voltage before the chip executes code.

If a USB Bus Reset occurs on the upstream port during the 95 ms semi-suspend time, the semi-suspend state is aborted and program execution begins immediately from address 0x0000. In this case, the Bus Reset interrupt is pending but not serviced until firmware sets the USB Bus Reset Interrupt Enable bit (bit 0 of register 0x20) and enables interrupts with the El command.

The POR signal is asserted whenever V_{CC} drops below approximately 2.5V, and remains asserted until V_{CC} rises above this level again. Behavior is the same as described earlier.

Watchdog Reset

The WDR occurs when the internal WDT rolls over. Writing any value to the write only Watchdog Restart Register at address 0x26 clears the timer. The timer rolls over and WDR occurs if it is not cleared within t_{WATCH} (8 ms minimum) of the last clear. Bit 6 of the Processor Status and Control Register is set to record this event (the register contents are set to 010X0001 by the WDR). A WDT Reset lasts for 2 ms, after which the microcontroller begins execution at ROM address 0x0000.

The USB transmitter is disabled by a WDR because the USB Device Address Registers are cleared (see USB Device Addresses). Otherwise, the USB Controller responds to all address 0 transactions.

It is possible to set the WDR bit of the Processor Status and Control Register (0xFF) following a POR event. If a firmware interrogates the Processor Status and Control Register for a set condition on the WDR bit, the WDR bit should be ignored if the POR (bit 3 of register 0xFF) bit is set.

Last write to WDT register, so WDR goes HIGH

twatch

Last write to WDT register, so WDR goes HIGH

Figure 6. Watchdog Reset

Document Number: 38-08024 Rev. *D

Suspend Mode

The CY7C66x13C is placed into a low power state by setting the Suspend bit of the Processor Status and Control register. All logic blocks in the device are turned off except the GPIO interrupt logic and the USB receiver. The clock oscillator, PLL, and the free-running and WDTs are shut down. Only the occurrence of an enabled GPIO interrupt or non idle bus activity at a USB upstream or downstream port wakes the part from suspend. The Run bit in the Processor Status and Control Register must be set to resume a part out of suspend.

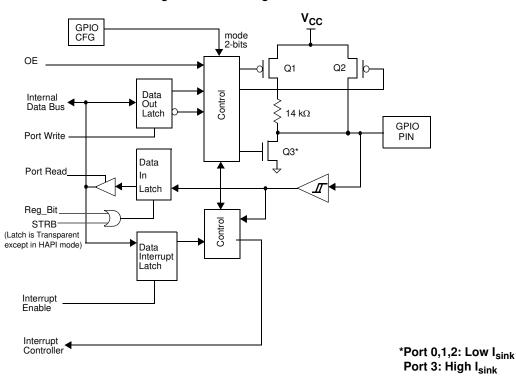
The clock oscillator restarts immediately after exiting suspend mode. The microcontroller returns to a fully functional state 1 ms after the oscillator is stable. The microcontroller executes the instruction following the I/O write that placed the device into suspend mode before servicing any interrupt requests.

The GPIO interrupt allows the controller to wake up periodically and poll system components while maintaining a very low average power consumption. To achieve the lowest possible current during suspend mode, all I/O should be held at $V_{\rm CC}$ or Gnd. This also applies to internal port pins that may not be bonded in a particular package.

Typical code for entering suspend is given here:

 \ldots ; All GPIO set to low power state (no floating pins)

 \ldots ; Enable GPIO interrupts if desired for wakeup


mov a, 09h; Set suspend and run bits iowr FFh; Write to Status and Control

Register - Enter suspend, wait for USB activity
(or GPIO Interrupt)

nop ; This executes before any ISR

General Purpose I/O (GPIO) Ports

Figure 7. Block Diagram of a GPIO Pin

There are up to 31 GPIO pins (P0[7:0], P1[7:0], P2[7:0], and P3[6:0]) for the hardware interface. The number of GPIO pins changes based on the package type of the chip. Each port is configured as inputs with internal pull ups, open drain outputs, or traditional CMOS outputs. Port 3 offers a higher current drive, with typical current sink capability of 12 mA. The data for each GPIO port is accessible through the data registers. Port data registers are shown in Figure 8 through Figure 11, and are set to 1 on reset.

Document Number: 38-08024 Rev. *D Page 15 of 59

Figure 8. Port 0 Data

Port 0 Data ADDRESS 0x00

Bit #	7	6	5	4	3	2	1	0
Bit Name	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
Read/Write	R/W							
Reset	1	1	1	1	1	1	1	1

Figure 9. Port1 Data

Port 1Data ADDRESS 0x01

Bit #	7	6	5	4	3	2	1	0
Bit Name	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
Read/Write	R/W							
Reset	1	1	1	1	1	1	1	1

Figure 10. Port 2 Data

Port 2 Data ADDRESS 0x02

Bit #	7	6	5	4	3	2	1	0
Bit Name	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
Read/Write	R/W							
Reset	1	1	1	1	1	1	1	1

Figure 11. Port 3 Data

Port 3 Data ADDRESS 0x03

Bit #	7	6	5	4	3	2	1	0
Bit Name	Reserved	P3.6 CY7C66113C only	P3.5 CY7C66113C only	P3.4	P3.3	P3.2	P3.1	P3.0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	1	1	1	1	1	1	1

Special care should be taken with any unused GPIO data bits. An unused GPIO data bit, either a pin on the chip or a port bit that is not bonded on a particular package, must not be left floating when the device enters the suspend state. If a GPIO data bit is left floating, the leakage current caused by the floating bit may violate the suspend current limitation specified by the USB specifications. If a '1' is written to the unused data bit and the port is configured with open drain outputs, the unused data bit remains in an indeterminate state. Therefore, if an unused port bit is programmed in open-drain mode, it must be written with a '0.' Notice that the CY7C66013C always requires that P3[7:5] be written with a '0.' When the CY7C66113C is used the P3[7] should be written with a '0.'

In normal non HAPI mode, reads from a GPIO port always return the present state of the voltage at the pin, independent of the settings in the Port Data Registers. If HAPI mode is activated for a port, reads of that port return latched data as controlled by the HAPI signals (see Hardware Assisted Parallel Interface (HAPI)). During reset, all of the GPIO pins are set to a high impedance input state ('1' in open drain mode). Writing a '0' to a GPIO pin drives the pin LOW. In this state, a '0' is always read on that GPIO pin unless an external source overdrives the internal pull down device.

GPIO Configuration Port

Every GPIO port is programmed as inputs with internal pull ups, outputs LOW or HIGH, or Hi-Z (floating, the pin is not driven internally). In addition, the interrupt polarity for each port is programmed. The Port Configuration bits (Figure 12) and the Interrupt Enable bit (Figure 10 through Figure 16) determine the interrupt polarity of the port pins.

Figure 12. GPIO Configuration Register

GPIO Configuration ADDRESS 0x08

Bit #	7	6	5	4	3	2	1	0
Bit Name	Port 3 Config Bit 1	Port 3 Config Bit 0	Port 2 Config Bit 1	Port 2 Config Bit 0	Port 1 Config Bit 1	Port 1 Config Bit 0	Port 0 Config Bit 1	Port 0 Config Bit 0
Read/Write	R/W							
Reset	0	0	0	0	0	0	0	0

As shown in Table 6, a positive polarity on an input pin represents a rising edge interrupt (LOW to HIGH), and a negative polarity on an input pin represents a falling edge interrupt (HIGH to LOW).

The GPIO interrupt is generated when all of the following conditions are met: the Interrupt Enable bit of the associated Port Interrupt Enable Register is enabled, the GPIO Interrupt Enable bit of the Global Interrupt Enable Register (Figure 29) is enabled, the Interrupt Enable Sense (bit 2, Figure 28) is set, and the GPIO pin of the port sees an event matching the interrupt polarity.

The driving state of each GPIO pin is determined by the value written to the pin's Data Register (Figure 8 through Figure 11) and by its associated Port Configuration bits as shown in the GPIO Configuration Register (Figure 10). These ports are configured on a per port basis, so all pins in a given port are configured together. The possible port configurations are detailed in Table 6. As shown in this table, when a GPIO port is configured with CMOS outputs, interrupts from that port are disabled

During reset, all the bits in the GPIO Configuration Register are written with '0' to select Hi-Z mode for all GPIO ports as the default configuration.

Table 6. GPIO Port Output Control Truth Table and Interrupt Polarity

Port Config Bit 1	Port Config Bit 0	Data Register	Output Drive Strength	Interrupt Enable Bit	Interrupt Polarity
1	1	0	Output LOW	0	Disabled
		1	Resistive	1	- (Falling Edge)
1	0	0	Output LOW	0	Disabled
		1	Output HIGH	1	Disabled
0	1	0	Output LOW	0	Disabled
		1	Hi-Z	1	- (Falling Edge)
0	0	0	Output LOW	0	Disabled
		1	Hi-Z	1	+ (Rising Edge)

Q1, Q2, and Q3 discussed here are the transistors referenced in Figure 7. The available GPIO drive strength are:

- Output LOW Mode: The pin's Data Register is set to '0'
 Writing '0' to the pin's Data Register puts the pin in output
 LOW mode, regardless of the contents of the Port
 Configuration Bits[1:0]. In this mode, Q1 and Q2 are OFF. Q3
 is ON. The GPIO pin is driven LOW through Q3.
- Output HIGH Mode: The pin's Data Register is set to 1 and the Port Configuration Bits[1:0] is set to '10'
 - In this mode, Q1 and Q3 are OFF. Q2 is ON. The GPIO is pulled up through Q2. The GPIO pin is capable of sourcing current.

- Resistive Mode: The pin's Data Register is set to 1 and the Port Configuration Bits[1:0] is set to '11'
 - Q2 and Q3 are OFF. Q1 is ON. The GPIO pin is pulled up with an internal 14 k Ω resistor. In resistive mode, the pin may serve as an input. Reading the pin's Data Register returns a logic HIGH if the pin is not driven LOW by an external source.
- Hi-Z Mode: The pin's Data Register is set to1 and Port Configuration Bits[1:0] is set either '00' or '01'
 - Q1, Q2, and Q3 are all OFF. The GPIO pin is not driven internally. In this mode, the pin may serve as an input. Reading the Port Data Register returns the actual logic value on the port pins.

Document Number: 38-08024 Rev. *D

Page 17 of 59

GPIO Interrupt Enable Ports

Each GPIO pin is individually enabled or disabled as an interrupt source. The Port 0–3 Interrupt Enable registers provide this feature with an interrupt enable bit for each GPIO pin. When HAPI mode is enabled the GPIO interrupts are blocked, including ports not used by HAPI, so GPIO pins are not used as interrupt sources.

During a reset, GPIO interrupts are disabled by clearing all of the GPIO interrupt enable ports. Writing a '1' to a GPIO Interrupt Enable bit enables GPIO interrupts from the corresponding input pin. All GPIO pins share a common interrupt, as discussed in GPIO and HAPI Interrupt.

Figure 13. Port 0 Interrupt Enable

Port 0 Interrupt Enable **ADDRESS 0x04** Bit # 6 5 4 3 2 0 P0.7 Intr P0.6 Intr P0.2 Intr P0.1 Intr Bit Name P0.5 Intr P0.4 Intr P0.3 Intr P0.0 Intr Enable Enable Enable Enable Enable Enable Enable Enable Read/Write W W W W W W W W 0 0 0 0 0 0 0 0 Reset

Figure 14. Port 1 Interrupt Enable

Port 1 Interrupt Enable								
Bit #	7	6	5	4	3	2	1	0
Bit Name	P1.7 Intr Enable	P1.6 Intr Enable	P1.5 Intr Enable	P1.4 Intr Enable	P1.3 Intr Enable	P1.2 Intr Enable	P1.1 Intr Enable	P1.0 Intr Enable
Read/Write	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

Figure 15. Port 2 Interrupt Enable

Port 2 Interrupt Enable ADDRESS 0									
Bit #	7	6	5	4	3	2	1	0	
Bit Name	P2.7 Intr Enable	P2.6 Intr Enable	P2.5 Intr Enable	P2.4 Intr Enable	P2.3 Intr Enable	P2.2 Intr Enable	P2.1 Intr Enable	P2.0 Intr Enable	
Read/Write	W	W	W	W	W	W	W	W	
Reset	0	0	0	0	0	0	0	0	

Figure 16. Port 3 Interrupt Enable

Port 3 Interru	Port 3 Interrupt Enable ADDRESS 0x										
Bit #	7	6	5	4	3	2	1	0			
Bit Name	Reserved	P3.6 Intr Enable CY7C66113C only	P3.5 Intr Enable CY7C66113C only	P3.4 Intr Enable	P3.3 Intr Enable	P3.2 Intr Enable	P3.1 Intr Enable	P3.0 Intr Enable			
Read/Write	W	W	W	W	W	W	W	W			
Reset	0	0	0	0	0	0	0	0			

Document Number: 38-08024 Rev. *D Page 18 of 59

DAC Port

The CY7C66113CC features a programmable sink current 8-bit port, which is also known as DAC port. Each of these port I/O pins have a programmable current sink. Writing a '1' to a DAC I/O pin disables the output current sink (I_{sink} DAC) and drives the I/O pin HIGH through an integrated 14 k Ω resistor. When a '0' is written to a DAC I/O pin, the I_{sink} DAC is enabled and the pull up resistor is disabled. This causes the I_{sink} DAC to sink current to drive the output LOW. Figure 17 shows a block diagram of the DAC port pin.

 v_{cc} Q1 Data Internal Data Bus Latch Suspend (Bit 3 of Register 0xFF) 14 kΩ DAC Write DAC I/O Pin 4 bits Isink DAC Register Internal Buffer **DAC Read** Logic Interrupt Interrupt to Interrupt Controller Interrupt Polarity

Figure 17. Block Diagram of a DAC Pin

The amount of sink current for the DAC I/O pin is programmable over 16 values based on the contents of the DAC Isink Register (Figure 19) for that output pin. DAC[1:0] are high current outputs that are programmable from 3.2 mA to 16 mA (typical). DAC[7:2] are low current outputs, programmable from 0.2 mA to 1.0 mA (typical).

When the suspend bit in Processor Status and Control Register (Figure 28) is set, the Isink DAC block of the DAC circuitry is

disabled. Special care should be taken when the CY7C66113C device is placed in the suspend. The DAC Port Data Register (Figure 18) should normally be loaded with all '1's (Figure 28) before setting the suspend bit. If any of the DAC bits are set to '0' when the device is suspended, that DAC input floats. The floating pin could result in excessive current consumption by the device, unless an external load places the pin in a deterministic state.

Figure 18. DAC Port Data

DAC Port Data ADDRESS 0x									
Bit #	7	6	5	4	3	2	1	0	
Bit Name	DAC[7]	DAC[6]	DAC[5]	DAC[4]	DAC[3]	DAC[2]	DAC[1]	DAC[0]	
Read/Write	R/W								
Reset	1	1	1	1	1	1	1	1	

Bit [1..0]: High Current Output 3.2 mA to 16 mA typical

1= I/O pin is an output pulled HGH through the 14 k Ω resistor. 0 = I/O pin is an input with an internal 14 k Ω pull up resistor.

Bit [7..2]: Low Current Output 0.2 mA to 1 mA typical

- 1= I/O pin is an output pulled HGH through the 14 kΩ resistor. $\Omega = I/\Omega$ pin is an input with an internal 14 kΩ pull up resistor.
- 0 = I/O pin is an input with an internal 14 k Ω pull up resistor.

DAC Isink Registers

Each DAC I/O pin has an associated DAC Isink register to program the output sink current when the output is driven LOW. The first Isink register (0x38) controls the current for DAC[0], the second (0x39) for DAC[1], and so on until the Isink register at 0x3F, controls the current to DAC[7].

Figure 19. DAC Sink Register

ADDRESS 0x38 -0x3F **DAC Sink Register**

Bit #	7	6	5	4	3	2	1	0
Bit Name	Reserved	Reserved	Reserved	Reserved	Isink[3]	Isink[2]	Isink[1]	Isink[0]
Read/Write					W	W	W	W
Reset	-	-	-	-	0	0	0	0

Bit [3..0]: Isink [x] (x= 0..3)

Writing all '0's to the Isink register causes 1/5 of the max current to flow through the DAC I/O pin. Writing all '1's to the Isink register provides the maximum current flow through the pin. The other 14 states of the DAC sink current are evenly spaced between these two values.

Bit [7..4]: Reserved

DAC Port Interrupts

A DAC port interrupt is enabled or disabled for each pin individually. The DAC Port Interrupt Enable register provides this feature with an interrupt enable bit for each DAC I/O pin. All of the DAC Port Interrupt Enable register bits are cleared to '0' during a reset. All DAC pins share a common interrupt, as explained in DAC Interrupt on page 30.

Figure 20. DAC Port Interrupt Enable

DAC Port Interrupt ADDRESS 0x31

Bit #	7	6	5	4	3	2	1	0
Bit Name	Enable Bit 7	Enable Bit 6	Enable Bit 5	Enable Bit 4	Enable Bit 3	Enable Bit 2	Enable Bit 1	Enable Bit 0
Read/Write	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

Bit [7..0]: Enable bit x (x = 0..7)

1 = Enables interrupts from the corresponding bit position; 0= Disables interrupts from the corresponding bit position

As an additional benefit, the interrupt polarity for each DAC pin is programmable with the DAC Port Interrupt Polarity register. Writing a '0' to a bit selects negative polarity (falling edge) that causes an interrupt (if enabled) if a falling edge transition occurs on the corresponding input pin. Writing a '1' to a bit in this register selects positive polarity (rising edge) that causes an interrupt (if enabled) if a rising edge transition occurs on the corresponding input pin. All of the DAC Port Interrupt Polarity register bits are cleared during a reset.

0

0

Figure 21. DAC Port Interrupt Polarity

DAC I/O Interrupt Polarity ADDRESS 0x32 Bit # 2 6 5 3 Polarity Bit 4 Bit Name Polarity Bit 7 Polarity Bit 6 Polarity Bit 5 Polarity Bit 3 Polarity Bit 2 Polarity Bit 1 Polarity Bit 0 Read/Write W W W W W W W W

0

0

0

0 Bit [7..0]: Polarity bit x (x = 0..7)

Reset

1= Selects positive polarity (rising edge) that causes an interrupt (if enabled); 0 = Selects negative polarity (falling edge) that causes an interrupt (if enabled).

0

0

Document Number: 38-08024 Rev. *D Page 20 of 59

12-Bit Free-Running Timer

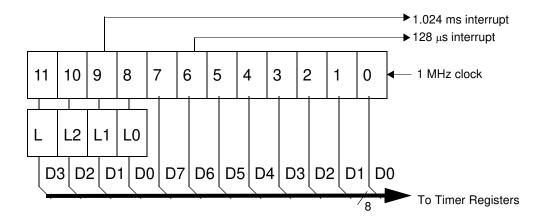
The 12-bit timer operates with a 1 μ s tick, provides two interrupts (128 μ s and 1.024 ms) and allows the firmware to directly time events that are up to 4 ms in duration. The lower eight bits of the timer is read directly by the firmware. Reading the lower 8 bits latches the upper four bits into a temporary register. When the firmware reads the upper four bits of the timer, it is actually reading the count stored in the temporary register. The effect of this is to ensure a stable 12-bit timer value is read, even when the two reads are separated in time.

Figure 22. Timer LSB Register

Timer LSB ADDRESS 0x24

Bit #	7	6	5	4	3	2	1	0
Bit Name	Timer Bit 7	Timer Bit 6	Timer Bit 5	Timer Bit 4	Timer Bit 3	Timer Bit 2	Timer Bit 1	Timer Bit 0
Read/Write	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bit [7:0]: Timer lower eight bits


Figure 23. Timer MSB Register

Timer MSB ADDRESS 0x25 Bit # Bit Name Reserved Reserved Reserved Reserved Timer Bit 11 Timer Bit 10 Timer Bit 9 Timer Bit 8 Read/Write R R R R Reset 0 0 0 0 0 0

Bit [3:0]: Timer higher nibble

Bit [7:4]: Reserved

Figure 24. Timer Block Diagram

I²C and HAPI Configuration Register

Internal hardware supports communication with external devices through two interfaces: a two wire I^2C compatible, and a HAPI for 1, 2, or 3 byte transfers. The I^2C compatible and HAPI functions, share a common configuration register (see Figure 25)^[3]. All bits of this register are cleared on reset.

Figure 25. HAPI/I²C Configuration Register

I²C Configuration ADDRESS 0x09

Bit #	7	6	5	4	3	2	1	0
Bit Name	I ² C Position	Reserved	LEMPTY Polarity	DRDY Polarity	Latch Empty	Data Ready	HAPI Port Width Bit 1	HAPI Port Width Bit 0
Read/Write	R/W	-	R/W	R/W	R	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits [7,1:0] of the HAPI and I²C Configuration Register control the pin out configuration of the HAPI and I²C compatible interfaces. Bits [5:2] are used in HAPI mode only, and are described in Hardware Assisted Parallel Interface (HAPI). Table 7 shows the HAPI port configurations, and Table 8 shows I²C pin location configuration options. These I²C compatible

options exist due to pin limitations in certain packages, and to allow simultaneous HAPI and I²C compatible operation.

HAPI operation is enabled whenever either HAPI Port Width Bit (Bit 1 or 0) is non zero. This affects GPIO operation as described in Hardware Assisted Parallel Interface (HAPI). The I²C compatible interface must be separately enabled.

Table 7. HAPI Port Configuration

Port Width (Bit 0 and 1, Figure 25)	HAPI Port Width
11	24 Bits: P3[7:0], P1[7:0], P0[7:0]
10	16 Bits: P1[7:0], P0[7:0]
01	8 Bits: P0[7:0]
00	No HAPI Interface

Table 8. I²C Port Configuration

I ² C Position (Bit 7, Figure 25)	I ² C Port Width (Bit 1, Figure 25)	I ² C Position
Don't Care	1	I ² C on P2[1:0], 0:SCL, 1:SDA
0	0	I ² C on P1[1:0], 0:SCL, 1:SDA
1	0	I ² C on P2[1:0], 0:SCL, 1:SDA

I²C Compatible Controller

The I²C compatible block provides a versatile two wire communication with external devices, supporting master, slave, and multi-master modes of operation. The I²C compatible block functions by handling the low level signaling in hardware, and issuing interrupts as needed to allow firmware to take appropriate action during transactions. While waiting for firmware response, the hardware keeps the I²C compatible bus idle if necessary.

The I²C compatible interface generates an interrupt to the microcontroller at the end of each received or transmitted byte, when a stop bit is detected by the slave when in receive mode, or when arbitration is lost. Details of the interrupt responses are given in Hardware Assisted Parallel Interface (HAPI).

The I²C compatible interface consists of two registers, an I²C Data Register (Figure 14) and an I²C Status and Control Register (Figure 27). The Data Register is implemented as separate read and write registers. Generally, the I²C Status and

Control Register are only monitored after the I²C interrupt, as all bits are valid at that time. Polling this register at other times could read misleading bit status if a transaction is underway.

The I^2C SCL clock is connected to bit 0 of GPIO port 1 or GPIO port 2, and the I^2C SDA data is connected to bit 1 of GPIO port 1 or GPIO port 2. Refer to I^2C and HAPI Configuration Register for the bit definitions and functionality of the HAPI and I^2C Configuration Register, which is used to set the locations of the configurable I^2C pins. When the I^2C compatible functionality is enabled by setting bit 0 of the I^2C Status & Control Register, the two LSB ([1:0]) of the corresponding GPIO port is placed in Open Drain mode, regardless of the settings of the GPIO Configuration Register. The electrical characteristics of the I^2C compatible interface is the same as that of GPIO ports 1 and 2. Note that the I_{OL} (max) is 2 mA at V_{OL} = 2.0V for ports 1 and 2.

All control of the I²C clock and data lines is performed by the I²C compatible block.

Note

3. I²C compatible function must be separately enabled.

Document Number: 38-08024 Rev. *D Page 22 of 59

Figure 26. I²C Data Register

I²C Data ADDRESS 0x29

Bit #	7	6	5	4	3	2	1	0
Bit Name	I ² C Data 7	I ² C Data 6	I ² C Data 5	I ² C Data 4	I ² C Data 3	I ² C Data 2	I ² C Data 1	I ² C Data 0
Read/Write	R/W							
Reset	Х	Х	Х	Х	Х	Х	Х	Х

Bits [7..0]: I²C Data

Contains 8-bit data on the I²C Bus.

Figure 27. I²C Status and Control Register

I²C Status and Control **ADDRESS 0x28** Bit # 2 3 6 4 0 I²C Enable Bit Name MSTR Mode Continue/Bu Xmit Mode ACK Addr ARB Received Lost/Restart Stop sy Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Reset 0 0 0 0 0 0 0 0

The I²C Status and Control register bits are defined in Table 9, with a more detailed description following.

Table 9. I²C Status and Control Register Bit Definitions

Bit	Name	Description	
0	I ² C Enable	When set to '1', the I ² C compatible function is enabled. When cleared, I ² C GPIO pins operate normally.	
1	Received Stop	Reads 1 only in slave receive mode, when I ² C Stop bit detected (unless firmware did not ACK the last transaction).	
2	ARB Lost/Restart	Reads 1 to indicate master has lost arbitration. Reads 0 otherwise. Write to 1 in master mode to perform a restart sequence (also set Continue bit).	
3	Addr	Reads 1 during first byte after start/restart in slave mode, or if master loses arbitration. Reads 0 otherwise. This bit should always be written as 0.	
4	ACK	In receive mode, write 1 to generate ACK, 0 for no ACK. In transmit mode, reads 1 if ACK was received, 0 if no ACK received.	
5	Xmit Mode	Write to 1 for transmit mode, 0 for receive mode.	
6	Continue/Busy	Write 1 to indicate ready for next transaction. Reads 1 when I ² C compatible block is busy with a transaction, 0 when transaction is complete.	
7	MSTR Mode	Write to 1 for master mode, 0 for slave mode. This bit is cleared if master loses arbitration. Clearing from 1 to 0 generates Stop bit.	

Document Number: 38-08024 Rev. *D Page 23 of 59

Bit 7: MSTR Mode

Setting this bit to 1 causes the I²C compatible block to initiate a master mode transaction by sending a start bit and transmitting the first data byte from the data register (this typically holds the target address and R/W bit). Subsequent bytes are initiated by setting the Continue bit, as described later in this section.

Clearing this bit (set to 0) causes the GPIO pins to operate normally. In master mode, the I²C compatible block generates the clock (SCK), and drives the data line as required depending on transmit or receive state. The I²C compatible block performs any required arbitration and clock synchronization. IN the event of a loss of arbitration, this MSTR bit is cleared, the ARB Lost bit is set, and an interrupt is generated by the microcontroller. If the chip is the target of an external master that wins arbitration, then the interrupt is held off until the transaction from the external master is completed.

When MSTR Mode is cleared from 1 to 0 by a firmware write, an I^2C Stop bit is generated.

Bit 6: Continue/Busy

This bit is written by the firmware to indicate that the firmware is ready for the next byte transaction to begin. In other words, the bit has responded to an interrupt request and has completed the required update or read of the data register. During a read this bit indicates if the hardware is busy and is locking out additional writes to the I²C Status and Control register. This locking allows the hardware to complete certain operations that may require an extended period of time. Following an I²C interrupt, the I²C compatible block does not return to the Busy state until firmware sets the Continue bit. This allows the firmware to make one control register write without the need to check the Busy bit.

Bit 5: Xmit Mode

This bit is set by firmware to enter transmit mode and perform a data transmit in master or slave mode. Clearing this bit sets the part in receive mode. Firmware generally determines the value of this bit from the R/W bit associated with the I²C address packet. The Xmit Mode bit state is ignored when initially writing the MSTR Mode or the Restart bits, as these cases always cause transmit mode for the first byte.

Bit 4: ACK

This bit is set or cleared by firmware during receive operation to indicate if the hardware should generate an ACK signal on the I^2C compatible bus. Writing a 1 to this bit generates an ACK (SDA LOW) on the I^2C compatible bus at the ACK bit time. During transmits (Xmit Mode = 1), this bit should be cleared.

Bit 3: Addr

This bit is set by the I²C compatible block during the first byte of a slave receive transaction, after an I²C start or restart. The Addr bit is cleared when the firmware sets the Continue bit. This bit allows the firmware to recognize when the master has lost arbitration, and in slave mode it allows the firmware to recognize that a start or restart has occurred.

Bit 2: ARB Lost/Restart

This bit is valid as a status bit (ARB Lost) after master mode transactions. In master mode, set this bit (along with the Continue and MSTR Mode bits) to perform an I²C restart sequence. The I²C target address for the restart must be written to the data register before setting the Continue bit. To prevent false ARB Lost signals, the Restart bit is cleared by hardware during the restart sequence.

Bit 1: Receive Stop

This bit is set when the slave is in receive mode and detects a stop bit on the bus. The Receive Stop bit is not set if the firmware terminates the I^2C transaction by not acknowledging the previous byte transmitted on the I^2C compatible bus. For example, in receive mode if firmware sets the Continue bit and clears the ACK bit.

Bit 0: I²C Enable

Set this bit to override GPIO definition with I²C compatible function on the two I²C compatible pins. When this bit is cleared, these pins are free to function as GPIOs. In I²C compatible mode, the two pins operate in open drain mode, independent of the GPIO configuration setting.

[+] Feedback

Hardware Assisted Parallel Interface (HAPI)

The CY7C66x13C processor provides a hardware assisted parallel interface for bus widths of 8, 16, or 24 bits, to accommodate data transfer with an external microcontroller or similar device. Control bits for selecting the byte width are in the HAPI and I²C Configuration Register (Figure 25), bits 1 and 0.

Signals are provided on Port 2 to control the HAPI interface. Table 10 describes these signals and the HAPI control bits in the HAPI and I²C Configuration Register. Enabling HAPI causes the GPIO setting in the GPIO Configuration Register (Figure 10) to be overridden. The Port 2 output pins are in CMOS output mode and Port 2 input pins are in input mode (open drain mode with Q3 OFF in Figure 7).

Table 10. Port 2 Pin and HAPI Configuration Bit Definitions

Pin	Name	Direction	Description (Port 2 Pin)	
P2[2]	LatEmptyPin	Out	Ready for more input data from external interface.	
P2[3]	DReadyPin	Out	Output data ready for external interface.	
P2[4]	STB	In	Strobe signal for latching incoming data.	
P2[5]	OE	In	Output Enable, causes chip to output data.	
P2[6]	CS	In	Chip Select (Gates STB and OE).	
Bit	Name	R/W	Description (HAPI and I ² C Configuration Register)	
2	Data Ready	R	Asserted after firmware writes data to Port 0, until OE driven LOW.	
3	Latch Empty	R	Asserted after firmware reads data from Port 0, until STB driven LOW.	
4	DRDY Polarity	R/W	Determines polarity of Data Ready bit and DReadyPin: If 0, Data Ready is active LOW, DReadyPin is active HIGH. If 1, Data Ready is active HIGH, DReadyPin is active LOW.	
5	LEMPTY Polarity	R/W	Determines polarity of Latch Empty bit and LatEmptyPin: If 0, Latch Empty is active LOW, LatEmptyPin is active HIGH. If 1, Latch Empty is active HIGH, LatEmptyPin is active LOW.	

HAPI Read by External Device from CY7C66x13C

In this case (see Figure 50), firmware writes data to the GPIO ports. If 16-bit or 24-bit transfers are being made, Port 0 is written last, because writes to Port 0 asserts the Data Ready bit and the DReadyPin to signal the external device that data is available.

The external device then drives the $\overline{\text{OE}}$ and $\overline{\text{CS}}$ pins active (LOW), which causes the HAPI data to be output on the port pins. When $\overline{\text{OE}}$ is returned HIGH (inactive), the HAPI/GPIO interrupt is generated. At that point, firmware is reload the HAPI latches for the next output, again writing Port 0 last.

The Data Ready bit reads the opposite state from the external DReadyPin on pin P2[3]. If the DRDY Polarity bit is 0, DReadyPin is active HIGH, and the Data Ready bit is active LOW.

HAPI Write by External Device to CY7C66x13C

In this case (see Figure 52), the external device drives the \$\overline{STB}\$ and \$\overline{CS}\$ pins active (LOW) when it drives new data onto the port pins. When this happens, the internal latches become full, which causes the Latch Empty bit to be deasserted. When \$\overline{STB}\$ is returned HIGH (inactive), the HAPI and GPIO interrupt is generated. Firmware then reads the parallel ports to empty the HAPI latches. If 16-bit or 24-bit transfers are being made, Port 0 should be read last because reads from Port 0 assert the Latch Empty bit and the LatEmptyPin to signal the external device for more data.

The Latch Empty bit reads the opposite state from the external LatEmptyPin on pin P2[2]. If the LEMPTY Polarity bit is 0, LatEmptyPin is active HIGH, and the Latch Empty bit is active LOW.

Page 25 of 59