

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CY7S1061G/CY7S1061GE

16-Mbit (1 M words × 16 bit) Static RAM with PowerSnooze™ and ECC

Features

- High speed
- Ultra-low power PowerSnooze^{™[1]} device
 Deep Sleep (DS) current I_{DS} = 22-µA maximum
- Low active and standby currents
 - □ I_{CC} = 90-mA typical
 - □ I_{SB2} = 20-mA typical
- Wide operating voltage range: 1.65 V to 2.2 V, 2.2 V to 3.6 V, and 4.5 V to 5.5 V
- Embedded error-correcting code (ECC) for single-bit error correction
- 1.0-V data retention
- Transistor-transistor logic (TTL) compatible inputs and outputs
- Error indication (ERR) pin to indicate 1-bit error detection and correction
- Available in Pb-free 48-pin TSOP I, 54-pin TSOP II, and 48-ball VFBGA packages

Functional Description

The CY7S1061G/CY7S1061GE is a high-performance CMOS fast static RAM organized as 1,048,576 words by 16 bits. This device features fast access times (10 ns) and a unique ultra-low power Deep Sleep mode. With Sleep mode currents as low as 22 μA , the CY7S1061G device combines the best features of fast and low-power SRAM in industry-standard package options. The device also features embedded ECC $^{[2]}$. ECC logic can detect and correct single-bit error in the accessed location. The CY7S1061GE device includes an ERR pin that signals an error-detection and correction event during a read cycle.

To access devices with a single-chip enable input, assert the chip enable input (CE) LOW. To access dual chip enable devices, assert both chip enable inputs – \overline{CE}_1 as LOW and \overline{CE}_2 as HIGH.

To perform data writes, assert the Write Enable ($\overline{\text{WE}}$) input LOW, and provide the data and address on device data pins (I/O_0 through I/O_{15}) and address pins (A_0 through A_{19}) respectively. The Byte High Enable ($\overline{\text{BHE}}$) and Byte Low Enable ($\overline{\text{BLE}}$) inputs control byte writes, and write data on the corresponding I/O lines to the memory location specified. $\overline{\text{BHE}}$ controls I/O₈ through I/O₁₅ and $\overline{\text{BLE}}$ controls I/O₀ through I/O₇.

To perform data reads, assert the Output Enable (\overline{OE}) input and provide the required address on the address lines. Read data is accessible on the I/O lines (I/O $_0$ through I/O $_{15}$). You can perform byte accesses by asserting the required byte enable signal (BHE or BLE) to read either the upper byte or the lower byte of data from the specified address location.

All I/Os (I/O₀ through I/O₁₅) are placed in a high-impedance state when the device is deselected (\overline{CE} HIGH for single chip enable devices and \overline{CE}_1 HIGH and \overline{CE}_2 LOW for dual chip enable devices), or the control signals (\overline{OE} , \overline{BLE} , \overline{BHE}) are de-asserted.

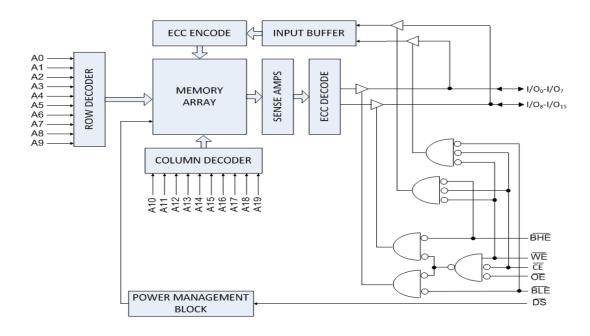
The device is placed in a low power Deep Sleep mode when the Deep Sleep pin (\overline{DS}) is LOW. In this state, the device is disabled for normal operation and is placed in a data retention mode. The device can be activated by de-asserting the Deep Sleep pin (\overline{DS}) HIGH).

The CY7S1061G/CY7S1061G is available in 48-pin TSOP I, 54-pin TSOP II, and 48-ball VFBGA packages.

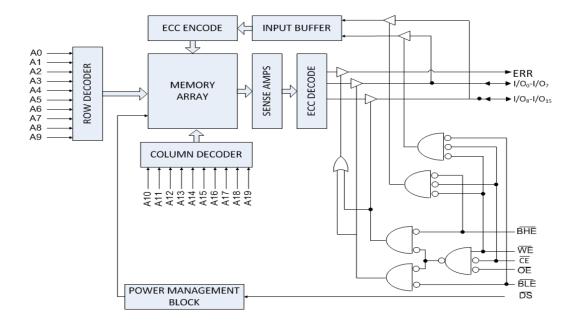
For a complete list of related resources, click here.

Product Portfolio

						Currer	nt Consum	ption	
Product	Range	V _{CC} Range (V)	Speed (ns)	Operating I _{CC} (mA)				Deep-Sleep Current (μA)	
				max					
				Typ [3]	Max	Typ [3]	Max	Typ ^[1]	Max
CY7S1061G18		1.65 V-2.2 V	15	70	80				
CY7S1061G(E)30	Industrial	2.2 V-3.6 V	10	90	110	20	30	8	22
CY7S1061G		4.5–5.5 V	10	90	110				


Notes

- Refer to AN89371 for details on PowerSnooze™ feature of this device.
- 2. This device does not support automatic write-back on error detection.
- Typical values are included only for reference and are not guaranteed or tested. Typical values are measured at V_{CC} = 1.8 V (for a V_{CC} range of 1.65 V–2.2 V), V_{CC} = 3 V (for a V_{CC} range of 2.2 V–3.6 V), and V_{CC} = 5 V (for a V_{CC} range of 4.5 V–5.5 V), T_A = 25 °C.


Cypress Semiconductor Corporation Document Number: 001-79707 Rev. *N

Logic Block Diagram - CY7S1061G

Logic Block Diagram - CY7S1061GE

Contents

Pin Configurations	4
Maximum Ratings	
Operating Range	7
DC Electrical Characteristics	
Capacitance	8
Thermal Resistance	
AC Test Loads and Waveforms	8
Data Retention Characteristics	9
Data Retention Waveform	9
Deep-Sleep Mode Characteristics	10
AC Switching Characteristics	
Switching Waveforms	
Truth Table	16
FRR Output - CY7S1061GF	16

Ordering information	17
Ordering Code Definitions	17
Package Diagrams	18
Acronyms	21
Document Conventions	21
Units of Measure	21
Document History Page	22
Sales, Solutions, and Legal Information	23
Worldwide Sales and Design Support	23
Products	23
PSoC® Solutions	23
Cypress Developer Community	23
Technical Support	23

Pin Configurations

Figure 1. 48-ball VFBGA (6 \times 8 \times 1.0 mm) Pinout (Top View) [4]

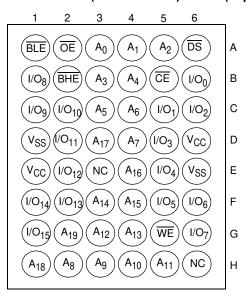
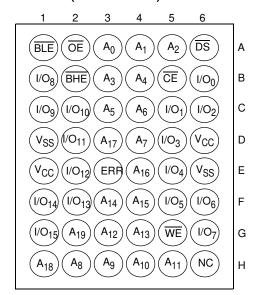
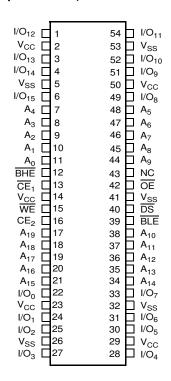



Figure 2. 48-ball VFBGA (6 × 8 × 1.0 mm) Pinout with ERR (Top View) [4]


Note

4. NC pins are not connected internally to the die.

Pin Configurations (continued)

Figure 3. 54-pin TSOP II (22.4 \times 11.84 \times 1.0 mm) Pinout [5]

Note

5. NC pins are not connected internally to the die.

Pin Configurations (continued)

Figure 4. 48-pin TSOP I (12 \times 18.4 \times 1 mm) Pinout (Top View) [6]

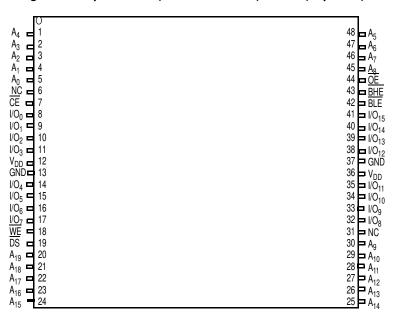
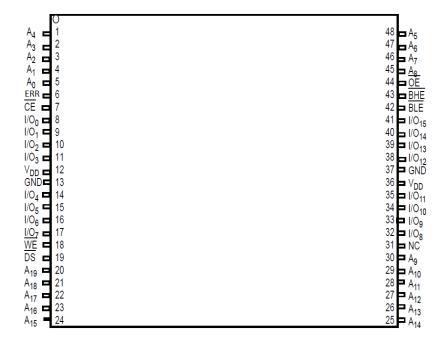



Figure 5. 48-pin TSOP I (12 x 18.4 x 1 mm) Pinout, ERR Output at Pin 6 (Top View)

Note

NC pins are not connected internally to the die.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage temperature-65 °C to +150 °C Ambient temperature with power applied-55 °C to +125 °C Supply voltage on V_{CC} relative to GND $^{[7]}$ -0.5 V to V_{CC} + 0.5 V

DC voltage applied to outputs in High Z State $^{[7]}$ -0.5 V to V $_{\rm CC}$ + 0.5 V

DC input voltage [7]	0.5 V to V _{CC} + 0.5 V
Current into outputs (LOW)	20 mA
Static discharge voltage (MIL-STD-883, Method 3015)	>2001 V
Latch-up current	> 140 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Industrial	–40 °C to +85 °C	1.65 V to 2.2 V, 2.2 V to 3.6 V, 4.5 V to 5.5 V

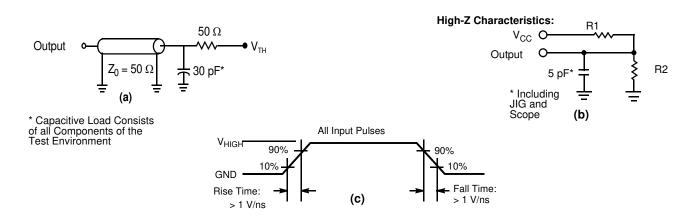
DC Electrical Characteristics

Over the operating range of -40 °C to +85 °C

Dawawastaw	Dana		To at Condition		10	ns / 15 ns	3	Unit
Parameter	Desc	cription Test Conditions		Min	Typ ^[8]	Max	Unit	
		1.65 V to 2.2 V	$V_{CC} = Min, I_{OH} = -0.1 \text{ mA}$		1.4	_	_	
		2.2 V to 2.7 V	$V_{CC} = Min, I_{OH} = -1.0 \text{ mA}$		2.0	_	_	
\ /	Output HIGH	2.7 V to 3.0 V	$V_{CC} = Min, I_{OH} = -4.0 \text{ mA}$		2.2	_	_	V
V _{OH}	voltage	3.0 V to 3.6 V	$V_{CC} = Min, I_{OH} = -4.0 \text{ mA}$		2.4	_	_	V
		4.5 V to 5.5 V	$V_{CC} = Min, I_{OH} = -4.0 \text{ mA}$		2.4	_	_	
		4.5 V to 5.5 V	$V_{CC} = Min, I_{OH} = -0.1 \text{ mA}$		V _{CC} – 0.4 ^[9]	_	_	
		1.65 V to 2.2 V	$V_{CC} = Min, I_{OL} = 0.1 \text{ mA}$		_	_	0.2	
\ /	Output LOW	2.2 V to 2.7 V	V _{CC} = Min, I _{OL} = 2 mA		_	_	0.4	V
V_{OL}	voltage	2.7 V to 3.6 V	V _{CC} = Min, I _{OL} = 8 mA		_	_	0.4	V
	4.5 V to 5.5 V	V _{CC} = Min, I _{OL} = 8 mA		_	_	0.4		
	1		_		1.4	_	V _{CC} + 0.2	
v [7 10]	V [7, 10] Input HIGH	2.2 V to 2.7 V	_		2.0	_	$V_{CC} + 0.3$	V
$V_{IH}^{[7, 10]}$	voltage	2.7 V to 3.6 V	_		2.0	_	$V_{CC} + 0.3$	
		4.5 V to 5.5 V	_		2.2	_	V _{CC} + 0.5	
		1.65 V to 2.2 V	_		-0.2	_	0.4	V
V _{II} [7, 10]	Input LOW	2.2 V to 2.7 V	_		-0.3	_	0.6	
۷ الـ ۱۰٬۱۰۹	voltage	2.7 V to 3.6 V	_		-0.3	_	0.8	
		4.5 V to 5.5 V	_		-0.5	_	0.8	
I _{IX}	Input leakage	current	$GND \le V_{IN} \le V_{CC}$ (for all pins \underline{e} : $V_{IN} = GND$ (or) $V_{IN} \ge V_{IH}$ (for \underline{D})	xcept DS) S pin only)	-1.0	_	+1.0	μА
l _{oz}	Output leakag	ge current	GND $\leq V_{OUT} \leq V_{CC}$, Output dis	abled	-1.0	_	+1.0	μΑ
1			V _{CC} = Max,	f = 100 MHz	_	90.0	110.0	A
ICC	v _{CC} operating	supply current		f = 66.7 MHz	_	70.0	80.0	mA
I _{SB1}	Standby curre	ent – TTL inputs	Max V_{CC} , $\overline{CE}^{[11]} \ge V_{IH}$, $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$,		-	_	40.0	mA
I _{SB2}	Standby curre inputs	ent – CMOS	Max V_{CC} , $\overline{CE^{[11]}} \ge V_{CC} - 0.2 \text{ V}$, $V_{IN} \ge V_{CC} - 0.2 \text{ V}$ or $V_{IN} \le 0.2$	$\overline{DS} \ge V_{CC} - 0.2 \text{ V}, V, f = 0$	-	20.0	30.0	mA
I _{DS}	Deep-Sleep c	urrent	Max V_{CC} , $\overline{CE^{[11]}} \ge V_{CC} - 0.2 V$ $V_{IN} \ge V_{CC} - 0.2 V$ or $V_{IN} \le 0.2$, DS ≤ 0.2 V, V, f = 0	-	8.0	22.0	μΑ

- 7. V_{IL} (min) = -2.0 V and V_{IH} (max) = V_{CC} + 2 V for pulse durations of less than 20 ns.
- 8. Indicates the value for the center of distribution at 3.0 V, 25 °C and not 100% tested. Typical values are measured at V_{CC} = 1.8 V (for a V_{CC} range of 1.65 V–2.2 V), V_{CC} = 3 V (for a V_{CC} range of 2.2 V–3.6 V), and V_{CC} = 5 V (for a V_{CC} range of 4.5 V–5.5 V), T_A = 25 °C.
- 9. This parameter is guaranteed by design and is not tested.
- 10. For $\overline{\text{DS}}$ pin, V $_{IH}$ (min) is V $_{CC}$ 0.2 V and V $_{IL}$ (max) is 0.2 V.
- 11. For all dual chip enable devices, CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.

Capacitance


Parameter [12]	Description	Test Conditions	All packages	Unit
C _{IN}	Input capacitance	T. = 25 °C f = 1 MHz \/	10	pF
C _{OUT}	I/O capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC(typ)}$	10	pF

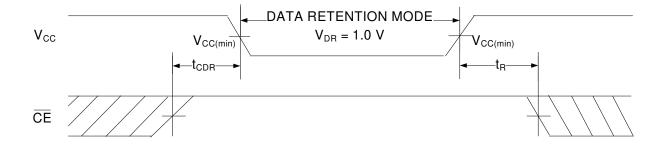
Thermal Resistance

Parameter [12]	Description	Test Conditions	48-ball VFBGA	54-pin TSOP II	48-pin TSOP I	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still air, soldered on a 3 × 4.5 inch,	31.50	93.63	57.99	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)	four layer printed circuit board	15.75	21.58	13.42	°C/W

AC Test Loads and Waveforms

Figure 6. AC Test Loads and Waveforms^[13]

Parameters	1.8 V	3.0 V	5.0 V	Unit
R1	1667	317	317	Ω
R2	1538	351	351	Ω
V _{TH}	V _{CC} /2	1.5	1.5	V
V _{HIGH}	1.8	3.0	3.0	V


Data Retention Characteristics

Over the Operating Range of -40 °C to +85 °C

Parameter	Description	Conditions	Min	Max	Unit
V _{DR}	V _{CC} for data retention		1.0	_	V
I _{CCDR}	Data retention current	$\begin{aligned} &V_{CC} = V_{DR}, \overline{CE} \ge V_{CC} - 0.2 \text{ V}, \overline{DS} \ge V_{CC} - 0.2 \text{ V}, \\ &V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V} \end{aligned}$	-	30.0	mA
t _{CDR} ^[14]	Chip deselect to data retention time		0	_	ns
t _R ^[14]	Operation recovery time	$2.2 \text{ V} < \text{V}_{\text{CC}} \le 5.5 \text{ V}$	10.0	-	ns
^t R ^t	Operation recovery time	V _{CC} ≤ 2.2 V	15.0	_	ns

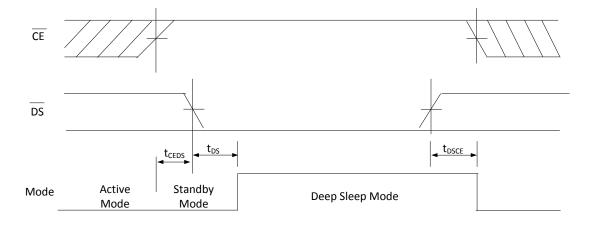
Data Retention Waveform

Figure 7. Data Retention Waveform^[15, 16]

^{14.} These parameters are guaranteed by design and are not tested.

^{15.} Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC} (min) \geq 100 μs or stable at V_{CC} (min) \geq 100 μs .

^{16.} For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, \overline{CE} is HIGH.



Deep-Sleep Mode Characteristics

Over the Operating Range of -40 °C to +85 °C

Parameter	Description	Conditions	Min	Max	Unit
I _{DS}	Deep Sleep Mode current	$\begin{aligned} &V_{CC} = V_{CC} (max), \overline{CE}^{[17]} \geq V_{CC} - 0.2 V, \overline{DS} \leq 0.2 V, \\ &V_{IN} \geq V_{CC} - 0.2 V \text{or} V_{IN} \leq 0.2 V \end{aligned}$	-	22	μΑ
t _{CEDS} [17, 18]	Time between de-assertion of CE ^[17] and assertion of DS		100	_	ns
t _{DS} ^[17, 18]	DS assertion to Deep Sleep mode transition time		_	1	ms
t _{DSCE} [17, 18]	Time between de-assertion of $\overline{\rm DS}$ and assertion of $\overline{\rm CE}^{[17]}$		1	-	ms

Figure 8. Active, Standby, and Deep-Sleep Operation Modes [19]

^{17.} Address, data, and control lines should not toggle within t_{DS}. They should be fixed to one of the logic levels - V_{IH} or V_{IL}.

18. These parameters are guarantee<u>d by design and are not tested.</u>

19. For all dual chip enable devices, CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.

AC Switching Characteristics

Over the operating range of -40 °C to +85 °C

[20, 21]	B d. P	10	ns	15	l lm!s	
Parameter [20, 21]	Description	Min	Max	Min	Max	Unit
Read Cycle	,	<u> </u>				
t _{power}	V _{CC} (stable) to the first access [22, 23]	100.0	_	100.0	_	μs
t _{RC}	Read cycle time	10.0	-	15.0	_	ns
t _{AA}	Address to data valid / ERR valid	-	10.0	-	15.0	ns
t _{OHA}	Data / ERR hold from address change	3.0	_	3.0	_	ns
t _{ACE}	CE LOW to data valid / ERR valid	-	10.0	-	15.0	ns
t _{DOE}	OE LOW to data valid / ERR valid	-	5.0	-	8.0	ns
t _{LZOE}	OE LOW to low Z [24, 25, 26]	0	-	1.0	_	ns
t _{HZOE}	OE HIGH to high Z [24, 25, 26]	-	5.0	-	8.0	ns
t _{LZCE}	CE LOW to low Z [24, 25, 26, 27]	3.0	-	3.0	_	ns
t _{HZCE}	CE HIGH to high Z [24, 25, 26, 27]	-	5.0	-	8.0	ns
t _{PU}	CE LOW to power-up [23]	0	-	0	_	ns
t _{PD}	CE HIGH to power-down [23]	_	10.0	_	15.0	ns
t _{DBE}	Byte enable to data valid	-	5.0	-	8.0	ns
t _{LZBE}	Byte enable to low Z [24, 25]	0	_	1.0	_	ns
t _{HZBE}	Byte disable to high Z [24, 25]	-	5.0	-	8.0	ns
Write Cycle [28, 29]		<u>.</u>				
t _{WC}	Write cycle time	10.0	_	15.0	_	ns
t _{SCE}	CE LOW to write end [27]	7.0	_	12.0	_	ns
t _{AW}	Address setup to write end	7.0	-	12.0	_	ns
t _{HA}	Address hold from write end	0	_	0	_	ns
t _{SA}	Address setup to write start	0	-	0	_	ns
t _{PWE}	WE pulse width	7.0	_	12.0	_	ns
t _{SD}	Data setup to write end	5.0	-	8.0	_	ns
t _{HD}	Data hold from write end	0	_	0	_	ns
t _{LZWE}	WE HIGH to low Z [24, 25, 26]	3.0	-	3.0	_	ns
t _{HZWE}	WE LOW to high Z [24, 25, 26]	-	5.0	-	8.0	ns
t _{BW}	Byte Enable to End of Write	7.0	_	12.0	_	ns

- 20. Test conditions assume signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for $V_{CC} \ge 3$ V) and $V_{CC}/2$ (for $V_{CC} < 3$ V), and input pulse levels of 0 to 3 V (for $V_{CC} \ge 3$ V), and 0 to V_{CC} (for $V_{CC} < 3$ V). Test conditions for the read cycle use the output loading shown in part (a) of Figure 6 on page 8, unless specified otherwise 21. DS must be HIGH for chip access. Refer to AN89371 for details.
- 22. t_{POWER} gives the minimum amount of time that the power supply is at stable V_{CC} until the first memory access is performed.
- 23. These parameters are guaranteed by design and are not tested.
- 24. t_{HZOE}, t_{HZOE}, t_{HZOE}, t_{HZWE}, and t_{HZBE} are specified with a load capacitance of 5 pF, as shown in part (b) of Figure 6 on page 8. Hi-Z, Lo-Z transition is measured ±200 mV from steady state

- 25. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZCE}, t_{HZDE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any device.

 26. Tested initially and after any design or process changes that may affect these parameters.

 27. For all dual chip enable devices, CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW,
- 28. The internal write time of the memory is defined by the overlap of WE = V_{IL}, $\overline{\text{CE}} = \text{V}_{\text{IL}}$, and $\overline{\text{BHE}}$ or $\overline{\text{BLE}} = \text{V}_{\text{IL}}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates
- 29. The minimum write pulse width for Write Cycle No. 2 (WE controlled, OE LOW) should be the sum of the sum o

Switching Waveforms

Figure 9. Read Cycle No. 1 of CY7S1061G (Address Transition Controlled) $^{[30,\,31]}$

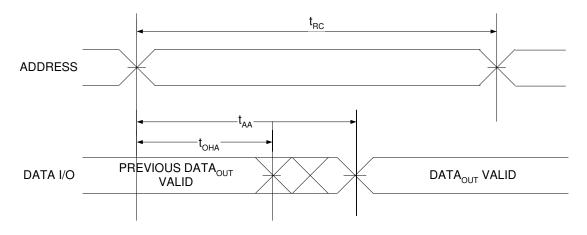
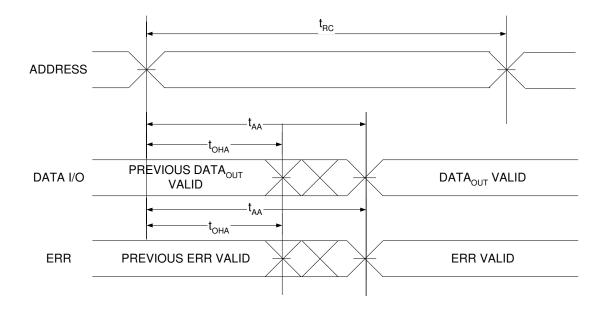



Figure 10. Read Cycle No. 2 of CY7S1061GE (Address Transition Controlled) $^{[30,\,31]}$

^{30.} The device is continuously selected. $\overline{OE} = V_{lL}$, $\overline{CE} = V_{lL}$, \overline{BHE} or \overline{BLE} or both = V_{lL} . 31. WE is HIGH for read cycle.

Switching Waveforms (continued)

Figure 11. Read Cycle No. 3 ($\overline{\text{OE}}$ Controlled) $^{[32,\,33,\,34]}$

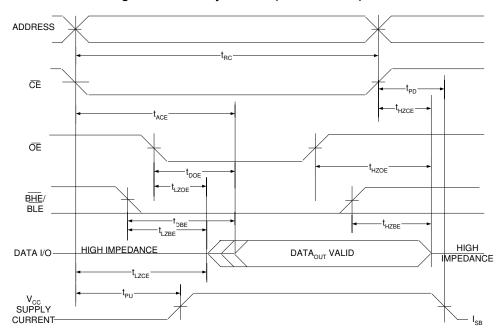
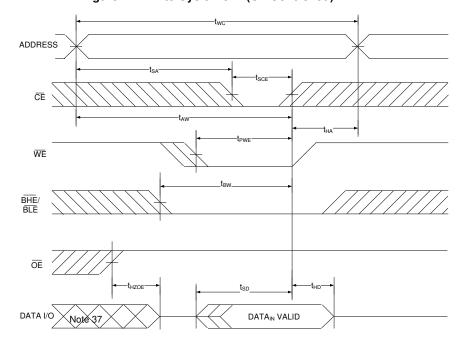



Figure 12. Write Cycle No. 1 (CE Controlled) [33, 35, 36]

- Notes

 32. WE is HIGH for read cycle.

 33. For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE} is HIGH.
- 35. The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE = V_{IL} and BHE or BLE = V_{IL}. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates
- 36. Data I/O is in high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$. 37. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

Figure 13. Write Cycle No. 2 (WE Controlled, OE LOW) [38, 39, 40, 41]

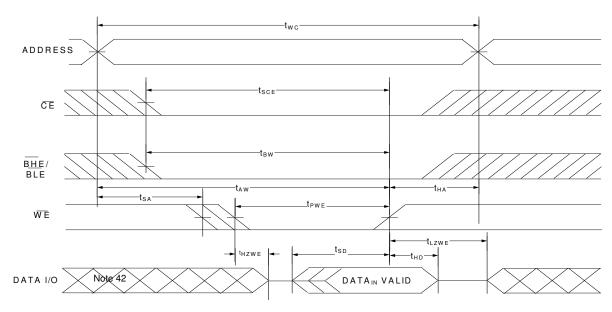
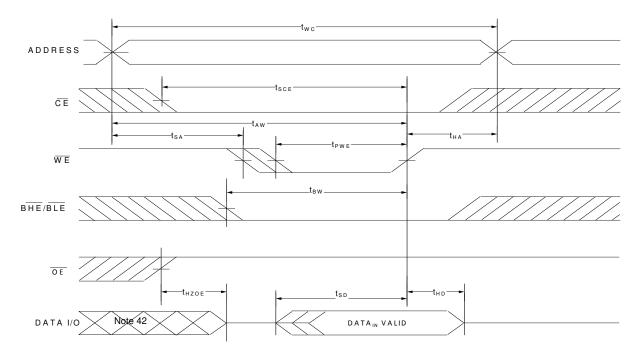
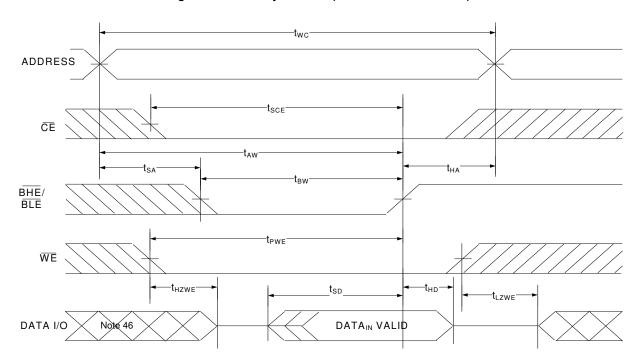



Figure 14. Write Cycle No. 3 ($\overline{\text{WE}}$ controlled) $^{[38,\ 40,\ 41]}$



- 38. \underline{For} all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, CE is HIGH.
- 39. The minimum write pulse width for Write Cycle No. 2 (WE controlled, OE LOW) should be sum of the sum of the signal smust be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates
- 41. Data I/O is in high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$. 42. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

Figure 15. Write Cycle No. 3 (BLE or BHE Controlled) [43, 44, 45]

^{43.} For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE} is HIGH.

^{44.} The internal write time of the memory is defined by the overlap of WE = V_{IL}, $\overline{\text{CE}} = \text{V}_{\text{IL}}$ and $\overline{\text{BHE}}$ or $\overline{\text{BLE}} = \text{V}_{\text{IL}}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates

^{45.} Data I/O is in high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$, or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.

46. During this period, the I/Os are in output state. Do not apply input signals.

Truth Table

DS	CE	OE	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ -I/O ₁₅	Mode	Power	
Н	Н	X ^[47]	X ^[47]	X ^[47]	X ^[47]	High-Z	High-Z	Standby	Standby (I _{SB})	
Н	L	L	Н	L	L	Data out	Data out	Read all bits	Active (I _{CC})	
Н	L	L	Н	Г	Н	Data out	High-Z	Read lower bits only	Active (I _{CC})	
Н	L	L	Н	Н	L	High-Z	Data out	Read upper bits only	Active (I _{CC})	
Н	L	Х	L	L	L	Data in	Data in	Write all bits	Active (I _{CC})	
Н	L	Χ	Г	Г	Н	Data in	High-Z	Write lower bits only	Active (I _{CC})	
Н	L	Х	L	Н	L	High-Z	Data in	Write upper bits only	Active (I _{CC})	
Н	L	Н	Н	Х	Χ	High-Z	High-Z	Selected, outputs disabled	Active (I _{CC})	
L ^[48]	Н	Х	Χ	Χ	X	High-Z	High-Z	Deep Sleep	Deep-Sleep Ultra Low Power (I _{DS})	
L	L	Х	Х	Х	Х	_	_	Invalid mode ^[49]	_	
Н	L	Х	Х	Н	Н	High-Z	High-Z	Selected, outputs disabled	Active (I _{CC})	

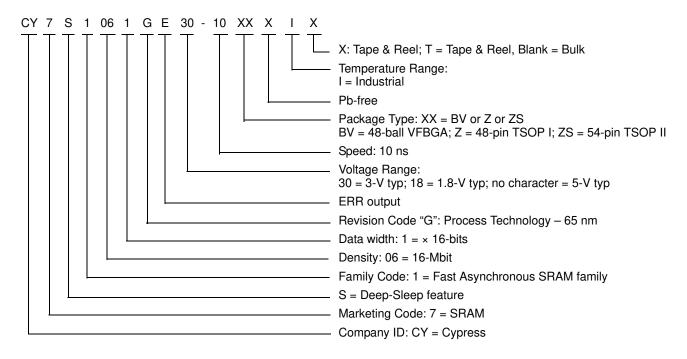
ERR Output - CY7S1061GE

Output [50]	Mode
0	Read operation, no single-bit error in the stored data.
1	Read operation, single-bit error detected and corrected.
High-Z	Device deselected or outputs disabled or Write operation

^{47.} The input voltage levels on these pins should be either at V_{IH} or V_{IL}.

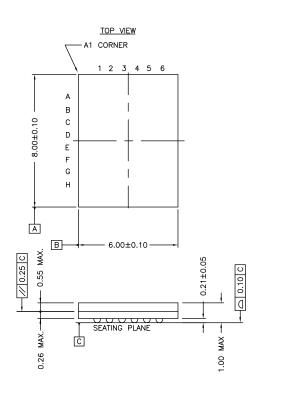
48. V_{IL} on DS must be ≤ 0.2 V.

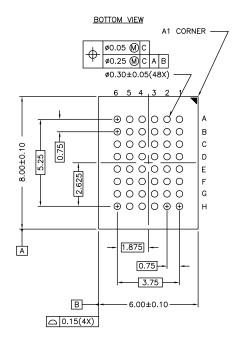
49. This mode does not guarantee data retention. Power cycling needs to be performed for the device to return to normal operation.


50. ERR is an Output pin. If not used, this pin should be left floating.

Ordering Information

Speed (ns)	Voltage Range	Ordering Code	Package Diagram	Package Type All (Pb-free)	ERR Pin/ Ball	Operating Range
15	1.65 V–2.2 V	CY7S1061G18-15ZSXI	51-85160	54-pin TSOP II	No	Industrial
13		CY7S1061G18-15ZSXIT	31-03100			
	2.2 V-3.6 V	CY7S1061G30-10ZSXI	E1 05160	54-pin TSOP II	No	
		CY7S1061G30-10ZSXIT	31-03100			
		CY7S1061G30-10BVXI	- 51-85150	48-ball VFBGA	No	
		CY7S1061G30-10BVXIT				
		CY7S1061GE30-10BVXI			Yes	
10		CY7S1061GE30-10BVXIT				
10		CY7S1061G30-10ZXI		48-pin TSOP I	No	
		CY7S1061G30-10ZXIT	51-85183			
		CY7S1061GE30-10ZXI			Yes	
		CY7S1061GE30-10ZXIT				
	4.5 V–5.5 V	CY7S1061GE-10ZXI	51-85183	48-pin TSOP I	Yes	
		CY7S1061GE-10ZXIT				

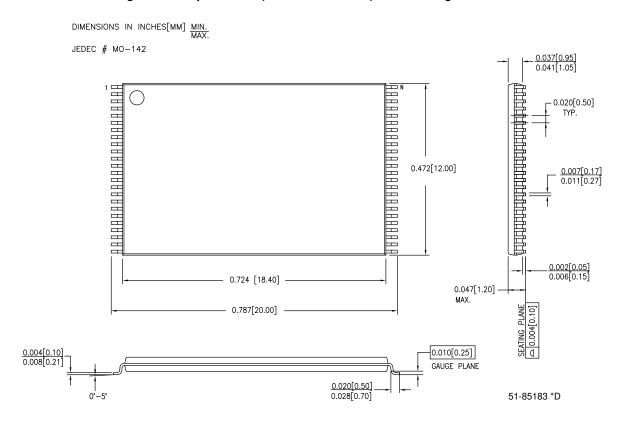

Ordering Code Definitions



Package Diagrams

Figure 16. 48-ball VFBGA (6 × 8 × 1.0 mm) BV48/BZ48 Package Outline

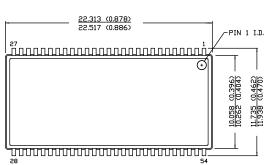
NOTF:

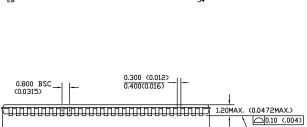

PACKAGE WEIGHT: See Cypress Package Material Declaration Datasheet (PMDD) posted on the Cypress web.

51-85150 *H

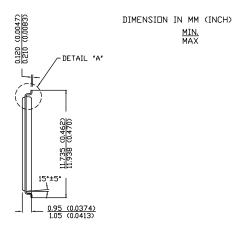
Package Diagrams (continued)

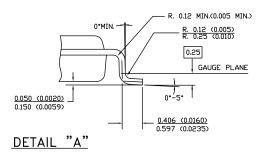
Figure 17. 48-pin TSOP I (12 x 18.4 x 1.0 mm) Z48A Package Outline





Package Diagrams (continued)


Figure 18. 54-pin TSOP II (22.4 × 11.84 × 1.0 mm) Z54-II Package Outline


SEATING PLANE

22.313 (0.878) 22.517 (0.886)

51-85160 *E

Acronyms

Acronym	Description
BHE	Byte High Enable
BLE	Byte Low Enable
CE	Chip Enable
CMOS	Complementary Metal Oxide Semiconductor
I/O	Input/output
ŌĒ	Output Enable
SRAM	Static random access memory
TTL	Transistor-transistor logic
VFBGA	Very fine-pitch ball grid array
WE	Write Enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μΑ	microampere
μS	microsecond
mA	milliampere
mm	millimeter
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

	Document Title: CY7S1061G/CY7S1061GE, 16-Mbit (1 M words × 16 bit) Static RAM with PowerSnooze™ and ECC Document Number: 001-79707					
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change		
*M	4791835	NILE	06/10/2015	Changed datasheet status to Final		
*N	5436633	VINI	09/15/2016	Updated DC Electrical Characteristics: Updated VOH values for the voltage range V _{CC} = 2.7V to 3.6V. Updated Note 7. Updated Ordering Code Definitions: Added Tape and Reel parts. Updated Copyright and Disclaimer.		

Document Number: 001-79707 Rev. *N

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Wireless/RF

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory **PSoC** cypress.com/psoc Touch Sensing cypress.com/touch **USB Controllers** cypress.com/usb

cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2012-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other testile the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-79707 Rev. *N Revised September 15, 2016 Page 23 of 23