

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





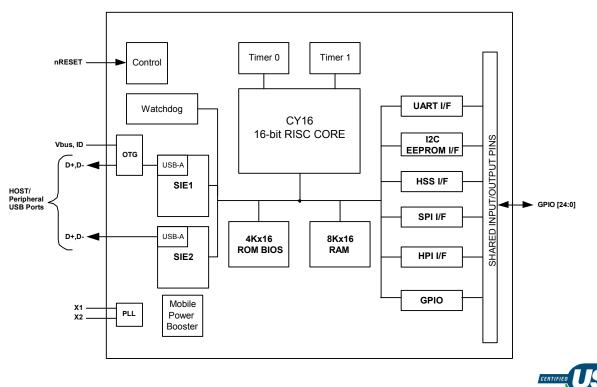




# EZ-OTG™ Programmable USB On-The-Go Host/Peripheral Controller

# **EZ-OTG Features**

- Single-chip programmable USB dual-role (Host/Peripheral) controller with two configurable Serial Interface Engines (SIEs) and two USB ports
- Supports USB OTG protocol
- On-chip 48-MHz 16-bit processor with dynamically switchable clock speed
- Configurable IO block supports a variety of IO options or up to 25 bits of General Purpose IO (GPIO)
- 4K × 16 internal mask ROM contains built-in BIOS that supports a communication-ready state with access to I<sup>2</sup>C™ EEPROM interface, external ROM, UART, or USB
- 8K x 16 internal RAM for code and data buffering
- 16-bit parallel host port interface (HPI) with DMA/Mailbox data path for an external processor to directly access all on-chip memory and control on-chip SIEs


- Fast serial port supports from 9600 baud to 2.0M baud
- SPI supports both master and slave
- Supports 12 MHz external crystal or clock
- 2.7 V to 3.6 V power supply voltage
- Package option: 48-pin FBGA

# Typical Applications

EZ-OTG is a very powerful and flexible dual-role USB controller that supports a wide variety of applications. It is primarily intended to enable USB OTG capability in applications such as:

- Cellular phones
- PDAs and pocket PCs
- Video and digital still cameras
- MP3 players
- Mass storage devices

# Logic Block Diagram - CY7C67200



Errata: For information on silicon errata, see "Errata" on page 84. Details include trigger conditions, devices affected, and proposed workaround.



# **Contents**

| Introduction                        |    |
|-------------------------------------|----|
| Processor Core Functional Overview  |    |
| Processor                           |    |
| Clocking                            |    |
| Memory                              |    |
| Interrupts                          |    |
| General Timers and Watchdog Timer   |    |
| Power Management                    |    |
| Interface Descriptions              | 3  |
| USB Interface                       |    |
| OTG Interface                       |    |
| General Purpose IO Interface        | 4  |
| UART Interface                      |    |
| I2C EEPROM Interface                | 5  |
| Serial Peripheral Interface         | 5  |
| High-Speed Serial Interface         | 5  |
| Host Port Interface (HPI)           | 6  |
| Charge Pump Interface               | 6  |
| Booster Interface                   | 7  |
| Crystal Interface                   | 8  |
| Boot Configuration Interface        | 8  |
| Operational Modes                   |    |
| Power Savings and Reset Description | 10 |
| Power Savings Mode Description      | 10 |
| Sleep                               | 10 |
| External (Remote) Wakeup Source     | 10 |
| Power-On Reset (POR) Description    | 10 |
| Reset Pin                           | 10 |
| USB Reset                           | 10 |
| Memory Map                          | 10 |
| Mapping                             | 10 |
| Internal Memory                     | 11 |
| Registers                           | 11 |
| Processor Control Registers         | 11 |
| Timer Registers                     |    |
| General USB Registers               |    |
| USB Host Only Registers             |    |
| USB Device Only Registers           |    |
| OTG Control Registers               |    |
| GPIO Registers                      |    |

| HSS Registers                               | 47 |
|---------------------------------------------|----|
| HPI Registers                               | 53 |
| SPI Registers                               |    |
| UART Registers                              | 65 |
| Pin Diagram                                 | 67 |
| Pin Descriptions                            |    |
| Absolute Maximum Ratings                    | 69 |
| Operating Conditions                        |    |
| Crystal Requirements (XTALIN, XTALOUT)      | 69 |
| DC Characteristics                          | 70 |
| USB Transceiver                             | 71 |
| AC Timing Characteristics                   | 71 |
| Reset Timing                                | 71 |
| Clock Timing                                | 72 |
| I2C EEPROM Timing                           | 72 |
| HPI (Host Port Interface) Read Cycle Timing | 74 |
| HSS BYTE Mode Transmit                      |    |
| HSS Block Mode Transmit                     |    |
| HSS BYTE and BLOCK Mode Receive             |    |
| Hardware CTS/RTS Handshake                  | 76 |
| Register Summary                            |    |
| Ordering Information                        |    |
| Ordering Code Definitions                   |    |
| Package Diagram                             |    |
| Acronyms                                    |    |
| Document Conventions                        |    |
| Units of Measure                            |    |
| Errata                                      |    |
| Part Numbers Affected                       |    |
| CY7C67200 Qualification Status              |    |
| CY7C67200 Errata Summary                    |    |
| Document History Page                       |    |
| Sales, Solutions, and Legal Information     |    |
| Worldwide Sales and Design Support          |    |
| Products                                    |    |
| PSoC®Solutions                              |    |
| Cypress Developer Community                 |    |
| Technical Support                           | 93 |



### Introduction

EZ-OTG™ (CY7C67200) is Cypress Semiconductor's first USB On-The-Go (OTG) host/peripheral controller. EZ-OTG is designed to easily interface to most high-performance CPUs to add USB host functionality. EZ-OTG has its own 16-bit RISC processor to act as a coprocessor or operate in standalone mode. EZ-OTG also has a programmable IO interface block allowing a wide range of interface options.

# **Processor Core Functional Overview**

An overview of the processor core components are presented in this section.

#### **Processor**

EZ-OTG has a general purpose 16-bit embedded RISC processor that runs at 48 MHz.

# Clocking

EZ-OTG requires a 12 MHz source for clocking. Either an external crystal or TTL-level oscillator may be used. EZ-OTG has an internal PLL that produces a 48 MHz internal clock from the 12 MHz source.

### Memory

EZ-OTG has a built-in 4K  $\times$  16 masked ROM and an 8K  $\times$  16 internal RAM. The masked ROM contains the EZ-OTG BIOS. The internal RAM can be used for program code or data.

# Interrupts

EZ-OTG provides 128 interrupt vectors. The first 48 vectors are hardware interrupts and the following 80 vectors are software interrupts.

# **General Timers and Watchdog Timer**

EZ-OTG has two built-in programmable timers and a watchdog timer. All three timers can generate an interrupt to the EZ-OTG.

# **Power Management**

EZ-OTG has one main power-saving mode, Sleep. Sleep mode pauses all operations and provides the lowest power state.

# **Interface Descriptions**

EZ-OTG has a variety of interface options for connectivity, with several interface options available. See Table 1 to understand how the interfaces share pins and can coexist. Below are some general guidelines:

- I2C EEPROM and OTG do not conflict with any interfaces
- HPI is mutually exclusive to HSS, SPI, and UART

Table 1. Interface Options for GPIO Pins

| GPIO Pins | HPI | HSS | SPI  | UART | I2C     | OTG   |
|-----------|-----|-----|------|------|---------|-------|
| GPIO31    |     |     |      |      | SCL/SDA |       |
| GPIO30    |     |     |      |      | SCL/SDA |       |
| GPIO29    |     |     |      |      |         | OTGID |
| GPIO24    | INT |     |      |      |         |       |
| GPIO23    | nRD |     |      |      |         |       |
| GPIO22    | nWR |     |      |      |         |       |
| GPIO21    | nCS |     |      |      |         |       |
| GPIO20    | A1  |     |      |      |         |       |
| GPIO19    | A0  |     |      |      |         |       |
| GPIO15    | D15 | CTS |      |      |         |       |
| GPIO14    | D14 | RTS |      |      |         |       |
| GPIO13    | D13 | RXD |      |      |         |       |
| GPIO12    | D12 | TXD |      |      |         |       |
| GPIO11    | D11 |     | MOSI |      |         |       |
| GPIO10    | D10 |     | SCK  |      |         |       |
| GPIO9     | D9  |     | nSSI |      |         |       |
| GPIO8     | D8  |     | MISO |      |         |       |
| GPIO7     | D7  |     |      | TX   |         |       |
| GPIO6     | D6  |     |      | RX   |         |       |
| GPIO5     | D5  |     |      |      |         |       |
| GPIO4     | D4  |     |      |      |         |       |
| GPIO3     | D3  |     |      |      |         |       |
| GPIO2     | D2  |     |      |      |         |       |
| GPIO1     | D1  |     |      |      |         |       |
| GPIO0     | D0  |     |      |      |         |       |



#### **USB** Interface

EZ-OTG has two built-in Host/Peripheral SIEs that each have a single USB transceiver, meeting the USB 2.0 specification requirements for full and low speed (high speed is not supported). In Host mode, EZ-OTG supports two downstream ports; each supports control, interrupt, bulk, and isochronous transfers. In Peripheral mode, EZ-OTG supports one peripheral port with eight endpoints for each of the two SIEs. Endpoint 0 is dedicated as the control endpoint and only supports control transfers. Endpoints 1 though 7 support Interrupt, bulk (up to 64 bytes per packet), or isochronous transfers (up to 1023 bytes per packet size). EZ-OTG also supports a combination of Host and Peripheral ports simultaneously, as shown in Table 2.

**Table 2. USB Port Configuration Options** 

| Port Configurations   | Port 1A    | Port 2A    |
|-----------------------|------------|------------|
| OTG                   | OTG        | _          |
| OTG + 1 Host          | OTG        | Host       |
| OTG + 1 Peripheral    | OTG        | Peripheral |
| 1 Host + 1 Peripheral | Host       | Peripheral |
| 1 Host + 1 Peripheral | Peripheral | Host       |
| 2 Hosts               | Host       | Host       |
| 1 Host                | Host       | _          |
| 1 Host                | _          | Host       |
| 2 Peripherals         | Peripheral | Peripheral |
| 1 Peripheral          | Peripheral | _          |
| 1 Peripheral          | _          | Peripheral |

#### USB Features

- USB 2.0 compatible for full and low speed
- Up to two downstream USB host ports
- Up to two upstream USB peripheral ports
- Configurable endpoint buffers (pointer and length), must reside in internal RAM
- Up to eight available peripheral endpoints (1 control endpoint)
- Supports Control, Interrupt, Bulk, and Isochronous transfers
- Internal DMA channels for each endpoint
- Internal pull up and pull down resistors
- Internal Series termination resistors on USB data lines

#### **USB Pins**

Table 3. USB Interface Pins

| Pin Name | Pin Number |
|----------|------------|
| DM1A     | F2         |
| DP1A     | E3         |
| DM2A     | C2         |
| DP2A     | D3         |

### **OTG Interface**

EZ-OTG has one USB port that is compatible with the USB On-The-Go supplement to the USB 2.0 specification. The USB OTG port has various hardware features to support Session Request Protocol (SRP) and Host Negotiation Protocol (HNP). OTG is only supported on USB PORT 1A.

#### OTG Features

- Internal Charge Pump to supply and control VBUS
- VBUS Valid Status (above 4.4 V)
- VBUS Status for 2.4 V < VBUS < 0.8 V
- ID Pin Status
- Switchable 2-Kohm internal discharge resistor on VBUS
- Switchable 500-ohm internal pull-up resistor on VBUS
- Individually switchable internal pull-up and pull-down resistors on the USB data lines

### OTG Pins

Table 4. OTG Interface Pins

| Pin Name | Pin Number |
|----------|------------|
| DM1A     | F2         |
| DP1A     | E3         |
| OTGVBUS  | C1         |
| OTGID    | F4         |
| CSwitchA | D1         |
| CSwitchB | D2         |

#### **General Purpose IO Interface**

EZ-OTG has up to 25 GPIO signals available. Several other optional interfaces use GPIO pins as well and may reduce the overall number of available GPIOs.

#### **GPIO** Description

All Inputs are sampled asynchronously with state changes occurring at a rate of up to two 48 MHz clock cycles. GPIO pins are latched directly into registers, a single flip-flop.

#### Unused Pin Descriptions

Unused USB pins must be tri-stated with the D+ line pulled high through the internal pull-up resistor and the D– line pulled low through the internal pull-down resistor.

Unused GPIO pins must be configured as outputs and driven low.

# **UART Interface**

EZ-OTG has a built-in UART interface. The UART interface <sup>[1]</sup> supports data rates from 900 to 115.2K baud. It can be used as a development port or for other interface requirements. The UART interface is exposed through GPIO pins.

#### Note

<sup>1.</sup> Errata: The UART is not designed to recognize framing errors. For more information, see the Errata on page 84.



#### **UART Features**

- Supports baud rates of 900 to 115.2K
- 8-N-1

#### **UART Pins**

Table 5. UART Interface Pins

| Pin Name | Pin Number |
|----------|------------|
| TX       | B5         |
| RX       | B4         |

# I<sup>2</sup>C EEPROM Interface

EZ-OTG provides a master-only I2C interface for external serial EEPROMs. The serial EEPROM can be used to store application-specific code and data. This I2C interface <sup>[2]</sup> is only to be used for loading code out of EEPROM, it is not a general I2C interface. The I2C EEPROM interface is a BIOS implementation and is exposed through GPIO pins. Refer to the BIOS documentation for additional details on this interface.

#### I<sup>2</sup>C EEPROM Features

- Supports EEPROMs up to 64 KB (512K bit)
- Auto-detection of EEPROM size

#### I<sup>2</sup>C EEPROM Pins

Table 6. I<sup>2</sup>C EEPROM Interface Pins

| Pin Name | Pin Number |
|----------|------------|
| SMALL    | EEPROM     |
| SCK      | H3         |
| SDA      | F3         |
| LARGE    | EEPROM     |
| SCK      | F3         |
| SDA      | H3         |

### **Serial Peripheral Interface**

EZ-OTG provides an SPI interface for added connectivity. EZ-OTG may be configured as either an SPI master or SPI slave. The SPI interface can be exposed through GPIO pins or the External Memory port.

#### SPI Features

- Master or slave mode operation
- DMA block transfer and PIO byte transfer modes
- Full duplex or half duplex data communication
- 8-byte receive FIFO and 8-byte transmit FIFO
- Selectable master SPI clock rates from 250 kHz to 12 MHz
- Selectable master SPI clock phase and polarity

- Slave SPI signaling synchronization and filtering
- Slave SPI clock rates up to 2 MHz
- Maskable interrupts for block and byte transfer modes
- Individual bit transfer for non-byte aligned serial communication in PIO mode
- Programmable delay timing for the active/inactive master SPI clock
- Auto or manual control for master mode slave select signal
- Complete access to internal memory

#### SPI Pins

The SPI port has a few different pin location options as shown in Table 7. The pin location is selectable via the GPIO Control register [0xC006].

Table 7. SPI Interface Pins

| Pin Name | Pin Number |
|----------|------------|
| nSSI     | F6 or C6   |
| SCK      | D5         |
| MOSI     | D4         |
| MISO     | C5         |

# **High-Speed Serial Interface**

EZ-OTG provides an HSS interface. The HSS interface is a programmable serial connection with baud rate from 9600 baud to 2M baud. The HSS interface supports both byte and block mode operations as well as hardware and software handshaking. Complete control of EZ-OTG can be accomplished through this interface via an extensible API and communication protocol. The HSS interface can be exposed through GPIO pins or the External Memory port.

# **HSS Features**

- 8-bit, no parity code
- Programmable baud rate from 9600 baud to 2M baud
- Selectable 1- or 2-stop bit on transmit
- Programmable intercharacter gap timing for Block Transmit
- 8-byte receive FIFO
- Glitch filter on receive
- Block mode transfer directly to/from EZ-OTG internal memory (DMA transfer)
- Selectable CTS/RTS hardware signal handshake protocol
- Selectable XON/XOFF software handshake protocol
- Programmable Receive interrupt, Block Transfer Done interrupts
- Complete access to internal memory

#### Note

<sup>2.</sup> Errata: If, while the BIOS is loading firmware, the part is reset and at that time the EEPROM is driving the SDA line low, the BIOS will configure the part for co-processor mode instead of standalone mode. For more information, see the Errata on page 84.



**HSS Pins** 

Table 8. HSS Interface Pins

| Pin Name | Pin Number |
|----------|------------|
| CTS      | F6         |
| RTS      | E4         |
| RX       | E5         |
| TX       | E6         |

### **Host Port Interface (HPI)**

EZ-OTG has an HPI interface. The HPI interface provides DMA access to the EZ-OTG internal memory by an external host, plus a bidirectional mailbox register for supporting high-level communication protocols. This port is designed to be the primary high-speed connection to a host processor. Complete control of EZ-OTG can be accomplished through this interface via an extensible API and communication protocol. Other than the hardware communication protocols, a host processor has identical control over EZ-Host whether connecting to the HPI or HSS port. The HPI interface is exposed through GPIO pins.

**Note** It should be noted that for up to 3 ms after BIOS starts executing, GPIO[24:19] and GPIO[15:8] will be driven as outputs for a test mode. If these pins need to be used as inputs, a series resistor is required (10 ohm to 48 ohm is recommended). Refer to BIOS documentation for addition details. See section "Reset Pin" on page 10.

# **HPI Features**

- 16-bit data bus interface
- 16 MB/s throughput
- Auto-increment of address pointer for fast block mode transfers
- Direct memory access (DMA) to internal memory
- Bidirectional Mailbox register
- Byte Swapping
- Complete access to internal memory
- Complete control of SIEs through HPI
- Dedicated HPI Status register

**HPI Pins** 

Table 9. HPI Interface Pins [3, 4]

| Pin Name | Pin Number |
|----------|------------|
| INT      | H4         |
| nRD      | G4         |
| nWR      | H5         |
| nCS      | G5         |
| A1       | H6         |
| A0       | F5         |

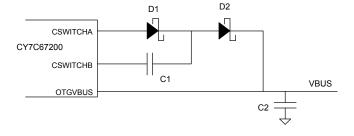
#### Notes

- 3. HPI\_INT is for the Outgoing Mailbox Interrupt.
- 4. HPI strobes are negative logic sampled on rising edge.

Table 9. HPI Interface Pins [3, 4] (continued)

| Pin Name | Pin Number |
|----------|------------|
| D15      | F6         |
| D14      | E4         |
| D13      | E5         |
| D12      | E6         |
| D11      | D4         |
| D10      | D5         |
| D9       | C6         |
| D8       | C5         |
| D7       | B5         |
| D6       | B4         |
| D5       | C4         |
| D4       | B3         |
| D3       | A3         |
| D2       | C3         |
| D1       | A2         |
| D0       | B2         |

The two HPI address pins are used to address one of four possible HPI port registers as shown in Table 10 below.


Table 10. HPI Addressing

| HPI A[1:0]  | A1 | A0 |
|-------------|----|----|
| HPI Data    | 0  | 0  |
| HPI Mailbox | 0  | 1  |
| HPI Address | 1  | 0  |
| HPI Status  | 1  | 1  |

# **Charge Pump Interface**

VBUS for the USB On-The-Go (OTG) port can be produced by EZ-OTG using its built-in charge pump and some external components. The circuit connections should look similar to Figure 1 below.

Figure 1. Charge Pump





### Component details:

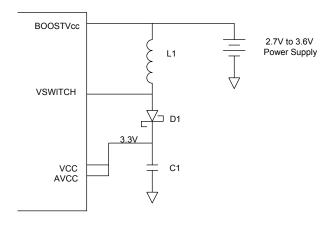
- D1 and D2: Schottky diodes with a current rating greater than 60 mA.
- C1: Ceramic capacitor with a capacitance of 0.1 µF.
- C2: Capacitor value must be no more that 6.5 µF since that is the maximum capacitance allowed by the USB OTG specification for a dual-role device. The minimum value of C2 is 1 µF. There are no restrictions on the type of capacitor for C2.

If the VBUS charge pump circuit is not to be used, CSWITCHA, CSWITCHB, and OTGVBUS can be left unconnected.

#### Charge Pump Features

■ Meets OTG Supplement Requirements, see Table 41, "DC Characteristics: Charge Pump," on page 70.

#### Charge Pump Pins

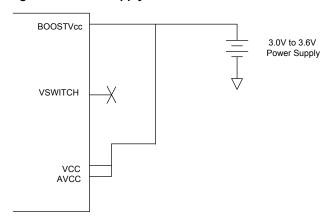

Table 11. Charge Pump Interface Pins

| Pin Name | Pin Number |
|----------|------------|
| OTGVBUS  | C1         |
| CSwitchA | D1         |
| CSwitchB | D2         |

#### **Booster Interface**

EZ-OTG has an on-chip power booster circuit for use with power supplies that range between 2.7 V and 3.6 V. The booster circuit boosts the power to 3.3 V nominal to supply power for the entire chip. The booster circuit requires an external inductor, diode, and capacitor. During power down mode, the circuit is disabled to save power. Figure 2 shows how to connect the booster circuit.

Figure 2. Power Supply Connection With Booster




# Component details:

- L1: Inductor with inductance of 10 µH and a current rating of at least 250 mA
- D1: Schottky diode with a current rating of at least 250 mA
- C1: Tantalum or ceramic capacitor with a capacitance of at least 2.2 µF

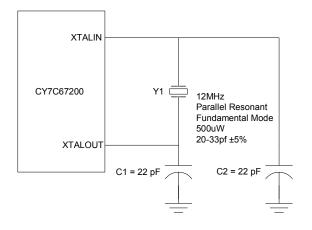
Figure 3 shows how to connect the power supply when the booster circuit is not being used.

Figure 3. Power Supply Connection Without Booster



#### **Booster Pins**

Table 12. Charge Pump Interface Pins


| Pin Name | Pin Number |
|----------|------------|
| BOOSTVcc | F1         |
| VSWITCH  | E2         |



# **Crystal Interface**

The recommended crystal circuit to be used with EZ-OTG is shown in Figure 4. If an oscillator is used instead of a crystal circuit, connect it to XTALIN and leave XTALOUT unconnected. For further information on the crystal requirements, see Table 39, "Crystal Requirements," on page 69.

Figure 4. Crystal Interface



### Crystal Pins

Table 13. Crystal Pins

| Pin Name | Pin Number |
|----------|------------|
| XTALIN   | G3         |
| XTALOUT  | G2         |

# **Boot Configuration Interface**

EZ-OTG can boot into any one of four modes. The mode it boots into is determined by the TTL voltage level of GPIO[31:30] at the time nRESET is deasserted. Table 14 shows the different boot pin combinations possible. After a reset pin event occurs, the BIOS bootup procedure executes for up to 3 ms. GPIO[31:30] are sampled by the BIOS during bootup only. After bootup these pins are available to the application as GPIOs.

**Table 14. Boot Configuration Interface** 

| GPIO31<br>(Pin 39) | GPIO30<br>(Pin 40) | Boot Mode                                     |  |
|--------------------|--------------------|-----------------------------------------------|--|
| 0                  | 0                  | Host Port Interface (HPI)                     |  |
| 0                  | 1                  | High Speed Serial (HSS)                       |  |
| 1                  | 0                  | Serial Peripheral Interface (SPI, slave mode) |  |
| 1                  | 1                  | I2C EEPROM (Standalone Mode)                  |  |

GPIO[31:30] must be pulled high or low, as needed, using resistors tied to  $V_{CC}$  or GND with resistor values between 5K ohm and 15K ohm. GPIO[31:30] must not be tied directly to  $V_{CC}$  or GND. Note that in Standalone mode, the pull ups on those two pins are used for the serial I2C EEPROM (if implemented). The resistors used for these pull ups must conform to the serial EEPROM manufacturer's requirements.

If any mode other then standalone is chosen, EZ-OTG will be in coprocessor mode. The device will power up with the appropriate communication interface enabled according to its boot pins and wait idle until a coprocessor communicates with it. See the BIOS documentation for greater detail on the boot process.



# **Operational Modes**

There are two modes of operation: Coprocessor and Standalone.

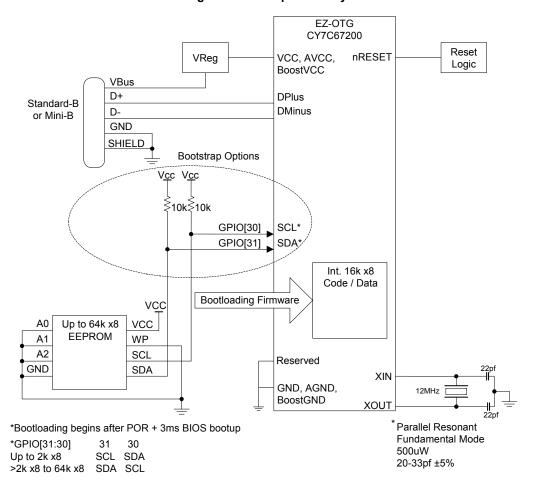
#### Coprocessor Mode

EZ-OTG can act as a coprocessor to an external host processor. In this mode, an external host processor drives EZ-OTG and is the main processor rather then EZ-OTG's own 16-bit internal CPU. An external host processor may interface to EZ-OTG through one of the following three interfaces in coprocessor mode:

- HPI mode, a 16-bit parallel interface with up to 16 MBytes transfer rate
- HSS mode, a serial interface with up to 2M baud transfer rate
- SPI mode, a serial interface with up to 2 Mbits/s transfer rate.

At bootup GPIO[31:30] determine which of these three interfaces are used for coprocessor mode. Refer to Table 14 for details. Bootloading begins from the selected interface after POR + 3 ms of BIOS bootup.

#### Standalone Mode


In standalone mode, there is no external processor connected to EZ-OTG. Instead, EZ-OTG's own internal 16-bit CPU is the main processor and firmware is typically downloaded from an EEPROM. Optionally, firmware may also be downloaded via USB. Refer to Table 14 for booting into standalone mode.

After booting into standalone mode (GPIO[31:30] = '11'), the following pins are affected:

- GPIO[31:30] are configured as output pins to examine the EEPROM contents.
- GPIO[28:27] are enabled for debug UART mode.
- GPIO[29] is configured as OTGID for OTG applications on PORT1A.
  - □ If OTGID is logic 1 then PORT1A (OTG) is configured as a USB peripheral.
- ☐ If OTGID is logic 0 then PORT1A (OTG) is configured as a USB host.
- Ports 1B, 2A, and 2B default as USB peripheral ports.
- All other pins remain INPUT pins.

Minimum Hardware Requirements for Standalone Mode – Peripheral Only

Figure 5. Minimum Standalone Hardware Configuration - Peripheral Only





# **Power Savings and Reset Description**

The EZ-OTG modes and reset conditions are described in this section.

### **Power Savings Mode Description**

EZ-OTG has one main power savings mode, Sleep. For detailed information on Sleep mode; See section "Sleep".

Sleep mode is used for USB applications to support USB suspend and non USB applications as the main chip power down mode.

In addition, EZ-OTG is capable of slowing down the CPU clock speed through the CPU Speed register [0xC008] without affecting other peripheral timing. Reducing the CPU clock speed from 48 MHz to 24 MHz reduces the overall current draw by around 8 mA while reducing it from 48 MHz to 3 MHz reduces the overall current draw by approximately 15 mA.

#### Sleep

Sleep mode is the main chip power down mode and is also used for USB suspend. Sleep mode is entered by setting the Sleep Enable (bit 1) of the Power Control register [0xC00A]. During Sleep mode (USB Suspend) the following events and states are true:

- GPIO pins maintain their configuration during sleep (in suspend).
- External Memory Address pins are driven low.
- XTALOUT is turned off.
- Internal PLL is turned off.
- Firmware must disable the charge pump (OTG Control register [0xC098]) causing OTGVBUS to drop below 0.2 V. Otherwise OTGVBUS will only drop to V<sub>CC</sub> (2 schottky diode drops).
- Booster circuit is turned off.
- USB transceivers is turned off.
- CPU suspends until a programmable wakeup event.

## **External (Remote) Wakeup Source**

There are several possible events available to wake EZ-OTG from Sleep mode as shown in Table 15. These may also be used as remote wakeup options for USB applications. See section "Power Control Register [0xC00A] [R/W]" on page 15.

Upon wakeup, code begins executing within 200 ms, the time it takes the PLL to stabilize.

Table 15. wakeup Sources<sup>[5, 6]</sup>

| Wakeup Source (if enabled) | Event           |
|----------------------------|-----------------|
| USB Resume                 | D+/D– Signaling |
| OTGVBUS                    | Level           |
| OTGID                      | Any Edge        |
| HPI                        | Read            |
| HSS                        | Read            |
| SPI                        | Read            |
| IRQ0 (GPIO 24)             | Any Edge        |

# Power-On Reset (POR) Description

The length of the power-on-reset event can be defined by ( $V_{CC}$  ramp to valid) + (Crystal start up). A typical application might utilize a 12-ms power-on-reset event = ~7 ms + ~5 ms, respectively.

#### Reset Pin

The Reset pin is active low and requires a minimum pulse duration of sixteen 12-MHz clock cycles (1.3 ms). A reset event restores all registers to their default POR settings. Code execution then begins 200 ms later at 0xFF00 with an immediate jump to 0xE000, the start of BIOS.

**Note** It should be noted that for up to 3 ms after BIOS starts executing, GPIO[24:19] and GPIO[15:8] will be driven as outputs for a test mode. If these pins need to be used as inputs, a series resistor is required (10 ohm to 48 ohm is recommended). Refer to BIOS documentation for addition details.

#### **USB Reset**

A USB Reset affects registers 0xC090 and 0xC0B0, all other registers remain unchanged.

# **Memory Map**

Memory map information is presented in this section.

#### **Mapping**

The EZ-OTG has just over 24 KB of addressable memory mapped from 0x0000 to 0xFFFF. This 24 KB contains both program and data space and is byte addressable. Figure 6. shows the various memory region address locations.

#### Notes

- 5. Read data will be discarded (dummy data).
- 6. HPI\_INT will assert on a USB Resume registers



# **Internal Memory**

Of the internal memory, 15 KB is allocated for user's program and data code. The lower memory space from 0x0000 to 0x04A2 is reserved for interrupt vectors, general purpose registers, USB control registers, the stack, and other BIOS variables. The upper internal memory space contains EZ-OTG control registers from 0xC000 to 0xC0FF and the BIOS ROM itself from 0xE000 to 0xFFFF. For more information on the reserved lower memory or the BIOS ROM, refer to the Programmers documentation and the BIOS documentation.

During development with the EZ-OTG toolset, the lower area of User's space (0x04A4 to 0x1000) should be left available to load the GDB stub. The GDB stub is required to allow the toolset debug access into EZ-OTG.

Figure 6. Memory Map

# **Internal Memory**

| 0x0000 - 0x00FF | HW INTs            |  |  |  |
|-----------------|--------------------|--|--|--|
| 00000 - 0000FF  | SW INTs            |  |  |  |
| 0x0100 - 0x011F | Primary Registers  |  |  |  |
| 0x0120 - 0x013F | Swap Registers     |  |  |  |
| 0x0140 - 0x0148 | HPI Int / Mailbox  |  |  |  |
| 0x014A - 0x01FF | LCP Variables      |  |  |  |
| 0x0200- 0x02FF  | USB Registers      |  |  |  |
| 0x0300- 0x030F  | Slave Setup Packet |  |  |  |
| 0x0310- 0x03FF  | BIOS Stack         |  |  |  |
| 0x0400- 0x04A2  | USB Slave & OTG    |  |  |  |
| 0x04A4- 0x3FFF  | USER SPACE<br>~15K |  |  |  |
|                 |                    |  |  |  |
| 0xC000- 0xC0FF  | Control Registers  |  |  |  |
| 0xE000- 0xFFFF  | BIOS               |  |  |  |
| ひろしひひひ ひえににに    | ו סונס             |  |  |  |

# Registers

Some registers have different functions for a read vs. a write access or USB host vs. USB device mode. Therefore, registers of this type have multiple definitions for the same address.

The default register values listed in this data sheet may be altered to some other value during BIOS initialization. Refer to the BIOS documentation for Register initialization information.

# **Processor Control Registers**

There are eight registers dedicated to general processor control. Each of these registers is covered in this section and is summarized in Table 16.

**Table 16. Processor Control Registers** 

| Register Name              | Address | R/W |
|----------------------------|---------|-----|
| CPU Flags Register         | 0xC000  | R   |
| Register Bank Register     | 0xC002  | R/W |
| Hardware Revision Register | 0xC004  | R   |
| CPU Speed Register         | 0xC008  | R/W |
| Power Control Register     | 0xC00A  | R/W |
| Interrupt Enable Register  | 0xC00E  | R/W |
| Breakpoint Register        | 0xC014  | R/W |
| USB Diagnostic Register    | 0xC03C  | W   |



# CPU Flags Register [0xC000] [R]

# Figure 7. CPU Flags Register

| Bit #      | 15 | 14       | 13 | 12 | 11 | 10 | 9 | 8 |
|------------|----|----------|----|----|----|----|---|---|
| Field      |    | Reserved |    |    |    |    |   |   |
| Read/Write | _  | _        | _  | _  | _  | _  | - | _ |
| Default    | 0  | 0        | 0  | 0  | 0  | 0  | 0 | 0 |

| Bit #      | 7 | 6        | 5 | 4                             | 3                | 2                | 1             | 0            |
|------------|---|----------|---|-------------------------------|------------------|------------------|---------------|--------------|
| Field      |   | Reserved |   | Global<br>Interrupt<br>Enable | Negative<br>Flag | Overflow<br>Flag | Carry<br>Flag | Zero<br>Flag |
| Read/Write | _ | _        | _ | R                             | R                | R                | R             | R            |
| Default    | 0 | 0        | 0 | Х                             | Х                | Х                | Х             | Х            |

# **Register Description**

The CPU Flags register is a read only register that gives processor flags status.

# Global Interrupt Enable (Bit 4)

The Global Interrupt Enable bit indicates if the Global Interrupts are enabled.

1: Enabled

0: Disabled

### Negative Flag (Bit 3)

The Negative Flag bit indicates if an arithmetic operation results in a negative answer.

1: MS result bit is '1'

0: MS result bit is not '1'

## Overflow Flag (Bit 2)

The Overflow Flag bit indicates if an overflow condition has occurred. An overflow condition can occur if an arithmetic result

was either larger than the destination operand size (for addition) or smaller than the destination operand should allow for subtraction.

1: Overflow occurred

0: Overflow did not occur

# Carry Flag (Bit 1)

The Carry Flag bit indicates if an arithmetic operation resulted in a carry for addition, or borrow for subtraction.

1: Carry/Borrow occurred

0: Carry/Borrow did not occur

#### Zero Flag (Bit 0)

The Zero Flag bit indicates if an instruction execution resulted in a '0'.

1: Zero occurred

0: Zero did not occur



# Bank Register [0xC002] [R/W]

# Figure 8. Bank Register

| Bit #      | 15  | 14      | 13  | 12   | 11  | 10       | 9   | 8   |
|------------|-----|---------|-----|------|-----|----------|-----|-----|
| Field      |     |         |     | Addr | ess |          |     |     |
| Read/Write | R/W | R/W     | R/W | R/W  | R/W | R/W      | R/W | R/W |
| Default    | 0   | 0       | 0   | 0    | 0   | 0        | 0   | 1   |
|            |     |         |     |      |     |          |     |     |
| Bit #      | 7   | 6       | 5   | 4    | 3   | 2        | 1   | 0   |
| Field      |     | Address |     |      |     | Reserved |     |     |
| Read/Write | R/W | R/W     | R/W | -    | _   | _        | _   | _   |
| Default    | 0   | 0       | 0   | Х    | Х   | Х        | Х   | Х   |

# **Register Description**

The Bank register maps registers R0–R15 into RAM. The eleven MSBs of this register are used as a base address for registers R0–R15. A register address is automatically generated by:

- 1. Shifting the four LSBs of the register address left by 1
- ORing the four shifted bits of the register address with the 12 MSBs of the Bank Register
- 3. Forcing the LSB to zero

For example, if the Bank register is left at its default value of 0x0100, and R2 is read, then the physical address 0x0102 will be read. See Table 17 for details.

Table 17. Bank Register Example

| Register        | Hex Value            | Binary Value        |
|-----------------|----------------------|---------------------|
| Bank            | 0x0100               | 0000 0001 0000 0000 |
| R14             | 0x000E << 1 = 0x001C | 0000 0000 0001 1100 |
| RAM<br>Location | 0x011C               | 0000 0001 0001 1100 |

#### **Address** (Bits [15:4])

The Address field is used as a base address for all register addresses to start from.

#### Reserved

All reserved bits must be written as '0'.

# Hardware Revision Register [0xC004] [R]

Figure 9. Revision Register

| Bit #      | 15 | 14       | 13 | 12  | 11    | 10 | 9 | 8 |  |  |
|------------|----|----------|----|-----|-------|----|---|---|--|--|
| Field      |    | Revision |    |     |       |    |   |   |  |  |
| Read/Write | R  | R        | R  | R   | R     | R  | R | R |  |  |
| Default    | Х  | Х        | Х  | Х   | X     | Х  | Х | Х |  |  |
|            |    |          |    |     |       |    |   |   |  |  |
| Bit #      | 7  | 6        | 5  | 4   | 3     | 2  | 1 | 0 |  |  |
| Field      |    |          |    | Rev | ision |    |   |   |  |  |
| Read/Write | R  | R        | R  | R   | R     | R  | R | R |  |  |
| Default    | Х  | Х        | Х  | Х   | Х     | Х  | Х | Х |  |  |

### **Register Description**

The Hardware Revision register is a read-only register that indicates the silicon revision number. The first silicon revision is represented by 0x0101. This number is increased by one for each new silicon revision.

### Revision (Bits [15:0])

The Revision field contains the silicon revision number.



# CPU Speed Register [0xC008] [R/W]

# Figure 10. CPU Speed Register

| Bit #      | 15 | 14       | 13 | 12 | 11 | 10 | 9 | 8 |  |
|------------|----|----------|----|----|----|----|---|---|--|
| Field      |    | Reserved |    |    |    |    |   |   |  |
| Read/Write | -  | -        | -  | -  | -  | -  | - | - |  |
| Default    | 0  | 0        | 0  | 0  | 0  | 0  | 0 | 0 |  |

| Bit #      | 7        | 6 | 5 | 4         | 3   | 2   | 1   | 0   |
|------------|----------|---|---|-----------|-----|-----|-----|-----|
| Field      | Reserved |   |   | CPU Speed |     |     |     |     |
| Read/Write | -        | - | - | -         | R/W | R/W | R/W | R/W |
| Default    | 0        | 0 | 0 | 0         | 1   | 1   | 1   | 1   |

# **Register Description**

The CPU Speed register allows the processor to operate at a user selected speed. This register only affects the CPU; all other peripheral timing is still based on the 48-MHz system clock (unless otherwise noted).

# CPU Speed (Bits[3:0])

The CPU Speed field is a divisor that selects the operating speed of the processor as defined in Table 18.

Table 18. CPU Speed Definition

| CPU Speed [3:0] | Processor Speed |
|-----------------|-----------------|
| 0000            | 48 MHz/1        |
| 0001            | 48 MHz/2        |
| 0010            | 48 MHz/3        |
| 0011            | 48 MHz/4        |
| 0100            | 48 MHz/5        |
| 0101            | 48 MHz/6        |
| 0110            | 48 MHz/7        |
| 0111            | 48 MHz/8        |
| 1000            | 48 MHz/9        |
| 1001            | 48 MHz/10       |
| 1010            | 48 MHz/11       |
| 1011            | 48 MHz/12       |
| 1100            | 48 MHz/13       |
| 1101            | 48 MHz/14       |
| 1110            | 48 MHz/15       |
| 1111            | 48 MHz/16       |

# Reserved

All reserved bits must be written as '0'.



### Power Control Register [0xC00A] [R/W]

### Figure 11. Power Control Register

| Bit #      | 15       | 14                           | 13       | 12                           | 11                 | 10       | 9                  | 8                  |
|------------|----------|------------------------------|----------|------------------------------|--------------------|----------|--------------------|--------------------|
| Field      | Reserved | Host/Device 2<br>Wake Enable | Reserved | Host/Device 1<br>Wake Enable | OTG<br>Wake Enable | Reserved | HSS<br>Wake Enable | SPI<br>Wake Enable |
| Read/Write | _        | R/W                          | _        | R/W                          | R/W                | _        | R/W                | R/W                |
| Default    | 0        | 0                            | 0        | 0                            | 0                  | 0        | 0                  | 0                  |

| Bit #      | 7                  | 6 | 5     | 4                  | 3        | 2              | 1               | 0              |
|------------|--------------------|---|-------|--------------------|----------|----------------|-----------------|----------------|
| Field      | HPI<br>Wake Enable |   | erved | GPI<br>Wake Enable | Reserved | Boost 3V<br>OK | Sleep<br>Enable | Halt<br>Enable |
| Read/Write | R/W                | _ | -     | R/W                | _        | R              | R/W             | R/W            |
| Default    | 0                  | 0 | 0     | 0                  | 0        | 0              | 0               | 0              |

#### **Register Description**

The Power Control register controls the power-down and wakeup options. Either the sleep mode or the halt mode options can be selected. All other writable bits in this register can be used as a wakeup source while in sleep mode.

#### Host/Device 2 Wake Enable (Bit 14)

The Host/Device 2 Wake Enable bit enables or disables a wakeup condition to occur on an Host/Device 2 transition. This wake up from the SIE port does not cause an interrupt to the on-chip CPU.

- 1: Enable wakeup on Host/Device 2 transition.
- 0: Disable wakeup on Host/Device 2 transition.

#### Host/Device 1 Wake Enable (Bit 12)

The Host/Device 1 Wake Enable bit enables or disables a wakeup condition to occur on an Host/Device 1 transition. This wakeup from the SIE port does not cause an interrupt to the on-chip CPU.

- 1: Enable wakeup on Host/Device 1 transition
- 0: Disable wakeup on Host/Device 1 transition

#### OTG Wake Enable (Bit 11)

The OTG Wake Enable bit enables or disables a wakeup condition to occur on either an OTG VBUS\_Valid or OTG ID transition (IRQ20).

- 1: Enable wakeup on OTG VBUS valid or OTG ID transition
- **0:** Disable wakeup on OTG VBUS valid or OTG ID transition

#### HSS Wake Enable (Bit 9)

The HSS Wake Enable bit enables or disables a wakeup condition to occur on an HSS Rx serial input transition. The processor may take several hundreds of microseconds before being operational after wakeup. Therefore, the incoming data byte that causes the wakeup will be discarded.

- 1: Enable wakeup on HSS Rx serial input transition
- 0: Disable wakeup on HSS Rx serial input transition

#### SPI Wake Enable (Bit 8)

The SPI Wake Enable bit enables or disables a wakeup condition to occur on a falling SPI\_nSS input transition. The processor may take several hundreds of microseconds before being operational after wakeup. Therefore, the incoming data byte that causes the wakeup will be discarded.

- 1: Enable wakeup on falling SPI nSS input transition
- 0: Disable SPI nSS interrupt

#### HPI Wake Enable (Bit 7)

The HPI Wake Enable bit enables or disables a wakeup condition to occur on an HPI interface read.

- 1: Enable wakeup on HPI interface read
- 0: Disable wakeup on HPI interface read

# **GPI Wake Enable** (Bit 4)

The GPI Wake Enable bit enables or disables a wakeup condition to occur on a GPIO(25:24) transition.

- 1: Enable wakeup on GPIO(25:24) transition
- 0: Disable wakeup on GPIO(25:24) transition

#### Boost 3V OK (Bit 2)

The Boost 3V OK bit is a read only bit that returns the status of the OTG Boost circuit.

- 1: Boost circuit not ok and internal voltage rails are below 3.0 V
- 0: Boost circuit ok and internal voltage rails are at or above 3.0 V

### Sleep Enable (Bit 1)

Setting this bit to '1' immediately initiates SLEEP mode. While in SLEEP mode, the entire chip is paused achieving the lowest standby power state. All operations are paused, the internal clock is stopped, the booster circuit and OTG VBUS charge pump are all powered down, and the USB transceivers are powered down. All counters and timers are paused but will retain their values. SLEEP mode exits by any activity selected in this register. When SLEEP mode ends, instruction execution resumes within 0.5 ms.

- 1: Enable Sleep Mode
- 0: No Function

#### Halt Enable (Bit 0)



Setting this bit to '1' immediately initiates HALT mode. While in HALT mode, only the CPU is stopped. The internal clock still runs and all peripherals still operate, including the USB engines. The power savings using HALT in most cases will be minimal, but in applications that are very CPU intensive the incremental savings may provide some benefit.

The HALT state is exited when any enabled interrupt is triggered. Upon exiting the HALT state, one or two instructions immediately following the HALT instruction may be executed before the

waking interrupt is serviced (you may want to follow the HALT instruction with two NOPs).

1: Enable Halt Mode

0: No Function

#### Reserved

All reserved bits must be written as '0'.

#### Interrupt Enable Register [0xC00E] [R/W]

Figure 12. Interrupt Enable Register [7]

| Bit #      | 15                         | 14                                | 13                                 | 12                         | 11                          | 10                          | 9                                    | 8                                    |
|------------|----------------------------|-----------------------------------|------------------------------------|----------------------------|-----------------------------|-----------------------------|--------------------------------------|--------------------------------------|
| Field      |                            | Reserved                          |                                    | OTG<br>Interrupt<br>Enable | SPI<br>Interrupt<br>Enable  | Reserved                    | Host/Device 2<br>Interrupt<br>Enable | Host/Device 1<br>Interrupt<br>Enable |
| Read/Write | _                          | _                                 | _                                  | R/W                        | R/W                         | _                           | R/W                                  | R/W                                  |
| Default    | 0                          | 0                                 | 0                                  | 0                          | 0                           | 0                           | 0                                    | 0                                    |
| Bit #      | 7                          | 6                                 | 5                                  | 4                          | 3                           | 2                           | 1                                    | 0                                    |
| Field      | HSS<br>Interrupt<br>Enable | In Mailbox<br>Interrupt<br>Enable | Out Mailbox<br>Interrupt<br>Enable | Reserved                   | UART<br>Interrupt<br>Enable | GPIO<br>Interrupt<br>Enable | Timer 1<br>Interrupt<br>Enable       | Timer 0<br>Interrupt<br>Enable       |
| Read/Write | R/W                        | R/W                               | R/W                                | _                          | R/W                         | R/W                         | R/W                                  | R/W                                  |
| Default    | 0                          | 0                                 | 0                                  | 1                          | 0                           | 0                           | 0                                    | 0                                    |

#### **Register Description**

The Interrupt Enable Register allows control of the hardware interrupt vectors.

### OTG Interrupt Enable (Bit 12)

The OTG Interrupt Enable bit enables or disables the OTG ID/OTG4.4 V Valid hardware interrupt.

- 1: Enable OTG interrupt
- 0: Disable OTG interrupt

## SPI Interrupt Enable (Bit 11)

The SPI Interrupt Enable bit enables or disables the following three SPI hardware interrupts: SPI TX, SPI RX, and SPI DMA Block Done.

- 1: Enable SPI interrupt
- 0: Disable SPI interrupt

# Host/Device 2 Interrupt Enable (Bit 9)

The Host/Device 2 Interrupt Enable bit enables or disables all of the following Host/Device 2 hardware interrupts: Host 2 USB Done, Host 2 USB SOF/EOP, Host 2 WakeUp/Insert/Remove, Device 2 Reset, Device 2 SOF/EOP or WakeUp from USB, Device 2 Endpoint n.

- 1: Enable Host 2 and Device 2 interrupt
- 0: Disable Host 2 and Device 2 interrupt

#### Host/Device 1 Interrupt Enable (Bit 8)

The Host/Device 1 Interrupt Enable bit enables or disables all of the following Host/Device 1 hardware interrupts: Host 1 USB Done, Host 1 USB SOF/EOP, Host 1 WakeUp/Insert/Remove, Device 1 Reset, Device 1 SOF/EOP or WakeUp from USB, Device 1 Endpoint n.

- 1: Enable Host 1 and Device 1 interrupt
- 0: Disable Host 1 and Device 1 interrupt

#### **HSS Interrupt Enable (Bit 7)**

The HSS Interrupt Enable bit enables or disables the following High-speed Serial Interface hardware interrupts: HSS Block Done, and HSS RX Full.

- 1: Enable HSS interrupt
- 0: Disable HSS interrupt

### In Mailbox Interrupt Enable (Bit 6)

The In Mailbox Interrupt Enable bit enables or disables the HPI: Incoming Mailbox hardware interrupt.

- 1: Enable MBXI interrupt
- 0: Disable MBXI interrupt

#### Out Mailbox Interrupt Enable (Bit 5)

The Out Mailbox Interrupt Enable bit enables or disables the HPI: Outgoing Mailbox hardware interrupt.

- 1: Enable MBXO interrupt
- 0: Disable MBXO interrupt

#### Note

7. Errata: Host/Device 1 SIE events will still trigger an interrupt when only the Host/Device 2 SIE Interrupt Enable is set and vise versa. For more information, see the Errata on page 84.

Document Number: 38-08014 Rev. \*K



# **UART Interrupt Enable** (Bit 3)

The UART Interrupt Enable bit enables or disables the following UART hardware interrupts: UART TX and UART RX.

- 1: Enable UART interrupt
- 0: Disable UART interrupt

### **GPIO Interrupt Enable (Bit 2)**

The GPIO Interrupt Enable bit enables or disables the General Purpose IO Pins Interrupt (See the GPIO Control Register). When GPIO bit is reset, all pending GPIO interrupts are also cleared.

- 1: Enable GPIO interrupt
- 0: Disable GPIO interrupt

# Timer 1 Interrupt Enable (Bit 1)

The Timer 1 Interrupt Enable bit enables or disables the TImer1 Interrupt Enable. When this bit is reset, all pending Timer 1 interrupts are cleared.

- 1: Enable TM1 interrupt
- 0: Disable TM1 interrupt

#### Timer 0 Interrupt Enable (Bit 0)

The Timer 0 Interrupt Enable bit enables or disables the TImer0 Interrupt Enable. When this bit is reset, all pending Timer 0 interrupts are cleared.

- 1: Enable TM0 interrupt
- 0: Disable TM0 interrupt

#### Reserved

All reserved bits must be written as '0'.

#### Breakpoint Register [0xC014] [R/W]

Figure 13. Breakpoint Register

| Bit #      | 15      | 14      | 13  | 12  | 11  | 10  | 9   | 8   |  |  |
|------------|---------|---------|-----|-----|-----|-----|-----|-----|--|--|
| Field      |         | Address |     |     |     |     |     |     |  |  |
| Read/Write | R/W     | R/W     | R/W | R/W | R/W | R/W | R/W | R/W |  |  |
| Default    | 0       | 0       | 0   | 0   | 0   | 0   | 0   | 0   |  |  |
|            |         |         |     |     | _   | 1   |     |     |  |  |
| Bit #      | 7       | 6       | 5   | 4   | 3   | 2   | 1   | 0   |  |  |
| Field      | Address |         |     |     |     |     |     |     |  |  |
| Read/Write | R/W     | R/W     | R/W | R/W | R/W | R/W | R/W | R/W |  |  |
| Default    | 0       | 0       | 0   | 0   | 0   | 0   | 0   | 0   |  |  |

# **Register Description**

The Breakpoint Register holds the breakpoint address. When the program counter match this address, the INT127 interrupt occurs. To clear this interrupt, a zero value must be written to this register.

# Address (Bits [15:0])

The Address field is a 16-bit field containing the breakpoint address.



### USB Diagnostic Register [0xC03C] [R/W]

# Figure 14. USB Diagnostic Register

| Bit #      | 15       | 14                              | 13       | 12                              | 11       | 10 | 9 | 8 |
|------------|----------|---------------------------------|----------|---------------------------------|----------|----|---|---|
| Field      | Reserved | Port 2A<br>Diagnostic<br>Enable | Reserved | Port 1A<br>Diagnostic<br>Enable | Reserved |    |   |   |
| Read/Write | -        | R/W                             | -        | R/W                             | -        | -  | - | - |
| Default    | 0        | 0                               | 0        | 0                               | 0        | 0  | 0 | 0 |

| Bit #      | 7        | 6                   | 5                    | 4                    | 3        | 2   | 1            | 0   |
|------------|----------|---------------------|----------------------|----------------------|----------|-----|--------------|-----|
| Field      | Reserved | Pull-down<br>Enable | LS Pull-up<br>Enable | FS Pull-up<br>Enable | Reserved |     | Force Select |     |
| Read/Write | -        | R/W                 | R/W                  | R/W                  | -        | R/W | R/W          | R/W |
| Default    | 0        | 0                   | 0                    | 0                    | 0        | 0   | 0            | 0   |

#### Register Description

The USB Diagnostic Register provides control of diagnostic modes. It is intended for use by device characterization tests, not for normal operations. This register is Read/Write by the on-chip CPU but is write-only via the HPI port.

### Port 2A Diagnostic Enable (Bit 15)

The Port 2A Diagnostic Enable bit enables or disables Port 2A for the test conditions selected in this register.

1: Apply any of the following enabled test conditions: J/K, DCK, SE0, RSF, RSL, PRD

0: Do not apply test conditions

### Port 1A Diagnostic Enable (Bit 15)

The Port 1A Diagnostic Enable bit enables or disables Port 1A for the test conditions selected in this register.

1: Apply any of the following enabled test conditions: J/K, DCK, SE0, RSF, RSL, PRD

0: Do not apply test conditions

# Pull-down Enable (Bit 6)

The Pull-down Enable bit enables or disables full-speed pull-down resistors (pull down on both D+ and D-) for testing.

1: Enable pull-down resistors on both D+ and D-

0: Disable pull-down resistors on both D+ and D-

# LS Pull-up Enable (Bit 5)

The LS Pull-up Enable bit enables or disables a low-speed pull-up resistor (pull up on D–) for testing.

1: Enable low-speed pull-up resistor on D-

0: Pull-up resistor is not connected on D-

#### FS Pull-up Enable (Bit 4)

The FS Pull-up Enable bit enables or disables a full-speed pull-up resistor (pull up on D+) for testing.

1: Enable full-speed pull-up resistor on D+

0: Pull-up resistor is not connected on D+

# Force Select (Bits [2:0])

The Force Select field bit selects several different test condition states on the data lines (D+/D-). See Table 19 for details.

**Table 19. Force Select Definition** 

| Force Select [2:0] | Data Line State |
|--------------------|-----------------|
| 1xx                | Assert SE0      |
| 01x                | Toggle JK       |
| 001                | Assert J        |
| 000                | Assert K        |

#### Reserved

All reserved bits must be written as '0'.

# **Timer Registers**

There are three registers dedicated to timer operations. Each of these registers are discussed in this section and are summarized in Table 20.

Table 20. Timer Registers

| Register Name           | Address | R/W |  |
|-------------------------|---------|-----|--|
| Watchdog Timer Register | 0xC00C  | R/W |  |
| Timer 0 Register        | 0xC010  | R/W |  |
| Timer 1 Register        | 0xC012  | R/W |  |



# Watchdog Timer Register [0xC00C] [R/W]

# Figure 15. Watchdog Timer Register

| Bit #      | 15  | 14       | 13  | 12  | 11  | 10  | 9   | 8   |  |  |
|------------|-----|----------|-----|-----|-----|-----|-----|-----|--|--|
| Field      |     | Reserved |     |     |     |     |     |     |  |  |
| Read/Write | R/W | R/W      | R/W | R/W | R/W | R/W | R/W | R/W |  |  |
| Default    | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0   |  |  |

| Bit #      | 7   | 6     | 5               | 4          | 3           | 2              | 1             | 0               |
|------------|-----|-------|-----------------|------------|-------------|----------------|---------------|-----------------|
| Field      | Res | erved | Timeout<br>Flag | Per<br>Sel | riod<br>ect | Lock<br>Enable | WDT<br>Enable | Reset<br>Strobe |
| Read/Write | R/W | R/W   | R/W             | R/W        | R/W         | R/W            | R/W           | W               |
| Default    | 0   | 0     | 0               | 0          | 0           | 0              | 0             | 0               |

# **Register Description**

The Watchdog Timer register provides status and control over the Watchdog timer. The Watchdog timer can also interrupt the processor.

### Timeout Flag (Bit 5)

The Timeout Flag bit indicates if the Watchdog timer has expired. The processor can read this bit after exiting a reset to determine if a Watchdog timeout occurred. This bit is cleared on the next external hardware reset.

- 1: Watchdog timer expired
- 0: Watchdog timer did not expire

# Period Select (Bits [4:3])

The Period Select field is defined in Table 21. If this time expires before the Reset Strobe bit is set, the internal processor is reset.

Table 21. Period Select Definition

| Period Select[4:3] | WDT Period Value |
|--------------------|------------------|
| 00                 | 1.4 ms           |
| 01                 | 5.5 ms           |
| 10                 | 22.0 ms          |
| 11                 | 66.0 ms          |

# Lock Enable (Bit 2)

The Lock Enable bit does not allow any writes to this register until a reset. In doing so the Watchdog timer can be set up and enabled permanently so that it can only be cleared on reset (the WDT Enable bit is ignored).

- 1: Watchdog timer permanently set
- 0: Watchdog timer not permanently set

### WDT Enable (Bit 1)

The WDT Enable bit enables or disables the Watchdog timer.

- 1: Enable Watchdog timer operation
- 0: Disable Watchdog timer operation

#### Reset Strobe (Bit 0)

The Reset Strobe is a write-only bit that resets the Watchdog timer count. It must be set to '1' before the count expires to avoid a Watchdog trigger

1: Reset Count

#### Reserved

All reserved bits must be written as '0'.



### Timer n Register [R/W]

- Timer 0 Register 0xC010
- Timer 1 Register 0xC012

### Figure 16. Timer n Register

| Bit#       | 15    | 14    | 13  | 12  | 11  | 10  | 9   | 8   |  |  |
|------------|-------|-------|-----|-----|-----|-----|-----|-----|--|--|
| Field      |       | Count |     |     |     |     |     |     |  |  |
| Read/Write | R/W   | R/W   | R/W | R/W | R/W | R/W | R/W | R/W |  |  |
| Default    | 1     | 1     | 1   | 1   | 1   | 1   | 1   | 1   |  |  |
| Bit #      | 7     | 6     | 5   | 4   | 3   | 2   | 1   | 0   |  |  |
| Field      | Count |       |     |     |     |     |     |     |  |  |
| Read/Write | R/W   | R/W   | R/W | R/W | R/W | R/W | R/W | R/W |  |  |
|            |       |       |     |     |     |     |     |     |  |  |

# **Register Description**

The Timer n Register sets the Timer n count. Both Timer 0 and Timer 1 decrement by one every 1-µs clock tick. Each can provide an interrupt to the CPU when the timer reaches zero.

#### Count (Bits [15:0])

The Count field sets the Timer count.

# **General USB Registers**

There is one set of registers dedicated to general USB control. This set consists of two identical registers, one for Host/Device Port 1 and one for Host/Device Port 2. This register set has functions for both USB host and USB peripheral options and is covered in this section and summarized in Table 22. USB Host-only registers are covered in Section "USB Host Only Registers" on page 22 and USB Device-only registers are covered in Section "USB Device Only Registers" on page 30.

Table 22. USB Registers [8]

| Register Name          | Address (SIE1/SIE2) | R/W |
|------------------------|---------------------|-----|
| USB n Control Register | 0xC08A/0xC0AA       | R/W |

## USB n Control Register [R/W]

- USB 1 Control Register 0xC08A
- USB 2 Control Register 0xC0AA

Figure 17. USB n Control Register

| Bit#       | 15   | 14    | 13                  | 12                  | 11       | 10  | 9              | 8        |
|------------|------|-------|---------------------|---------------------|----------|-----|----------------|----------|
| Field      | Rese | erved | Port A<br>D+ Status | Port A<br>D– Status | Reserved | LOA | Mode<br>Select | Reserved |
| Read/Write | -    | -     | R                   | R                   | -        | R/W | R/W            | -        |
| Default    | Х    | Х     | Х                   | Х                   | 0        | 0   | 0              | 0        |

| Bit #      | 7                          | 6    | 5     | 4              | 3                | 2                 | 1        | 0                        |
|------------|----------------------------|------|-------|----------------|------------------|-------------------|----------|--------------------------|
| Field      | Port A<br>Resistors Enable | Rese | erved | Poi<br>Force D | rt A<br>0± State | Suspend<br>Enable | Reserved | Port A<br>SOF/EOP Enable |
| Read/Write | R/W                        | -    | -     | R/W            | R/W              | R/W               | -        | R/W                      |
| Default    | 0                          | 0    | 0     | 0              | 0                | 0                 | 0        | 0                        |

#### Note

Document Number: 38-08014 Rev. \*K Page 20 of 93

<sup>8.</sup> Errata: Writing to the SIE2 Control register via HPI can corrupt the SIE1 control register. Writing to the SIE1 Control register via HPI can corrupt the SIE2 control register. For more information, see the Errata on page 84.



#### **Register Description**

The USB n Control register is used in both host and device mode. It monitors and controls the SIE and the data lines of the USB ports. This register can be accessed by the HPI interface.

#### Port A D+ Status (Bit 13)

The Port A D+ Status bit is a read-only bit that indicates the value of DATA+ on Port A.

1: D+ is high

0: D+ is low

### Port A D- Status (Bit 12)

The Port A D— Status bit is a read-only bit that indicates the value of DATA— on Port A.

1: D- is high

**0:** D- is low

#### **LOA** (Bit 10)

The LOA bit selects the speed of Port A.

1: Port A is set to Low-speed mode

0: Port A is set to Full-speed mode

#### Mode Select (Bit 9)

The Mode Select bit sets the SIE for host or device operation. When set for device operation only one USB port is supported. The active port is selected by the Port Select bit in the Host n Count Register.

1: Host mode

0: Device mode

## Port A Resistors Enable (Bit 7)

The Port A Resistors Enable bit enables or disables the pull-up/pull-down resistors on Port A. When enabled, the Mode Select bit and LOA bit of this register sets the pull-up/pull-down resistors appropriately. When the Mode Select is set for Host mode, the pull-down resistors on the data lines (D+ and D–) are enabled. When the Mode Select is set for Device mode, a single pull-up resistor on either D+ or D–, determined by the LOA bit, will be enabled. See Table 23 for details.

1: Enable pull-up/pull-down resistors

0: Disable pull-up/pull-down resistors

Table 23. USB Data Line Pull-up and Pull-down Resistors

| L0A | Mode<br>Select | Port n<br>Resistors<br>Enable | Function                                |
|-----|----------------|-------------------------------|-----------------------------------------|
| Х   | Х              | 0                             | Pull up/Pull down on D+ and D– Disabled |
| Х   | 1              | 1                             | Pull down on D+ and D–<br>Enabled       |
| 1   | 0              | 1                             | Pull up on USB D- Enabled               |
| 0   | 0              | 1                             | Pull up on USB D+ Enabled               |

#### Port A Force D± State (Bits [4:3])

The Port A Force D± State field controls the forcing state of the D+ D– data lines for Port A. This field forces the state of the Port A data lines independent of the Port Select bit setting. See Table 24 for details.

Table 24. Port A Force D± State

| Port A For | ce D± State | Function                   |
|------------|-------------|----------------------------|
| MSB        | LSB         | Function                   |
| 0          | 0           | Normal Operation           |
| 0          | 1           | Force USB Reset, SE0 State |
| 1          | 0           | Force J-State              |
| 1          | 1           | Force K-State              |

#### Suspend Enable (Bit 2)

The Suspend Enable bit enables or disables the suspend feature on both ports. When suspend is enabled the USB transceivers are powered down and can not transmit or received USB packets but can still monitor for a wakeup condition.

1: Enable suspend

0: Disable suspend

# Port A SOF/EOP Enable (Bit 0)

The Port A SOF/EOP Enable bit is only applicable in host mode. In Device mode this bit must be written as '0'. In host mode this bit enables or disables SOFs or EOPs for Port A. Either SOFs or EOPs will be generated depending on the LOA bit in the USB n Control Register when Port A is active.

1: Enable SOFs or EOPs

0: Disable SOFs or EOPs

#### Reserved

All reserved bits must be written as '0'.



# **USB Host Only Registers**

There are twelve sets of dedicated registers to USB host only operation. Each set consists of two identical registers (unless otherwise noted); one for Host Port 1 and one for Host Port 2. These register sets are covered in this section and summarized in Table 25.

Table 25. USB Host Only Register

| Register Name                    | Address<br>(Host 1/Host 2) | R/W |
|----------------------------------|----------------------------|-----|
| Host n Control Register          | 0xC080/0xC0A0              | R/W |
| Host n Address Register          | 0xC082/0xC0A2              | R/W |
| Host n Count Register            | 0xC084/0xC0A4              | R/W |
| Host n Endpoint Status Register  | 0xC086/0xC0A6              | R   |
| Host n PID Register              | 0xC086/0xC0A6              | W   |
| Host n Count Result Register     | 0xC088/0xC0A8              | R   |
| Host n Device Address Register   | 0xC088/0xC0A8              | W   |
| Host n Interrupt Enable Register | 0xC08C/0xC0AC              | R/W |
| Host n Status Register           | 0xC090/0xC0B0              | R/W |
| Host n SOF/EOP Count Register    | 0xC092/0xC0B2              | R/W |
| Host n SOF/EOP Counter Register  | 0xC094/0xC0B4              | R   |
| Host n Frame Register            | 0xC096/0xC0B6              | R   |

# Host n Control Register [R/W]

- Host 1 Control Register 0xC080
- Host 2 Control Register 0xC0A0

Figure 18. Host n Control Register

| Read/Write         | Reserved |  |  |  |  |  |  |  |  |
|--------------------|----------|--|--|--|--|--|--|--|--|
|                    | -        |  |  |  |  |  |  |  |  |
| <b>Default</b>     | 0        |  |  |  |  |  |  |  |  |
| Di4# 7 C F 4 2 2 4 |          |  |  |  |  |  |  |  |  |

| Bit #      | 7                  | 6                  | 5              | 4             | 3 | 2        | 1 | 0             |
|------------|--------------------|--------------------|----------------|---------------|---|----------|---|---------------|
| Field      | Preamble<br>Enable | Sequence<br>Select | Sync<br>Enable | ISO<br>Enable |   | Reserved |   | Arm<br>Enable |
| Read/Write | R/W                | R/W                | R/W            | R/W           | - | -        | - | R/W           |
| Default    | 0                  | 0                  | 0              | 0             | 0 | 0        | 0 | 0             |



# **Register Description**

The Host n Control register allows high-level USB transaction control.

#### Preamble Enable (Bit 7)

The Preamble Enable bit enables or disables the transmission of a preamble packet before all low-speed packets. This bit should only be set when communicating with a low-speed device.

- 1: Enable Preamble packet
- 0: Disable Preamble packet

#### Sequence Select (Bit 6)

The Sequence Select bit sets the data toggle for the next packet. This bit has no effect on receiving data packets; sequence checking must be handled in firmware.

- 1: Send DATA1
- 0: Send DATA0

#### Sync Enable (Bit 5)

The Sync Enable bit synchronizes the transfer with the SOF packet in full-speed mode and the EOP packet in low-speed mode.

Host n Address Register [R/W]

- Host 1 Address Register 0xC082
- Host 2 Address Register 0xC0A2
- Figure 19. Host n Address Register

- **1:** The next enabled packet will be transferred after the SOF or EOP packet is transmitted
- **0:** The next enabled packet will be transferred as soon as the SIE is free

#### ISO Enable (Bit 4)

The ISO Enable bit enables or disables an Isochronous transaction

- 1: Enable Isochronous transaction
- 0: Disable Isochronous transaction

# Arm Enable (Bit 0)

The Arm Enable bit arms an endpoint and starts a transaction. This bit is automatically cleared to '0' when a transaction is complete.

- 1: Arm endpoint and begin transaction
- 0: Endpoint disarmed

#### Reserved

All reserved bits must be written as '0'.

| Bit #          | 15       | 14       | 13       | 12           | 11                | 10           | 9        | 8        |  |  |
|----------------|----------|----------|----------|--------------|-------------------|--------------|----------|----------|--|--|
| Field          | Address  |          |          |              |                   |              |          |          |  |  |
| Read/Write     | R/W      | R/W      | R/W      | R/W          | R/W               | R/W          | R/W      | R/W      |  |  |
| Default        | 0        | 0        | 0        | 0            | 0                 | 0            | 0        | 0        |  |  |
|                |          |          |          |              |                   |              |          |          |  |  |
| Bit #          | 7        | 6        | 5        | 4            | 3                 | 2            | 1        | 0        |  |  |
| Bit #<br>Field | 7        | 6        | 5        | <b>4</b> Add | 3<br>dress        | 2            | 1        | 0        |  |  |
|                | 7<br>R/W | 6<br>R/W | <b>5</b> | 4<br>Add     | 3<br>dress<br>R/W | <b>2</b> R/W | 1<br>R/W | 0<br>R/W |  |  |

# **Register Description**

The Host n Address register is used as the base pointer into memory space for the current host transactions.

# Address (Bits [15:0])

The Address field sets the address pointer into internal RAM or ROM.



### Host n Count Register [R/W]

- Host 1 Count Register 0xC084
- Host 2 Count Register 0xC0A4

Figure 20. Host n Count Register

| Bit #      | 15    | 14    | 13  | 12  | 11  | 10  | 9   | 8   |
|------------|-------|-------|-----|-----|-----|-----|-----|-----|
| Field      |       | Count |     |     |     |     |     |     |
| Read/Write | -     | -     | -   | -   | -   | -   | R/W | R/W |
| Default    | 0     | 0     | 0   | 0   | 0   | 0   | 0   | 0   |
|            |       |       |     |     |     |     |     |     |
| Bit #      | 7     | 6     | 5   | 4   | 3   | 2   | 1   | 0   |
| Field      | Count |       |     |     |     |     |     |     |
| Read/Write | R/W   | R/W   | R/W | R/W | R/W | R/W | R/W | R/W |
| Default    | 0     | 0     | 0   | 0   | 0   | 0   | 0   | 0   |

# **Register Description**

The Host n Count register is used to hold the number of bytes (packet length) for the current transaction. The maximum packet length is 1023 bytes in ISO mode. The Host Count value is used to determine how many bytes to transmit, or the maximum number of bytes to receive. If the number of received bytes is greater then the Host Count value then an overflow condition will be flagged by the Overflow bit in the Host n Endpoint Status register.

### Host n Endpoint Status Register [R]

- Host 1 Endpoint Status Register 0xC086
- Host 2 Endpoint Status Register 0xC0A6

### Figure 21. Host n Endpoint Status Register

#### Count (Bits [9:0])

The Count field sets the value for the current transaction data packet length. This value is retained when switching between host and device mode, and back again.

# Reserved

All reserved bits must be written as '0'.

| Bit #      | 15       | 14 | 13 | 12 | 11               | 10                | 9    | 8     |
|------------|----------|----|----|----|------------------|-------------------|------|-------|
| Field      | Reserved |    |    |    | Overflow<br>Flag | Underflow<br>Flag | Rese | erved |
| Read/Write | -        | -  | -  | -  | R                | R                 | -    | -     |
| Default    | 0        | 0  | 0  | 0  | 0                | 0                 | 0    | 0     |

| Bit #      | 7             | 6           | 5                           | 4        | 3                  | 2               | 1             | 0           |
|------------|---------------|-------------|-----------------------------|----------|--------------------|-----------------|---------------|-------------|
| Field      | Stall<br>Flag | NAK<br>Flag | Length<br>Exception<br>Flag | Reserved | Sequence<br>Status | Timeout<br>Flag | Error<br>Flag | ACK<br>Flag |
| Read/Write | R             | R           | R                           | -        | R                  | R               | R             | R           |
| Default    | 0             | 0           | 0                           | 0        | 0                  | 0               | 0             | 0           |

#### **Register Description**

The Host n Endpoint Status register is a read-only register that provides status for the last USB transaction.

# Overflow Flag (Bit 11)

The Overflow Flag bit indicates that the received data in the last data transaction exceeded the maximum length specified in the Host n Count Register. The Overflow Flag should be checked in response to a Length Exception signified by the Length Exception Flag set to '1'.

1: Overflow condition occurred

0: Overflow condition did not occur

### **Underflow Flag** (Bit 10)

The Underflow Flag bit indicates that the received data in the last data transaction was less then the maximum length specified in the Host n Count register. The Underflow Flag should be checked in response to a Length Exception signified by the Length Exception Flag set to '1'.

- 1: Underflow condition occurred
- 0: Underflow condition did not occur



### Stall Flag (Bit 7)

The Stall Flag bit indicates that the peripheral device replied with a Stall in the last transaction.

- 1: Device returned Stall
- 0: Device did not return Stall

#### NAK Flag (Bit 6)

The NAK Flag bit indicates that the peripheral device replied with a NAK in the last transaction.

- 1: Device returned NAK
- 0: Device did not return NAK

#### Length Exception Flag (Bit 5)

The Length Exception Flag bit indicates the received data in the data stage of the last transaction does not equal the maximum Host Count specified in the Host n Count register. A Length Exception can either mean an overflow or underflow and the Overflow and Underflow flags (bits 11 and 10, respectively) should be checked to determine which event occurred.

- 1: An overflow or underflow condition occurred
- 0: An overflow or underflow condition did not occur

#### Sequence Status (Bit 3)

The Sequence Status bit indicates the state of the last received data toggle from the device. Firmware is responsible for monitoring and handling the sequence status. The Sequence bit is only valid if the ACK bit is set to '1'. The Sequence bit is set to '0' when an error is detected in the transaction and the Error bit will be set.

- **1:** DATA1
- 0: DATA0

# Host n PID Register [W]

- Host 1 PID Register 0xC086
- Host 2 PID Register 0xC0A6

#### Figure 22. Host n PID Register

# Timeout Flag (Bit 2)

The Timeout Flag bit indicates if a timeout condition occurred for the last transaction. A timeout condition can occur when a device either takes too long to respond to a USB host request or takes too long to respond with a handshake.

- 1: Timeout occurred
- 0: Timeout did not occur

#### Error Flag (Bit 1)

The Error Flag bit indicates a transaction failed for any reason other than the following: Timeout, receiving a NAK, or receiving a STALL. Overflow and Underflow are not considered errors and do not affect this bit. CRC5 and CRC16 errors will result in an Error flag along with receiving incorrect packet types.

- 1: Error detected
- 0: No error detected

#### ACK Flag (Bit 0)

The ACK Flag bit indicates two different conditions depending on the transfer type. For non-Isochronous transfers, this bit represents a transaction ending by receiving or sending an ACK packet. For Isochronous transfers, this bit represents a successful transaction that will not be represented by an ACK packet.

- **1:** For non-Isochronous transfers, the transaction was ACKed. For Isochronous transfers, the transaction was completed successfully.
- **0:** For non-Isochronous transfers, the transaction was not ACKed. For Isochronous transfers, the transaction was not completed successfully.

| Bit #      | 15       | 14 | 13 | 12 | 11 | 10 | 9 | 8 |  |
|------------|----------|----|----|----|----|----|---|---|--|
| Field      | Reserved |    |    |    |    |    |   |   |  |
| Read/Write | -        | -  | -  | -  | -  | -  | - | - |  |
| Default    | 0        | 0  | 0  | 0  | 0  | 0  | 0 | 0 |  |
|            |          |    |    |    |    |    |   |   |  |

| Bit #      | 7          | 6 | 5 | 4 | 3               | 2 | 1 | 0 |  |
|------------|------------|---|---|---|-----------------|---|---|---|--|
| Field      | PID Select |   |   |   | Endpoint Select |   |   |   |  |
| Read/Write | W          | W | W | W | W               | W | W | W |  |
| Default    | 0          | 0 | 0 | 0 | 0               | 0 | 0 | 0 |  |